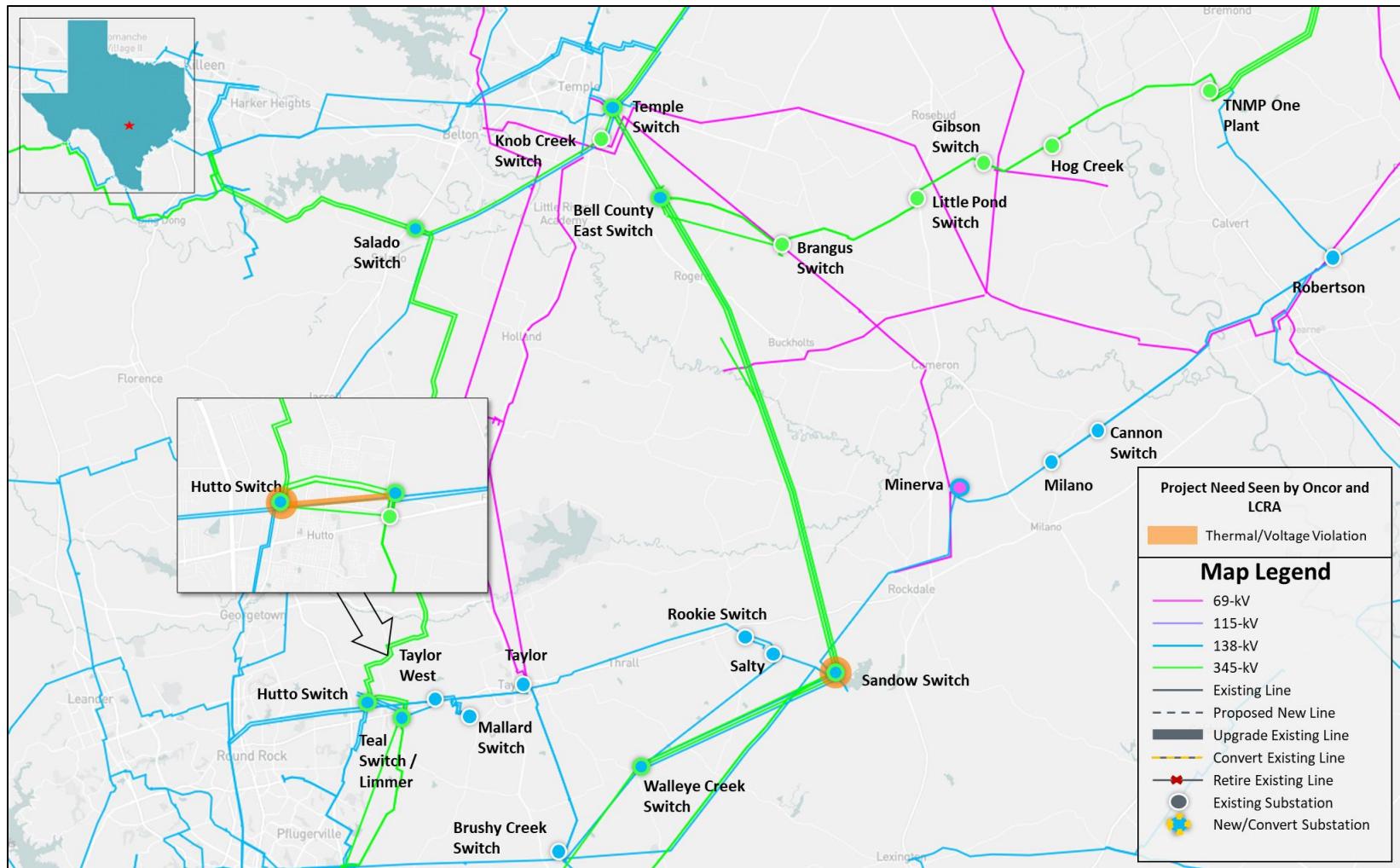
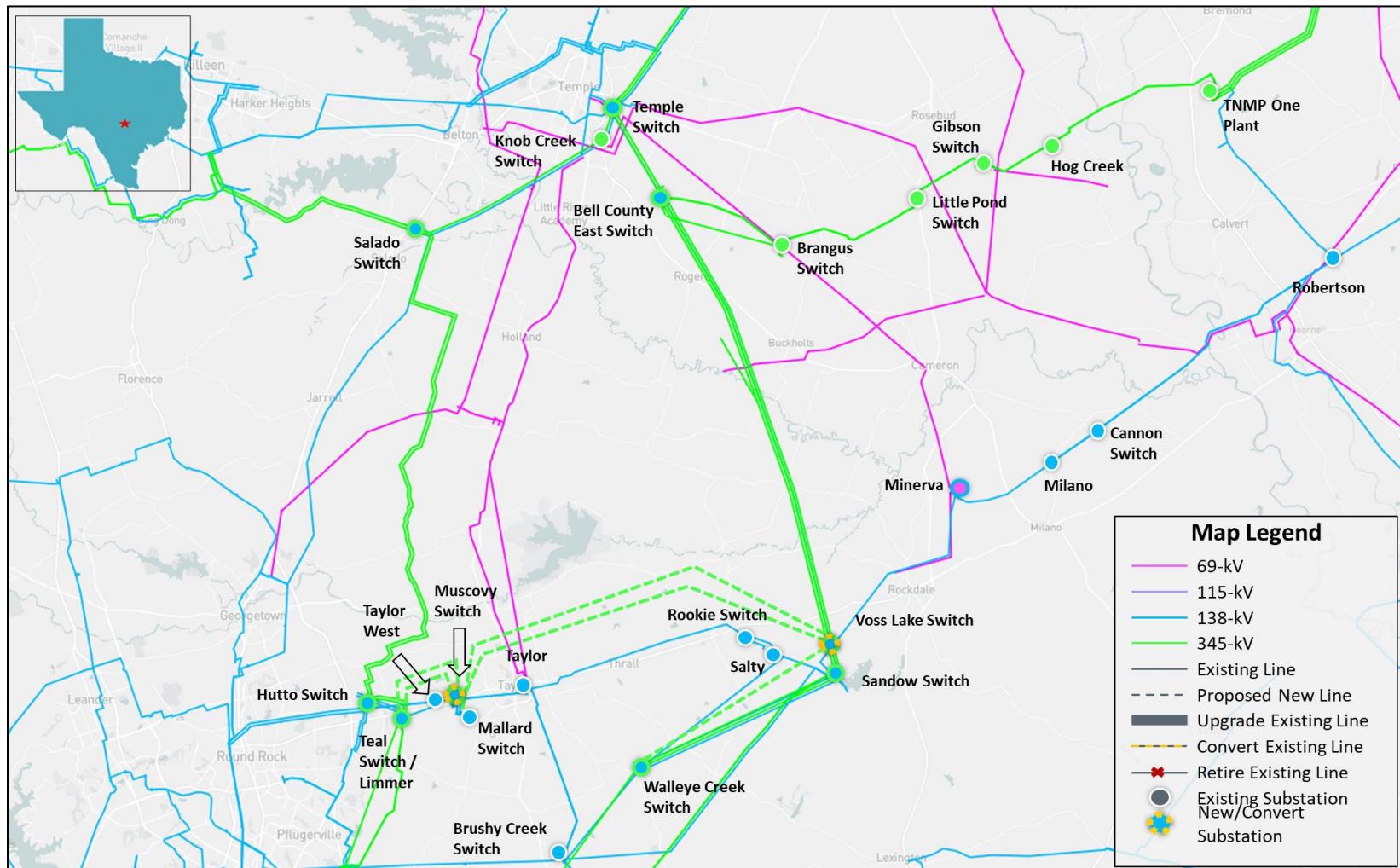




## **Oncor and LCRA TSC Muscovy and Voss Lake 345/138-kV Project – ERCOT Independent Review – Status Update**


Abishek Penti

RPG Meeting  
January 16, 2026


# Introduction

- Oncor and LCRA TSC submitted the Muscovy and Voss Lake Project for Regional Planning Group (RPG) review in April 2025.
  - This Tier 1 project is estimated to cost \$381.83 million and will require a Certificate of Convenience and Necessity (CCN)
  - Estimated in-service date (ISD) is December 2028
  - To address reliability violations seen by Oncor and LCRA TSC
  - Observed similar violations in 2024 RTP (2024-SC28 and 2024-SC29)
- Oncor provided an overview presentation and ERCOT provided the study scope at the May RPG Meeting
  - <https://www.ercot.com/calendar/05202025-RPG-Meeting>
- ERCOT provided a status update at the June, July and October RPG Meeting
  - <https://www.ercot.com/calendar/06172025-RPG-Meeting>
  - <https://www.ercot.com/calendar/07292025-RPG-Meeting>
  - <https://www.ercot.com/calendar/10282025-RPG-Meeting>
- This project is currently under ERCOT Independent Review (EIR)

