

Large Electronic Load (LEL) Modeling Approach and DWG Survey Document Update

Dynamic Studies Team, ERCOT

December 18, 2025

LEL Modeling Challenge

1. Accurate Models for Reliable System Assessment

 Appropriate and accurate models are essential for ensuring reliable system assessments and minimizing unnecessary sensitivity studies

2. Limitations in Existing Standard Models

- The current CMLD standard model does not accurately represent powerelectronic load behavior like data centers
- A standard library model for LEL representation is not yet available

3. New Standard Model Still Uncertain

 PTI is developing a new standard model for PSSE Version 36,but its release date is still unknown. It is expected in 2026

LEL Modeling Challenge

- 4. DWG Transitioning to PSS/E 36
 - DWG will transition to PSSE Version 36 in June 2026
 - The 2026/2027 DWG Flat Start Case will be developed and posted in Version 36
- 5. UDM Is the Most Mature Option Today
 - The latest version 4 of the UDM model developed based on EPRI EV model includes momentary-cessation logic, reconnection settings with time delays. It is considered mature and adequate for representing the power-electronic portion of LEL
 - Model along with parameter description is available in PSS/E version 35
 - However, the cooling portion can continue to be modeled using CMLD if cannot be represented using EPRI UDM

Note

- The UDM and its associated documentation are not included in the PSSE v35 model library, as it is not a library model. They will be made available on the NERC LMWG website (link:
 - https://dev.azure.com/nerc/_git/LMWG_Resources?path=/Data_Center_Model_PERC1)
- Availability of the PSSE v36 version of this UDM is still to be determined.

LEL Modeling Approach

- ☐ Interim Approach
 - The DWG LL survey document has been updated to make it easier to extract model parameters from the survey responses
 - The following interim LEL model representation will apply if the standard model is insufficient to represent LEL:
 - Split a single LEL into the following two components:
 - 1) CMLD represents the cooling portion if can't be represented using EPRI UDM
 - 2) EPRI UDM represents the power-electronic portion
 - Example: LEL Load ID = 1 has 30% Cooling, 70% PEL, then
 - Step 1: Split ID 1 into L1 and L2
 - Step 2: Model L1 (cooling) using CMLD or EPRI UDM, L2 (PEL) using EPRI UDM
- ☐ <u>Timeline</u> for the interim approach
 - LEL Projects About to Begin Stability Studies
 - Interim LEL model data must be submitted starting January 5, 2026
 - LEL Projects with Completed Stability Studies Entering LL QSA
 - Interim LEL model data must be submitted prior to May 1, 2026 or earlier)
 - LEL Projects Completed LL QSA, Prior to Energization
 - Interim LEL model data must be submitted no later than July 1, 2026. This aligns with the energization timeline associated with the February 1 QSA
 - LEL in operation
 - DWG will further discuss reasonable approach at the future DWG to allow updates to be implemented over time

LEL Modeling Approach (Continued)

- □ Long-term approach: If available and usable, transition to PSSE standard library in v36 or other UDM accurately representing the LEL dynamic characteristics
- ☐ If DWG is desired, ERCOT can also organize a session for the UDM development

Questions

DWG Large Load Survey Document: Jose.Conto@ercot.com, and sara.zinbi@ercot.com

Interim LEL modeling approach: <u>Sunwook.kang@ercot.com</u>