# Recap – Study Area Map with project need as seen by Oncor and LCRA TSC



# Recap – Project Proposed by Oncor and LCRA TSC



# Recap – Project Proposed by Oncor and LCRA TSC

- Establish the new Muscovy 345/138-kV Switch by installing ten 345-kV, 5000 A and twelve 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 3.3 miles east of the co-located 345-kV Limmer Substation (LCRA TSC) and 138-kV Teal Switch (Oncor);
  - Install two 345/138-kV autotransformers with normal rating of 700 MVA and emergency rating of 750 MVA
  - Install three 36.8 MVar capacitor banks
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a new 345-kV double-circuit transmission line which will require a CCN from Limmer Substation (LCRA TSC) to Muscovy Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 4-mile;
- Construct a loop of the existing Teal Switch to Pintail Switch 138-kV double-circuit transmission line with a normal and emergency ratings of at least 614 MVA into the new Muscovy 138 kV Switch, approximately 0.1-mile;

# Recap – Project Proposed by Oncor and LCRA TSC

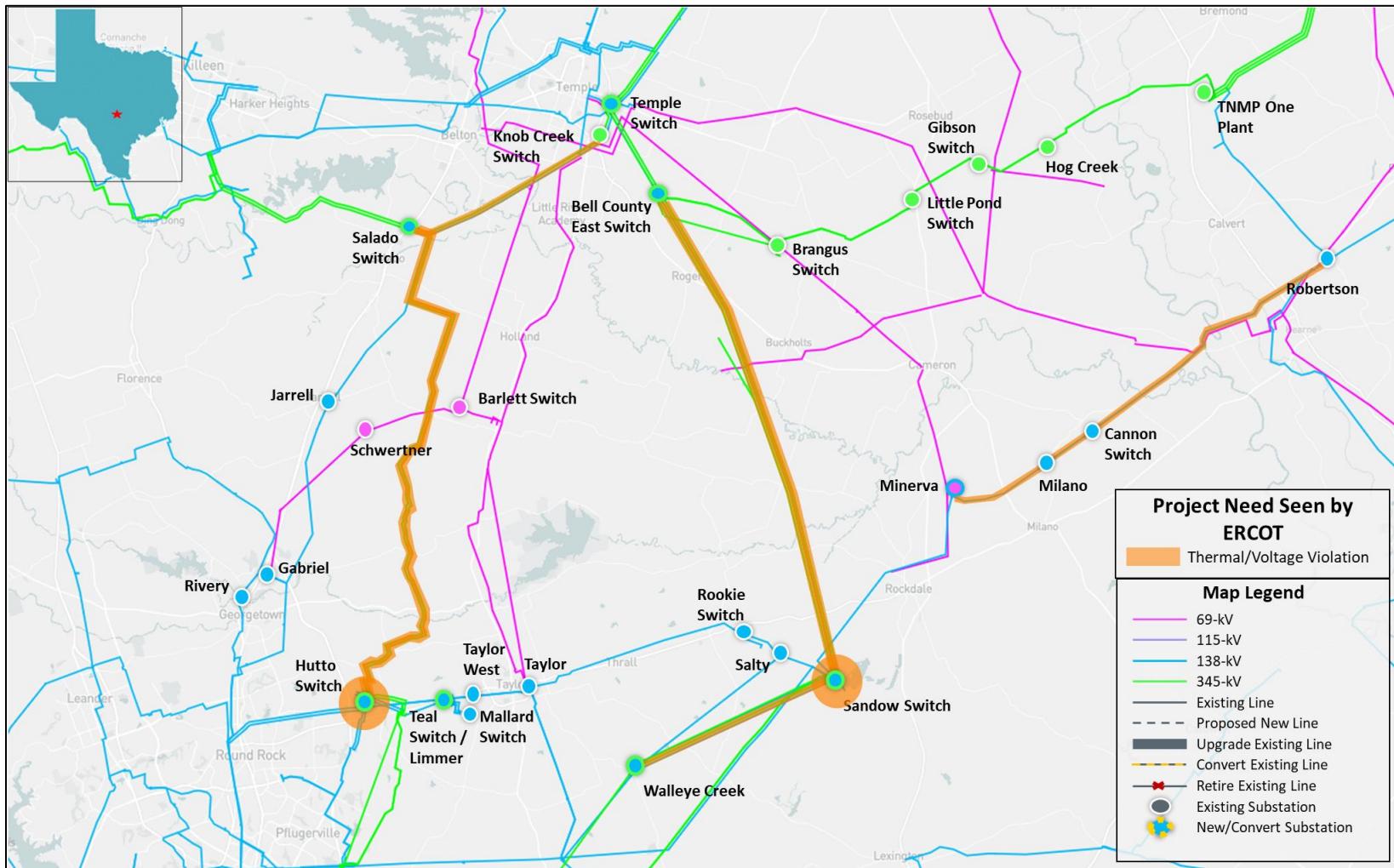
- Establish the new Voss Lake 345/138-kV Switch by installing ten 345-kV, 5000 A and nine 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 1.9 miles north of Sandow 345/138-kV Switch;
  - Install one 345/138-kV autotransformer with normal ratings of at least 700 MVA and emergency ratings of atleast 750 MVA
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a loop of the existing Sandow Switch to Bell County East Switch 345-kV double-circuit transmission line into the Voss Lake 345-kV Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Temple Switch 138-kV transmission line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Minerva Switch 138-kV line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;

# Recap – Project Proposed by Oncor and LCRA TSC

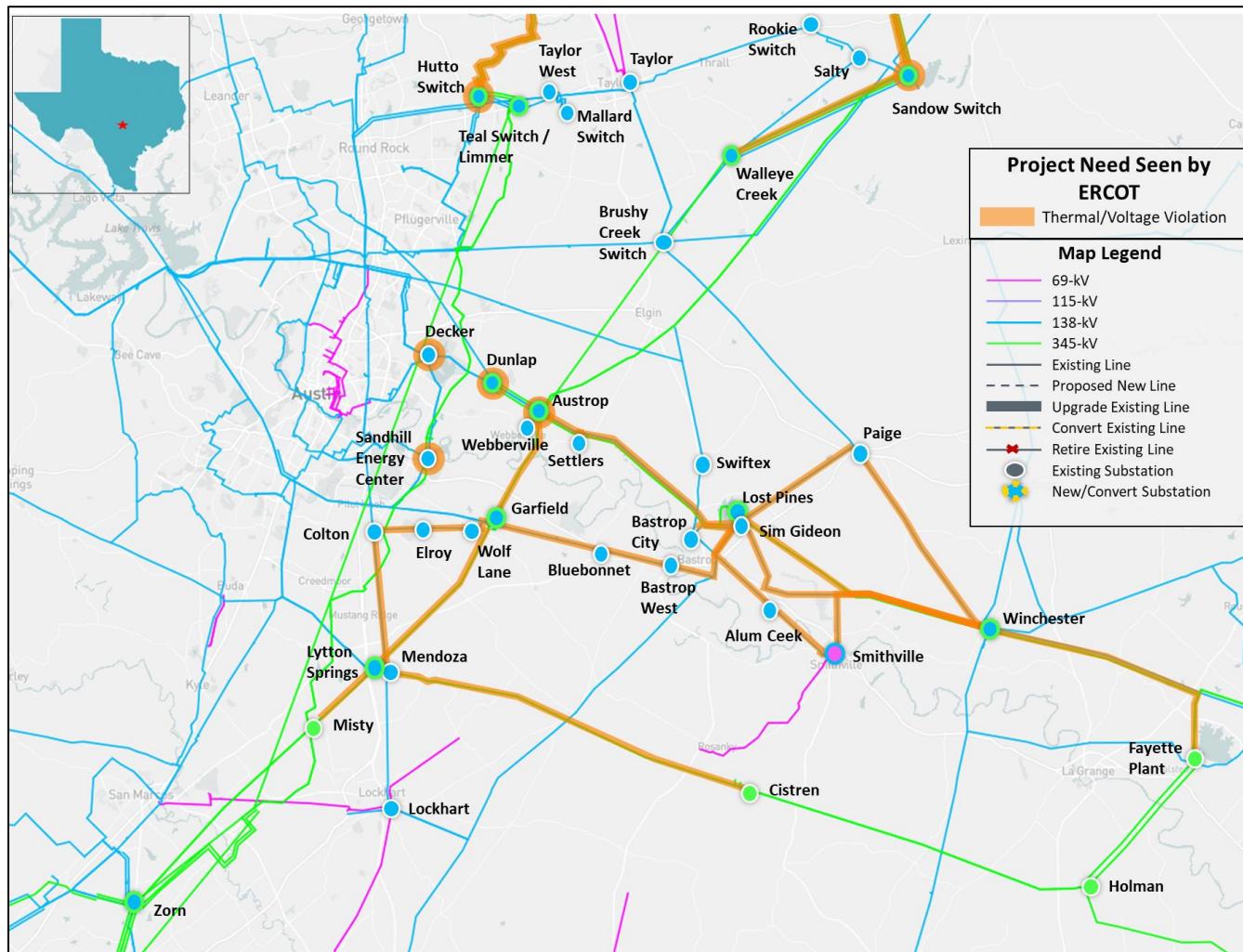
- Construct a new 345-kV transmission line which will require a certificate of convenience and necessity (CCN) from Voss Lake Switch to Walleye Creek Switch with a normal and emergency ratings of at least 2987 MVA or greater on double-circuit structures with one circuit installed initially, approximately 2-mile; and
- Construct a new, 345-kV double-circuit line which will require a CCN from Muscovy Switch to Voss Lake Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 25-mile.
- Install terminal equipment in existing bays at Limmer Substation to connect both circuits of the new 345-kV double-circuit transmission lines to Muscovy Switch, including two circuit breakers, two switches, six coupling capacitor voltage transformers (CCVTs), and six surge arrestors, as well as two A-frame structures. All associated terminal equipment will have a minimum rating of 5000 A.

# Recap – Study Assumptions – Load, Reserve, Transmission & Generation

- 2024 Regional Transmission Planning (RTP) 2029 summer peak case was used as the start case
- Load in study area
  - Loads in study area were updated to create the study base case
  - Added ~2GW of substantiated load in the study region
- Reserve
  - Reserve levels are consistent with the 2024 RTP
- Transmission
  - See Appendix A for a list of transmission projects added
  - See Appendix B for a list of RTP placeholder projects that were removed
- Generation
  - See Appendix C for a list of generation projects added


# Updated – Preliminary Results of Reliability Assessment – Need Analysis

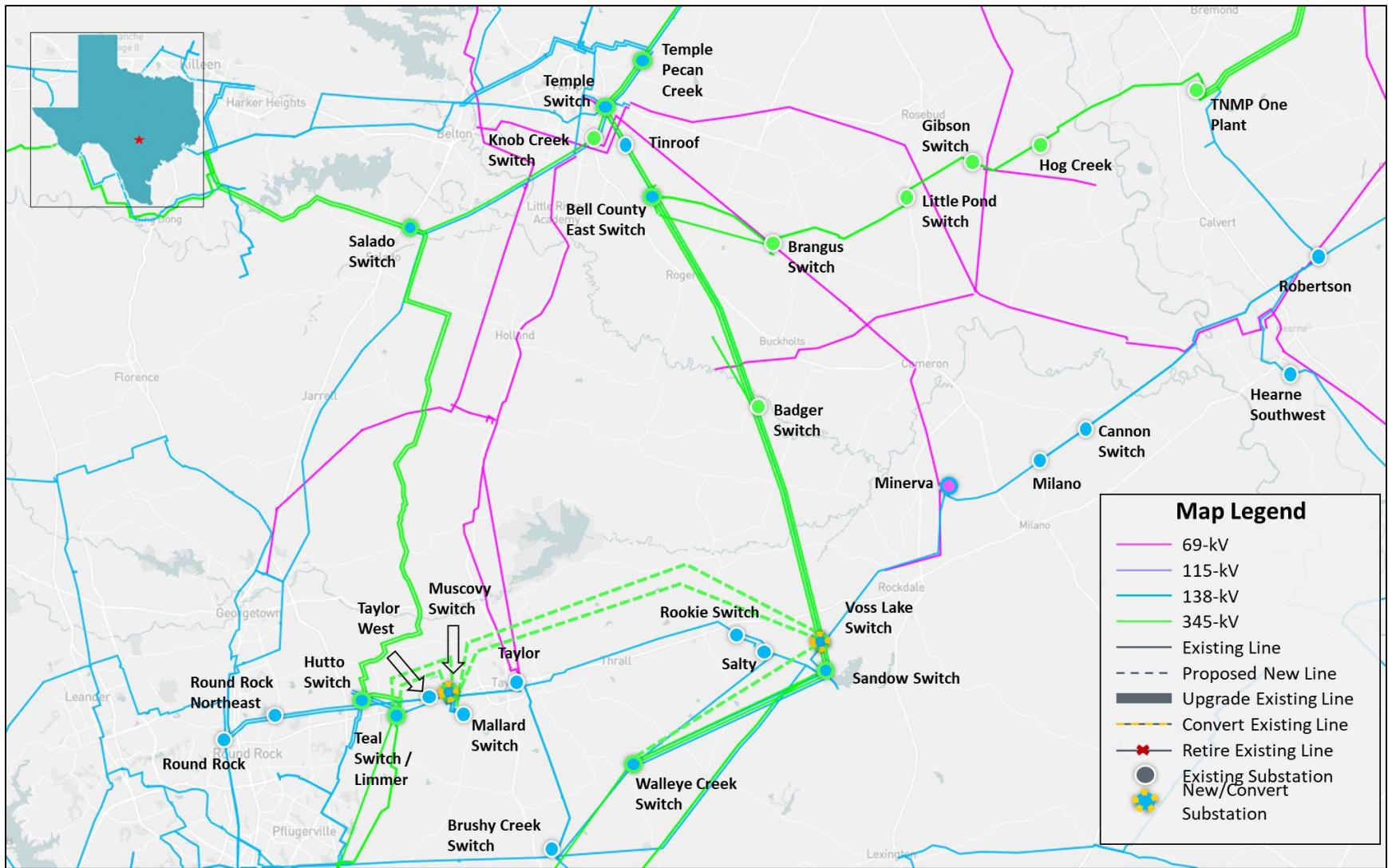
- ERCOT conducted steady-state load flow analysis for the study base case according to the NERC TPL-001-5.1 and ERCOT Planning Criteria to identify project need


| Contingency Category | Voltage Violations | Thermal Violations | Unsolved Power Flow |
|----------------------|--------------------|--------------------|---------------------|
| P0: N-0              | 7                  | 16                 | None                |
| P1, P2-1, P7: N-1    | 28                 | 19                 | 13                  |
| P3: G-1+N-1 *        | 50+                | 50+                | 25                  |
| P6-2: X-1+N-1 *      | 50+                | 40+                | 13                  |

\* See Appendix D for list of G-1 generators and X-1 transformers tested

# Updated – Study Area 1 Map with Violations seen by ERCOT




## Recap – Study Area 2 Map with Violations seen by ERCOT



# Recap – Phased Approach Evaluation

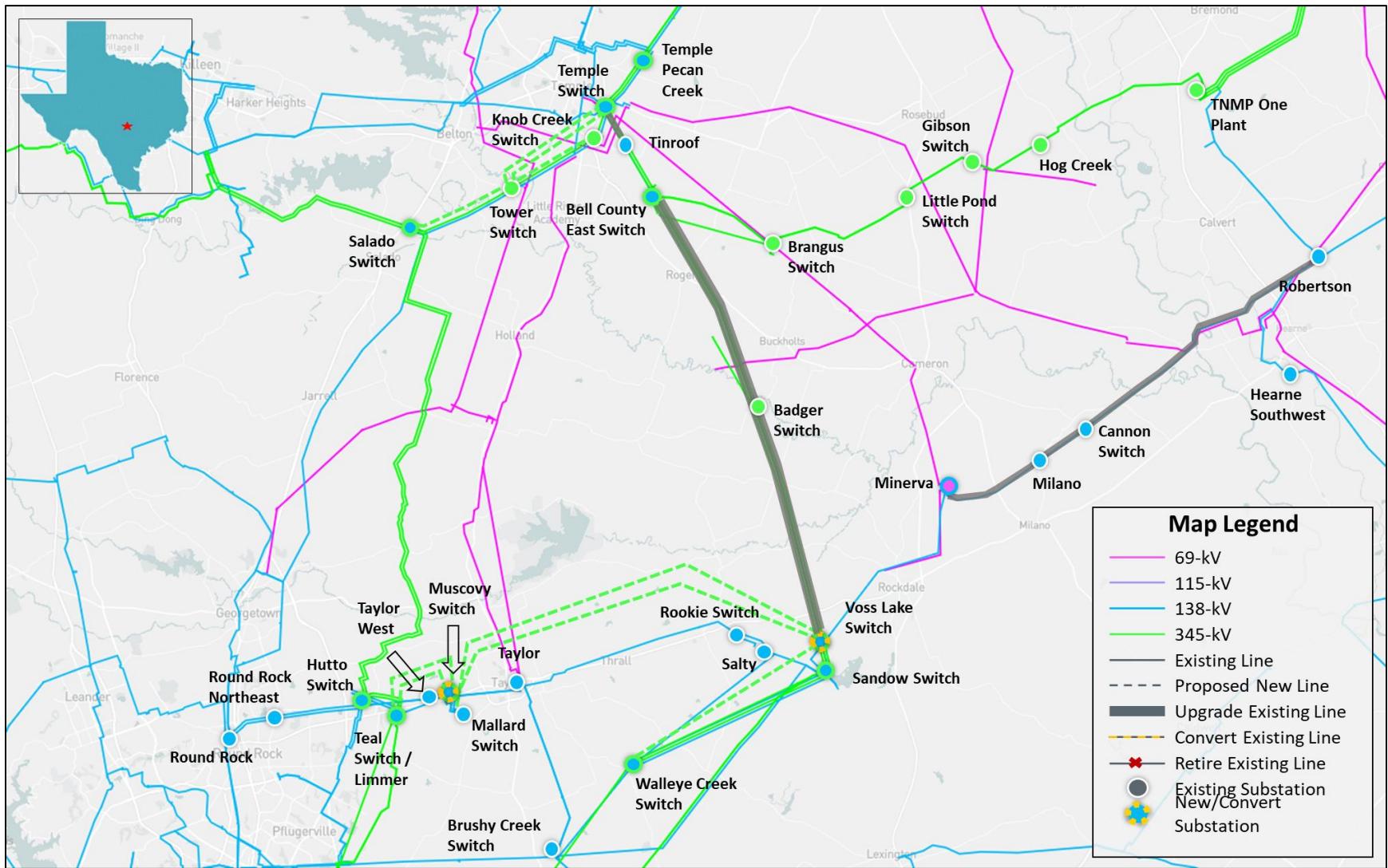
- The ongoing Oncor and LCRA TSC Muscovy and Voss Lake 345/138-kV Project EIR was separated into two Phases
- Phase 1 of the EIR
  - To address the violations identified in Study area 1
- Phase 2 of the EIR
  - To address the violations identified in study area 2
  - Include upgrades identified in Phase 1
  - ERCOT final recommendation will be coordinated with the 2025 RTP evaluations
  - ERCOT anticipates the completion of phase 2 EIR study after phase 1 EIR Study

# Option 1 – LCRA & Oncor Option



# Option 1 – LCRA & Oncor Option

- Establish the new Muscovy 345/138-kV Switch by installing ten 345-kV, 5000 A and twelve 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 3.3 miles east of the co-located 345-kV Limmer Substation (LCRA TSC) and 138-kV Teal Switch (Oncor);
  - Install two 345/138-kV autotransformers with normal rating of 700 MVA and emergency rating of 750 MVA
  - Install three 36.8 MVA capacitor banks
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a new 345-kV double-circuit transmission line which will require a CCN from Limmer Substation (LCRA TSC) to Muscovy Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 4-mile;
- Construct a loop of the existing Teal Switch to Pintail Switch 138-kV double-circuit transmission line with a normal and emergency ratings of at least 614 MVA into the new Muscovy 138-kV Switch, approximately 0.1-mile;


# Option 1 – LCRA & Oncor Option

- Establish the new Voss Lake 345/138-kV Switch by installing ten 345-kV, 5000 A and nine 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 1.9 miles north of Sandow 345/138-kV Switch;
  - Install one 345/138-kV autotransformer with normal ratings of at least 700 MVA and emergency ratings of atleast 750 MVA
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a loop of the existing Sandow Switch to Bell County East Switch 345-kV double-circuit transmission line into the Voss Lake 345-kV Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Temple Switch 138-kV transmission line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Minerva Switch 138-kV line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;

# Option 1 – LCRA & Oncor Option

- Construct a new 345-kV transmission line which will require a CCN from Voss Lake Switch to Walleye Creek Switch with a normal and emergency ratings of at least 2987 MVA or greater on double-circuit structures with one circuit installed initially, approximately 2-mile; and
- Construct a new, 345-kV double-circuit line which will require a CCN from Muscovy Switch to Voss Lake Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 25-mile.
- Install terminal equipment in existing bays at Limmer Substation to connect both circuits of the new 345-kV double-circuit transmission lines to Muscovy Switch, including two circuit breakers, two switches, six CCVTs, and six surge arrestors, as well as two A-frame structures. All associated terminal equipment will have a minimum rating of 5000 A.

# Option 2 – Alternative ERCOT Option



# Option 2 – Alternative ERCOT Option

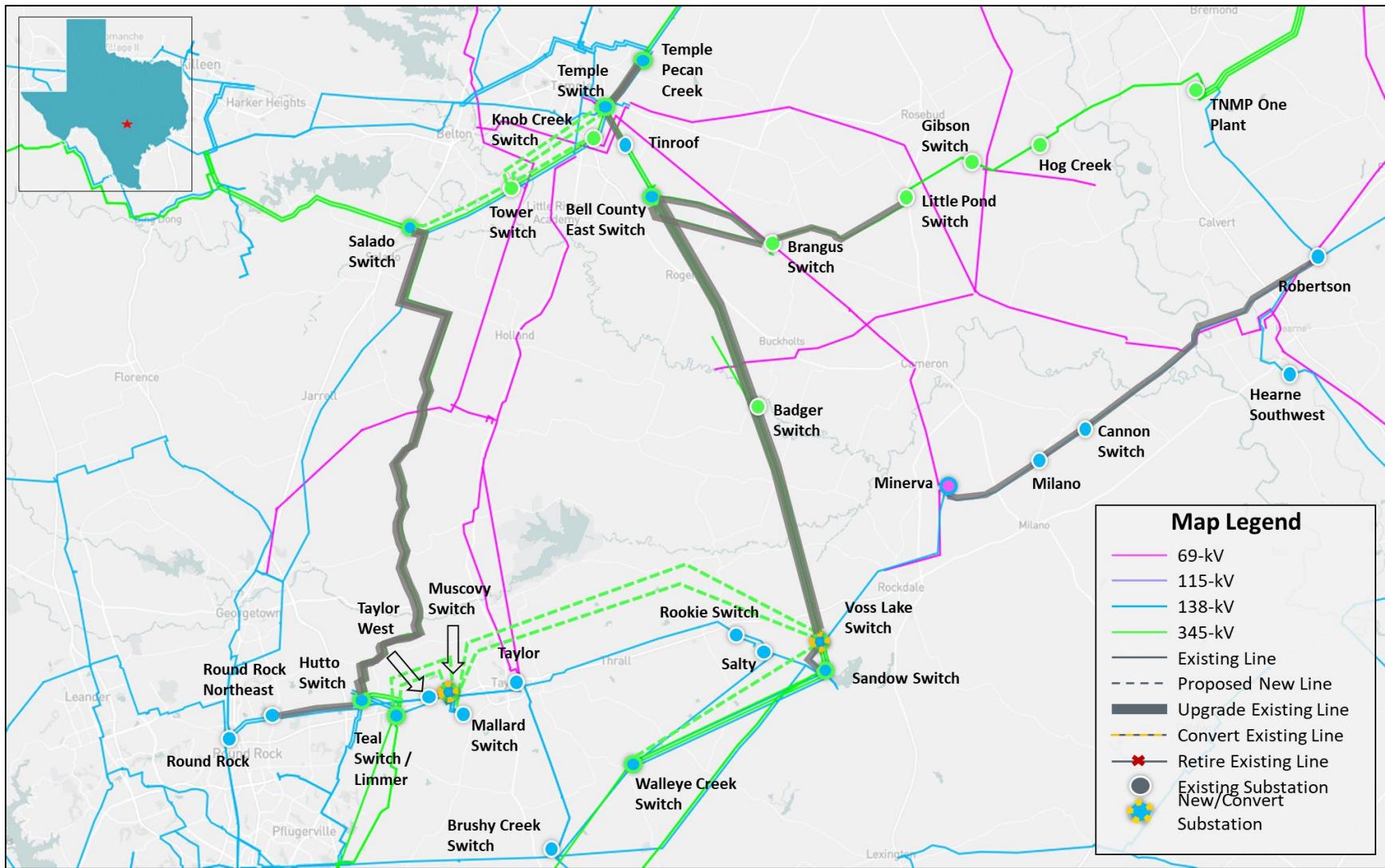
- Establish the new Muscovy 345/138-kV Switch by installing ten 345-kV, 5000 A and twelve 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 3.3 miles east of the co-located 345-kV Limmer Substation (LCRA TSC) and 138-kV Teal Switch (Oncor);
  - Install two 345/138-kV autotransformers with normal rating of 700 MVA and emergency rating of 750 MVA
  - Install three 36.8 MVA capacitor banks
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a new 345-kV double-circuit transmission line which will require a CCN from Limmer Substation (LCRA TSC) to Muscovy Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 4-mile;
- Construct a loop of the existing Teal Switch to Pintail Switch 138-kV double-circuit transmission line with a normal and emergency ratings of at least 614 MVA into the new Muscovy 138-kV Switch, approximately 0.1-mile;

# Option 2 – Alternative ERCOT Option

- Establish the new Voss Lake 345/138-kV Switch by installing ten 345-kV, 5000 A and nine 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 1.9 miles north of Sandow 345/138-kV Switch;
  - Install one 345/138-kV autotransformer with normal ratings of at least 700 MVA and emergency ratings of atleast 750 MVA
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a loop of the existing Sandow Switch to Bell County East Switch 345-kV double-circuit transmission line into the Voss Lake 345-kV Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Temple Switch 138-kV transmission line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Minerva Switch 138-kV line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;

## Option 2 – Alternative ERCOT Option

- Construct a new 345-kV transmission line which will require a CCN from Voss Lake Switch to Walleye Creek Switch with a normal and emergency ratings of at least 2987 MVA or greater on double-circuit structures with one circuit installed initially, approximately 2-mile; and
- Construct a new, 345-kV double-circuit line which will require a CCN from Muscovy Switch to Voss Lake Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 25-mile.
- Install terminal equipment in existing bays at Limmer Substation to connect both circuits of the new 345-kV double-circuit transmission lines to Muscovy Switch, including two circuit breakers, two switches, six CCVTs, and six surge arrestors, as well as two A-frame structures. All associated terminal equipment will have a minimum rating of 5000 A.


# Option 2 – Alternative ERCOT Option

- Establish the Tower 345-kV Switch by installing ten 345-kV, 5000 A circuit breakers in a breaker-and-a-half bus arrangement.
  - Loop the existing Salado Switch to Knob Creek Switch 345-kV Line into Tower 345-kV Switch to create the new 12.4-mile Salado Switch – Tower Switch 345-kV Line and 2.9-mile Tower Switch to Temple Switch 345-kV Line
  - Construct two new approximately 1.2-mile 345-kV single circuit lines from Tower Switch to Knob Creek Switch on independent, single circuit structures using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), this upgrade will require a CCN
  - Ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)
- Rebuild the 12.4-mile Salado Switch to Tower Switch 345-kV Line using double-circuit capable structures with one circuit installed, using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA), this upgrade will require a CCN

## Option 2 – Alternative ERCOT Option

- Rebuild the 29.6-mile Bell County East Switch to Voss Lake Switch 345-kV Double-Circuit Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 9.9-mile Minerva Switch to Robertson 138-kV Line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 1.85-mile Temple Switch to Tinroof 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)

# Option 3 – ERCOT Alternative Option



# Option 3 – Alternative ERCOT Option

- Establish the new Muscovy 345/138-kV Switch by installing ten 345-kV, 5000 A and twelve 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 3.3 miles east of the co-located 345-kV Limmer Substation (LCRA TSC) and 138-kV Teal Switch (Oncor);
  - Install two 345/138-kV autotransformers with normal rating of 700 MVA and emergency rating of 750 MVA
  - Install three 36.8 MVA capacitor banks
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a new 345-kV double-circuit transmission line which will require a CCN from Limmer Substation (LCRA TSC) to Muscovy Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 4-mile;
- Construct a loop of the existing Teal Switch to Pintail Switch 138-kV double-circuit transmission line with a normal and emergency ratings of at least 614 MVA into the new Muscovy 138-kV Switch, approximately 0.1-mile;

# Option 3 – Alternative ERCOT Option

- Establish the new Voss Lake 345/138-kV Switch by installing ten 345-kV, 5000 A and nine 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 1.9 miles north of Sandow 345/138-kV Switch;
  - Install one 345/138-kV autotransformer with normal ratings of at least 700 MVA and emergency ratings of atleast 750 MVA
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a loop of the existing Sandow Switch to Bell County East Switch 345-kV double-circuit transmission line into the Voss Lake 345-kV Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Temple Switch 138-kV transmission line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Minerva Switch 138-kV line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;

# Option 3 – Alternative ERCOT Option

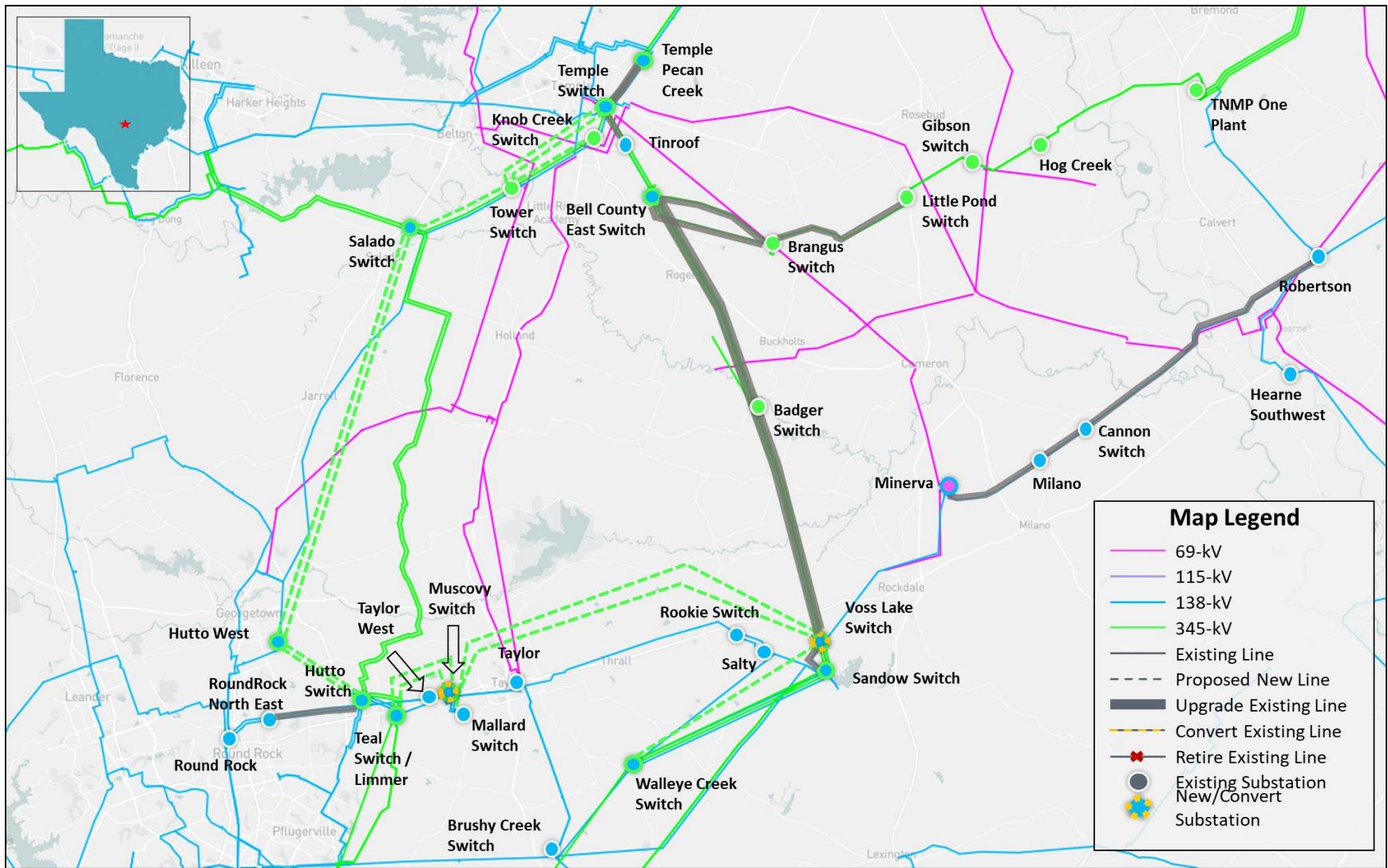
- Construct a new 345-kV transmission line which will require a CCN from Voss Lake Switch to Walleye Creek Switch with a normal and emergency ratings of at least 2987 MVA or greater on double-circuit structures with one circuit installed initially, approximately 2-mile; and
- Construct a new, 345-kV double-circuit line which will require a CCN from Muscovy Switch to Voss Lake Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 25-mile.
- Install terminal equipment in existing bays at Limmer Substation to connect both circuits of the new 345-kV double-circuit transmission lines to Muscovy Switch, including two circuit breakers, two switches, six CCVTs, and six surge arrestors, as well as two A-frame structures. All associated terminal equipment will have a minimum rating of 5000 A.

# Option 3 – Alternative ERCOT Option

- Establish the Tower 345-kV Switch by installing ten 345-kV, 5000 A circuit breakers in a breaker-and-a-half bus arrangement.
  - Loop the existing Salado Switch to Knob Creek Switch 345-kV Line into Tower 345-kV Switch to create the new 12.4-mile Salado Switch – Tower Switch 345-kV Line and 2.9-mile Tower Switch to Temple Switch 345-kV Line
  - Construct two new approximately 1.2-mile 345-kV single circuit lines from Tower Switch to Knob Creek Switch on independent, single circuit structures using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), this upgrade will require a CCN
  - Ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)
- Rebuild the 12.4-mile Salado Switch to Tower Switch 345-kV Line using double-circuit capable structures with one circuit installed, using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA), this upgrade will require a CCN

# Option 3 – Alternative ERCOT Option

- Rebuild the 29.6-mile Bell County East Switch to Voss Lake Switch 345-kV Double-Circuit Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 9.9-mile Minerva Switch to Robertson 138-kV Line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 1.85-mile Temple Switch to Tinroof 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)


# Option 3 – Alternative ERCOT Option

- Rebuild the 17.75-mile Bell County East Switch to Little Pond 345-kV Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 23.19-mile Bell County East Switch to Gibson 345-kV Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 4.5-mile Temple Switch to Temple Pecan Creek Switch 345 kV Double-Circuit Line using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA) on separate structures, and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)
- Rebuild the 36.9-mile Hutto to Salado 345 kV Double-Circuit Line using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)

# Option 3 – Alternative ERCOT Option

- Rebuild the 5.3-mile Hutto to Round Rock NorthEast 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 3-mile Hutto to Limmer 345 kV double-circuit Line on separate structures
- Install 110.4 MVAr Cap Bank at Hutto 138-kV

# Option 4 – Alternative Oncor Option



# Option 4 – Alternative Oncor Option

- Establish the new Muscovy 345/138-kV Switch by installing ten 345-kV, 5000 A and twelve 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 3.3 miles east of the co-located 345-kV Limmer Substation (LCRA TSC) and 138-kV Teal Switch (Oncor);
  - Install two 345/138-kV autotransformers with normal rating of 700 MVA and emergency rating of 750 MVA
  - Install three 36.8 MVA capacitor banks
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a new 345-kV double-circuit transmission line which will require a CCN from Limmer Substation (LCRA TSC) to Muscovy Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 4-mile;
- Construct a loop of the existing Teal Switch to Pintail Switch 138-kV double-circuit transmission line with a normal and emergency ratings of at least 614 MVA into the new Muscovy 138-kV Switch, approximately 0.1-mile;

# Option 4 – Alternative Oncor Option

- Establish the new Voss Lake 345/138-kV Switch by installing ten 345-kV, 5000 A and nine 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 1.9 miles north of Sandow 345/138-kV Switch;
  - Install one 345/138-kV autotransformer with normal ratings of at least 700 MVA and emergency ratings of atleast 750 MVA
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a loop of the existing Sandow Switch to Bell County East Switch 345-kV double-circuit transmission line into the Voss Lake 345-kV Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Temple Switch 138-kV transmission line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Minerva Switch 138-kV line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;

## Option 4 – Alternative Oncor Option

- Construct a new 345-kV transmission line which will require a CCN from Voss Lake Switch to Walleye Creek Switch with a normal and emergency ratings of at least 2987 MVA or greater on double-circuit structures with one circuit installed initially, approximately 2-mile; and
- Construct a new, 345-kV double-circuit line which will require a CCN from Muscovy Switch to Voss Lake Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 25-mile.
- Install terminal equipment in existing bays at Limmer Substation to connect both circuits of the new 345-kV double-circuit transmission lines to Muscovy Switch, including two circuit breakers, two switches, six CCVTs, and six surge arrestors, as well as two A-frame structures. All associated terminal equipment will have a minimum rating of 5000 A.

# Option 4 – Alternative Oncor Option

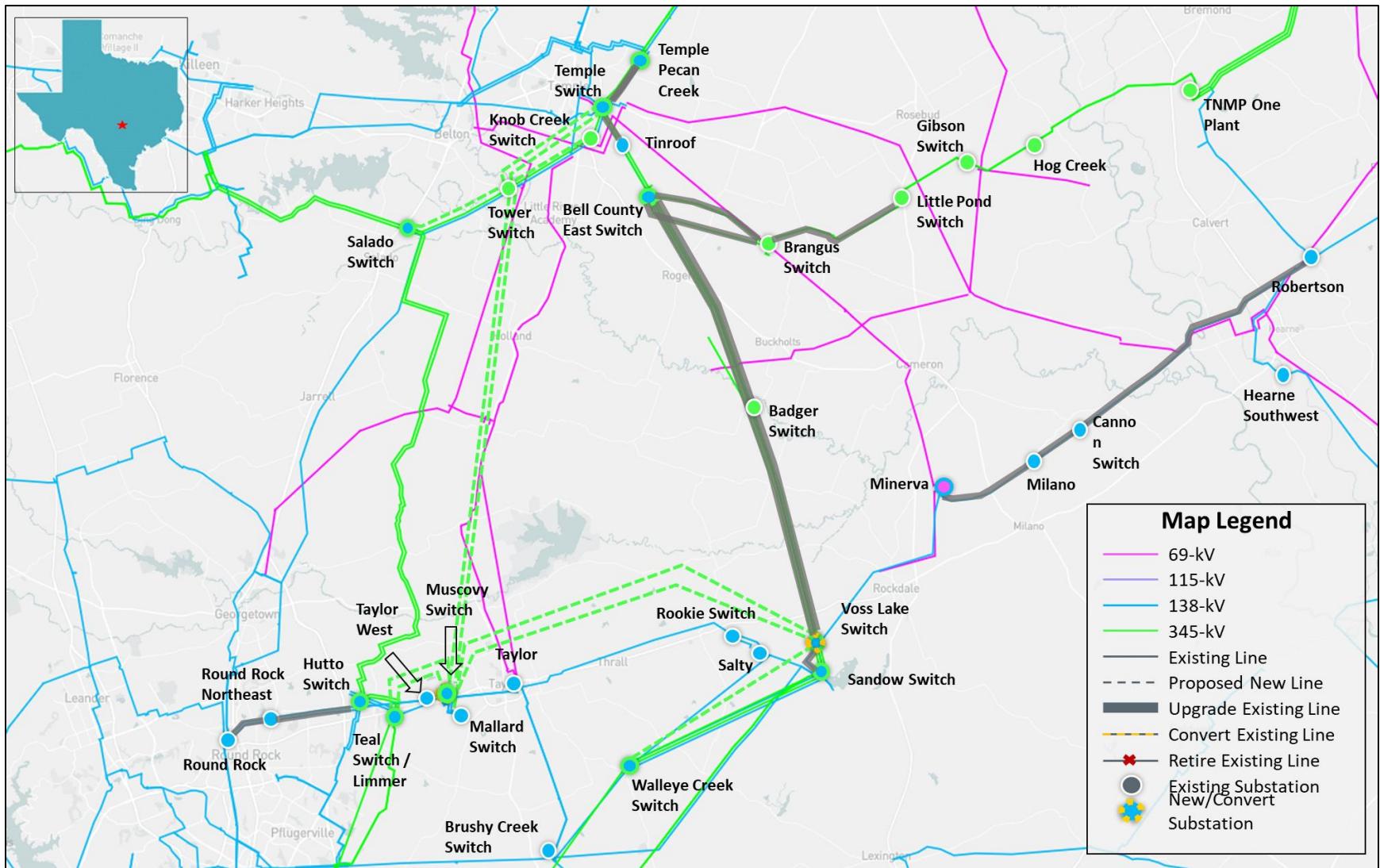
- Establish the Tower 345-kV Switch by installing ten 345-kV, 5000 A circuit breakers in a breaker-and-a-half bus arrangement.
  - Loop the existing Salado Switch to Knob Creek Switch 345-kV Line into Tower 345-kV Switch to create the new 12.4-mile Salado Switch – Tower Switch 345-kV Line and 2.9-mile Tower Switch to Temple Switch 345-kV Line
  - Construct two new approximately 1.2-mile 345-kV single circuit lines from Tower Switch to Knob Creek Switch on independent, single circuit structures using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), this upgrade will require a CCN
  - Ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)
- Rebuild the 12.4-mile Salado Switch to Tower Switch 345-kV Line using double-circuit capable structures with one circuit installed, using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA), this upgrade will require a CCN

# Option 4 – Alternative Oncor Option

- Rebuild the 29.6-mile Bell County East Switch to Voss Lake Switch 345-kV Double-Circuit Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 9.9-mile Minerva Switch to Robertson 138-kV Line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 1.85-mile Temple Switch to Tinroof 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)

# Option 4 – Alternative Oncor Option

- Rebuild the 17.75-mile Bell County East Switch – Little Pond 345-kV Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 23.19-mile Bell County East Switch – Gibson 345-kV Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 4.5-mile Temple Switch – Temple Pecan Creek Switch 345 kV Double-Circuit Line using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA) on separate structures, and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)


# Option 4 – Alternative Oncor Option

- Establish a new Hutto West 345-kV Switch by installing ten 345-kV, 5000 A circuit breakers in a breaker-and-a-half bus arrangement.
  - Install two 345/138-kV autotransformers with normal rating of 700 MVA and emergency rating of 750 MVA
  - Construct new approximately 38.9-mile 345-kV double circuit lines from Salado to Hutto West Switch using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), this upgrade will require a CCN
  - Construct new approximately 10.25-mile 345-kV double circuit lines from Hutto West to Hutto Switch using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), this upgrade will require a CCN
  - Construct a loop of the existing Round Rock Westing House to Round Rock 138-kV line into the Hutto West 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
  - Construct a loop of the existing Round Rock Westing House to Midnight 138-kV line into the Hutto West 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV

## Option 4 – Alternative Oncor Option

- Rebuild the 5.3-mile Hutto to Round Rock Northeast 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 3-mile Hutto to Limmer 345 kV double-circuit Line on separate structures
- Install 110.4 MVAr Cap Bank at Hutto 138-kV

# Option 5 – ERCOT Alternative Option



# Option 5 – Alternative ERCOT Option

- Establish the new Muscovy 345/138-kV Switch by installing ten 345-kV, 5000 A and twelve 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 3.3 miles east of the co-located 345-kV Limmer Substation (LCRA TSC) and 138-kV Teal Switch (Oncor);
  - Install two 345/138-kV autotransformers with normal rating of 700 MVA and emergency rating of 750 MVA
  - Install three 36.8 MVA capacitor banks
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a new 345-kV double-circuit transmission line which will require a CCN from Limmer Substation (LCRA TSC) to Muscovy Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 4-mile;
- Construct a loop of the existing Teal Switch to Pintail Switch 138-kV double-circuit transmission line with a normal and emergency ratings of at least 614 MVA into the new Muscovy 138-kV Switch, approximately 0.1-mile;

# Option 5 – Alternative ERCOT Option

- Establish the new Voss Lake 345/138-kV Switch by installing ten 345-kV, 5000 A and nine 138-kV, 3200 A breakers in a breaker-and-a-half bus arrangement, approximately 1.9 miles north of Sandow 345/138-kV Switch;
  - Install one 345/138-kV autotransformer with normal ratings of at least 700 MVA and emergency ratings of atleast 750 MVA
  - Ensure all line terminal and associated equipment elements are rated to meet or exceed 5000 A for 345-kV and 3200 A for 138-kV
- Construct a loop of the existing Sandow Switch to Bell County East Switch 345-kV double-circuit transmission line into the Voss Lake 345-kV Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Temple Switch 138-kV transmission line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;
- Construct a loop of the existing Sandow Switch to Minerva Switch 138-kV line into the Voss Lake 138-kV Switch with a normal and emergency ratings of at least 614 MVA or greater, approximately 0.1-mile;

# Option 5 – Alternative ERCOT Option

- Construct a new 345-kV transmission line which will require a CCN from Voss Lake Switch to Walleye Creek Switch with a normal and emergency ratings of at least 2987 MVA or greater on double-circuit structures with one circuit installed initially, approximately 2-mile; and
- Construct a new, 345-kV double-circuit line which will require a CCN from Muscovy Switch to Voss Lake Switch with a normal and emergency ratings of at least 2987 MVA or greater, approximately 25-mile.
- Install terminal equipment in existing bays at Limmer Substation to connect both circuits of the new 345-kV double-circuit transmission lines to Muscovy Switch, including two circuit breakers, two switches, six coupling capacitor voltage transformers (CCVTs), and six surge arrestors, as well as two A-frame structures. All associated terminal equipment will have a minimum rating of 5000 A.

# Option 5 – Alternative ERCOT Option

- Establish the Tower 345-kV Switch by installing ten 345-kV, 5000 A circuit breakers in a breaker-and-a-half bus arrangement.
  - Loop the existing Salado Switch to Knob Creek Switch 345-kV Line into Tower 345-kV Switch to create the new 12.4-mile Salado Switch – Tower Switch 345-kV Line and 2.9-mile Tower Switch to Temple Switch 345-kV Line
  - Construct two new approximately 1.2-mile 345-kV single circuit lines from Tower Switch to Knob Creek Switch on independent, single circuit structures using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), this upgrade will require a CCN
  - Ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)
- Rebuild the 12.4-mile Salado Switch to Tower Switch 345-kV Line using double-circuit capable structures with one circuit installed, using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA), this upgrade will require a CCN

# Option 5 – Alternative ERCOT Option

- Rebuild the 29.6-mile Bell County East Switch to Voss Lake Switch 345-kV Double-Circuit Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 9.9-mile Minerva Switch to Robertson 138-kV Line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 1.85-mile Temple Switch to Tinroof 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)

# Option 5 – Alternative ERCOT Option

- Rebuild the 17.75-mile Bell County East Switch – Little Pond 345-kV Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 23.19-mile Bell County East Switch – Gibson 345-kV Line using a conductor rated 5000 A or greater (due to the existing 3200 A terminal equipment, this line will be operated at a normal and emergency rating 1912 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (1912 MVA)
- Rebuild the 4.5-mile Temple Switch – Temple Pecan Creek Switch 345 kV Double-Circuit Line using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA) on separate structures, and ensure all associated terminal equipment to meet or exceed 5000 A (2987 MVA)
- Construct two new approximately 36-mile 345-kV double circuit lines from Tower Switch to Muscovy double circuit structures using a conductor rated 5000 A or greater (normal and emergency rating 2987 MVA), this upgrade will require a Certificate of Convenience and Necessity (CCN)

# Option 5 – Alternative ERCOT Option

- Rebuild the 3.5-mile Muscovy to Limmer 345 kV Double-Circuit Line on separate structures
- Rebuild the 5.3-mile Hutto to Round Rock Northeast 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 3.8-mile Round Rock Northeast to Round Rock 138-kV line using double-circuit capable structures with one circuit installed and a conductor rated 2569 A or greater (normal and emergency rating 614 MVA), and ensure all associated terminal equipment to meet or exceed 3200 A (764 MVA)
- Rebuild the 3-mile Hutto to Limmer 345 kV double-circuit Line on separate structures
- Install 110.4 MVAr Cap Bank at Hutto 138-kV

# Preliminary Results of Reliability Assessment - Options

| Option | N-0                |                    | N-1                |                    | X-1+N-1*           |                    | G-1+N-1*           |                    |
|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|        | Thermal Violations | Voltage Violations |
| 1      | 4                  | None               | 6                  | None               | 3                  | None               | 3                  | None               |
| 2      | None               | None               | 5                  | None               | 4                  | None               | None               | None               |
| 3      | None               |
| 4      | None               |
| 5      | None               |

\* List of Transformer and Generation contingencies are listed in Appendix D

# Next Steps and Tentative Timelines

- ERCOT will continue to evaluate options to resolve violations in Study Area 1 as phase 1 of this RPG evaluation and provide status updates at future RPG meetings
  - Maintenance outage evaluation
  - Long-term load-serving capability assessment
  - Cost estimates and feasibility assessment
- Generation Addition and Load Scaling Sensitivity Analyses
  - Planning Guide Section 3.1.3(4)
- Subsynchronous Oscillations (SSO) Assessment
  - Nodal Protocol Section 3.22.1.3(2)
- Congestion Analysis
  - Congestion analysis may be performed based on the recommended transmission upgrades to ensure that the identified transmission upgrades do not result in new congestion within the study area
- Tentative timeline
  - Final recommendation for Phase 1 – Q1 2026
  - Final recommendation for Phase 2 – Q2 2026

# *Thank you!*



Stakeholder comments also welcomed through:

[Abishek.Penti@ercot.com](mailto:Abishek.Penti@ercot.com)

[Robert.Golen@ercot.com](mailto:Robert.Golen@ercot.com)

# Appendix A – Transmission Projects

- List of transmission projects added to study base case

| RPG/TPIT No | Project Name                                                        | Tier   | Project ISD | TSP             |
|-------------|---------------------------------------------------------------------|--------|-------------|-----------------|
| 24RPG001    | Temple Area Project                                                 | Tier 1 | Dec-28      | Oncor           |
| 24RPG013    | FPP Yard 2 to Lytton Springs Transmission Line Overhaul Project     | Tier 4 | May-26      | LCRA TSC, AEN   |
| 24RPG014    | Sim Gideon to Cedar Hill Transmission Line Upgrade Project          | Tier 3 | May-27      | LCRA TSC        |
| 24RPG018    | Salado Switch to Hutto Switch 138-kV Line Project                   | Tier 3 | May-27      | Oncor           |
| 25RPG006    | Resubmission for Salado Switch to Hutto Switch 138-kV Line Project  | Tier 3 | May-27      | Oncor, LCRA TSC |
| 72588A      | Trading Post to Cedar Valley Storm Hardening                        | Tier 4 | May-25      | PEC             |
| 86319       | AEN_Garfield_HiCross_CKT_963_Reconductor                            | Tier 4 | Jun-25      | AEN             |
| 86325       | AEN_McNeil_Magnesium_Plant_Ckt_977_RECONDUCTOR                      | Tier 4 | Jun-25      | AEN             |
| 87758       | Badger 345 kV Switch                                                | Tier 4 | Dec-25      | ONCOR           |
| 87395       | Caldwell Substation Addition                                        | Tier 4 | Mar-26      | LCRATSC         |
| 86323       | AEN_MagnesiumPlant_Northland_Ckt_979_RECONDUCTOR                    | Tier 4 | Jun-26      | AEN             |
| 86912       | BEPC_TPIT_86912_Gabriel_Schwerther                                  | Tier 4 | Mar-27      | BEPC            |
| 87673       | Rebuild the Salado - Bell County 138 kV Line                        | Tier 1 | May-27      | ONCOR           |
| 87770       | Establish a 110.4 MVAR Capacitor Bank at Midnight 138 kV Substation | Tier 4 | May-27      | ONCOR           |
| 87768       | Establish a 110.4 MVAR Capacitor Bank at Pintail 138 kV Switch      | Tier 4 | May-27      | ONCOR           |
| 87677       | Rebuild the Fryers Creek - Temple 138 kV Line                       | Tier 1 | May-27      | ONCOR           |
| 87675       | Rebuild the Bell County - Fryers Creek 138 kV Line                  | Tier 1 | May-27      | ONCOR           |
| 85973       | Georgetown - Rivery Transmission Line Upgrade                       | Tier 4 | May-26      | LCRATSC         |

# Appendix A – Transmission Projects

- List of transmission projects added to study base case

| RPG/TPIT No | Project Name                                        | Tier   | Project ISD | TSP   |
|-------------|-----------------------------------------------------|--------|-------------|-------|
| 80546C      | Upgrade the Hutto & Round Rock - Salado 138 kV Line | Tier 3 | May-26      | ONCOR |
| 80546E      | Upgrade the Hutto & Round Rock - Salado 138 kV Line | Tier 3 | May-27      | ONCOR |
| 86331       | AEN_Wheless_Mueller_Ckt_1016_Reconductor            | Tier 4 | Jun-27      | AEN   |
| 86321       | AEN_Lakeshore_Northland_Ckt_916_Reconductor         | Tier 4 | Jun-27      | AEN   |
| 86327       | AEN_New_138kV_Southshore_Substation_Addition        | Tier 4 | Sep-27      | AEN   |
| 86317       | AEN_DP_OnionCreek_Ckt_924_Reconductor               | Tier 4 | Sep-27      | AEN   |
| 86333       | AEN_OnionCreek_StoneyRidge_Ckt_1026_Reconductor     | Tier 4 | Sep-27      | AEN   |
| 87367       | BEPC_TPIT_87367_TempleAreaImprovements              | Tier 1 | Oct-27      | BEPC  |
| 87699       | Belton - Killeen 138 kV Line via Belton Southwest   | Tier 1 | Dec-27      | ONCOR |
| 80546D      | Upgrade the Hutto & Round Rock - Salado 138 kV Line | Tier 3 | Dec-27      | ONCOR |
| 87707       | Salado 345/138 kV Autotransformer #1 and #2         | Tier 1 | Dec-27      | ONCOR |
| 87701       | Establish the Watercrest 138 kV Switch              | Tier 1 | May-28      | ONCOR |
| 86838       | AEN_JustinLane_KoenigLane_Ckt_conversion_to_138kV   | Tier 4 | Jun-28      | AEN   |
| 86315       | AEN_Barton_Vega_Ckt_928_Reconductor                 | Tier 4 | Jun-28      | AEN   |
| 72588B      | Trading Post to Cedar Valley Storm Hardening        | Tier 4 | Sep-24      | PEC   |

# Appendix B – Transmission Projects

- List of transmission projects removed from the study base case

| TPIT No   | Project Name                                                         | County                                         |
|-----------|----------------------------------------------------------------------|------------------------------------------------|
| 2022-SC7  | Decker (9188) 138-kV Bus Tie Breaker Upgrade                         | Travis                                         |
| 2023-SC3  | Dessau (9193) to McNeil AEN (9076) 138-kV Circuit 2 Upgrade          | Travis                                         |
| 2023-SC15 | Sim Gideon Area 138-kV Line Upgrades                                 | Bastrop, Fayette, Williamson                   |
| 2023-SC17 | Georgetown Area 138-kV Line Upgrades                                 | Williamson                                     |
| 2024-SC2  | Trading Post (70505) 138-kV Cap Bank Addition                        | Travis                                         |
| 2024-SC8  | Milano (64) to Minerva (3683) and Cannon (3707) 138-kV Line Upgrades | Milam                                          |
| 2024-SC11 | Vega (9285) to Barton (9158) 138-kV Line Upgrade                     | Travis                                         |
| 2024-SC14 | Elroy (7209) 138-kV Cap Bank Addition                                | Travis                                         |
| 2024-SC16 | Limmer (7341) 345-kV Cap Bank Addition                               | Williamson                                     |
| 2024-SC17 | SLR AMLC (3740) 138-kV Cap Bank Addition                             | Milam                                          |
| 2024-SC19 | Hillje (44200) to Zorn (7042) 345-kV Line Upgrades                   | Wharton, Fayette, Bastrop, Caldwell, Guadalupe |
| 2024-SC20 | Lytton Area 138-kV Line Upgrades                                     | Caldwell, Travis, Bastrop                      |

# Appendix B – Transmission Projects

- List of transmission projects removed from the study base case

| TPIT No   | Project Name                                                                                                                  | County                      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 2024-SC21 | Austrop (9328) to Dunlap (9045) 138-kV Double Circuit Line Addition                                                           | Travis                      |
| 2024-SC22 | Austrop 345/138-kV Transformer Addition                                                                                       | Travis                      |
| 2024-SC23 | Dunlap 345/138-kV Transformer Addition                                                                                        | Travis                      |
| 2024-SC24 | Gillelend Creek (7340) 345-kV Cap Bank Addition                                                                               | Travis                      |
| 2024-SC27 | Lytton Springs (9074) to Garfield (7048) to Austrop (7040) 345-kV Line Upgrades                                               | Caldwell, Bastrop, Travis   |
| 2024-SC28 | Voss Lake 345/138-kV Substation Expansion and Bell County East (3687) to Voss Lake (3751) 345-kV Double Circuit Line Upgrade  | Milam                       |
| 2024-SC29 | Muscovy 345/138-kV Substation Addition and Salado (3699) to Muscovy (3700) to Voss Lake (3751) 345-kV Double Circuit Addition | Bell, Williamson, Milam     |
| 2024-SC32 | McNeil AEN (9076) 138-kV Bus Tie Breaker Upgrade                                                                              | Travis                      |
| 2024-E4   | Bryan Area Project                                                                                                            | Brazos, Burleson, Robertson |
| 2024-E4   | Knob Creek Switch (3413) to Salado Switch (3699) 345-kV Line Upgrade                                                          | Bell                        |
| 2024-NC23 | Bale (3711) to St Johns Switch (3384) to Lake Creek SES (3409) 345-kV Line Upgrades                                           | Falls, McLennan             |
| 2024-NC24 | Lake Creek SES (3410) to Riesel Switch (3702) 138-kV Line Upgrade                                                             | Falls, McLennan             |
| 2024-NC37 | Bell East (3687) to Salado (3699) 345-kV Line Addition                                                                        | Bell, Williamson            |

# Appendix B – Transmission Projects

- List of transmission projects removed from the study base case

| TPIT No   | Project Name                                                                                                                           | County      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2024-NC43 | Temple Switch (3415) to Belton (3610) 138-kV Line Upgrades                                                                             | Bell        |
| 2024-NC60 | Bell County East Switch (3687) to Littlepond (3377) , and Bell County East Switch (3687) to Brangus Switch (3705) 345-kV Line Upgrades | Milam, Bell |

# Appendix C – New Generation Projects to Add

| GINR      | Project Name                | Fuel | Projected COD | Max Capacity (~MW) | County    |
|-----------|-----------------------------|------|---------------|--------------------|-----------|
| 22INR0503 | Tidwell Prairie II Batt     | OTH  | 03/01/2026    | 203.6              | Robertson |
| 22INR0504 | Barton Branch IA            | OTH  | 03/01/2026    | 203.6              | Robertson |
| 23INR0079 | Chillingham Storage         | OTH  | 07/15/2025    | 153.9              | Bell      |
| 23INR0118 | Blevins Solar               | SOL  | 10/30/2025    | 271.6              | Falls     |
| 23INR0119 | Blevins Storage             | OTH  | 07/28/2025    | 181.3              | Falls     |
| 23INR0235 | Hoyte Solar                 | SOL  | 12/15/2026    | 206.8              | Milam     |
| 23INR0249 | Limewood Solar              | SOL  | 12/31/2025    | 204.6              | Bell      |
| 23INR0344 | Hermes Solar                | SOL  | 09/30/2025    | 100.4              | Bell      |
| 24INR0031 | Stoneridge Solar            | SOL  | 04/30/2025    | 201.6              | Milam     |
| 24INR0166 | Stillhouse Solar            | SOL  | 09/02/2025    | 210.8              | Bell      |
| 24INR0169 | Yaupon Storage SLF          | OTH  | 07/01/2028    | 102.0              | Milam     |
| 24INR0365 | Hermes Storage              | OTH  | 09/30/2025    | 100.4              | Bell      |
| 25INR0389 | Stoneridge BESS             | OTH  | 09/01/2025    | 101.9              | Milam     |
| 22INR0605 | Camino Santiago Solar       | SOL  | 02/18/2027    | 196.3              | Milam     |
| 24INR0476 | DOS RIOS ENERGY STORAGE SLF | OTH  | 03/15/2027    | 164.5              | Milam     |
| 25INR0281 | Cosper Solar                | SOL  | 11/12/2027    | 148.16             | Bell      |

# Appendix D – G-1 Generators and X-1 Transformers

| G-1 Generators        | X-1 Transformers                  |
|-----------------------|-----------------------------------|
| Bastrop Energy Center | Sandow – Ckt 1 345/138-kV         |
| Giga Energy Storage   | Hutto – Ckt 1 345/138-kV          |
| East Backland Solar   | Teal – Ckt 1 345/138-kV           |
| Garfield Generator    | Austrop –Ckt 1 345/138-kV         |
| LostPines Generator   | Dunlap –Ckt 1 345/138-kV          |
|                       | Gilleland Creek –Ckt 1 345/138-kV |
|                       | Muscovy–Ckt 1 345/138-kV          |
|                       | Lytton–Ckt 1 345/138-kV           |
|                       | Salado–Ckt 1 345/138-kV           |
|                       | Temple–Ckt 1 345/138-kV           |
|                       | Temple Pecan–Ckt 1 345/138-kV     |
|                       | Voss Lake–Ckt 1 345/138-kV        |