

### STEC Ammonia Plant Load Project – ERCOT Independent Review Project Update

Abishek Penti

RPG Meeting November 11, 2025

#### Introduction

- STEC submitted the Ammonia Plant Load Project for Regional Planning Group (RPG) review in May 2025.
  - This Tier 2 project is estimated to cost \$65.47 million and will require a Certificate of Convenience and Necessity (CCN)
  - Estimated in-service date (ISD) is June 2028
  - To address the reliability concerns seen by STEC with addition of 300 MW of Ammonia Plant Load
- STEC provided an overview presentation and ERCOT provided the study scope at the June RPG Meeting
  - https://www.ercot.com/calendar/06172025-RPG-Meeting
- ERCOT provided status update at the August and October RPG Meeting
  - https://www.ercot.com/calendar/08262025-RPG-Meeting
  - https://www.ercot.com/calendar/10282025-RPG-Meeting
- This project is currently under ERCOT Independent Review (EIR)

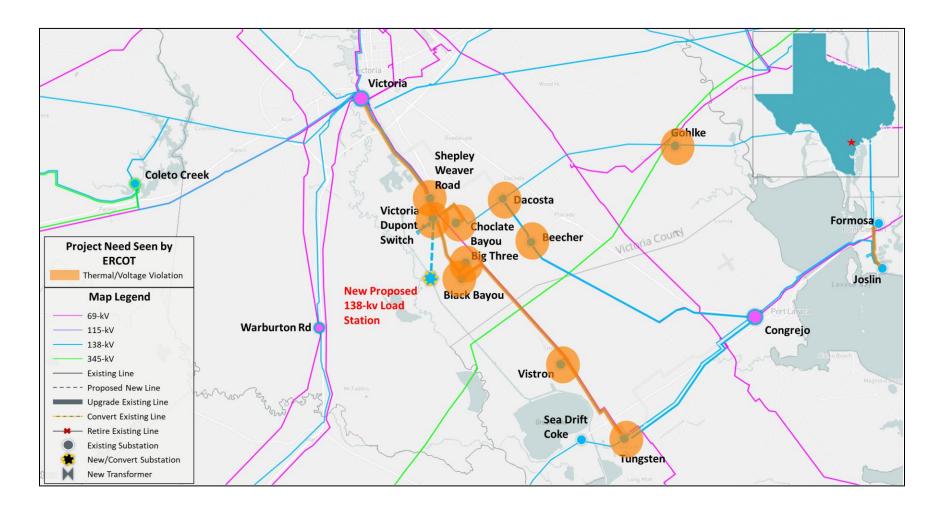


### Recap – Study Assumptions – Load, Reserve, Transmission & Generation

- 2024 Regional Transmission Planning (RTP) 2029 summer peak case was used as the start case
- Load in study area
  - Loads in study area were updated to create the study base case
- Reserve
  - Reserve levels are consistent with the 2024 RTP
- Transmission
  - See Appendix A for a list of transmission projects added
  - See Appendix B for a list of RTP placeholder projects that were removed
- Generation
  - See Appendix C for a list of generation projects added



#### Recap – Preliminary Results of Reliability Assessment – Need Analysis


 ERCOT conducted steady-state load flow analysis for the study base case according to the NERC TPL-001-5.1 and ERCOT Planning Criteria to identify project need

| Contingency Category | Voltage Violations | Thermal Violations | Unsolved Power Flow |
|----------------------|--------------------|--------------------|---------------------|
| N-0 (P0)             | None               | None               | None                |
| N-1 (P1, P2-1, P7)   | None               | 2                  | None                |
| G-1+N-1 (P3)*        | 24                 | 8                  | None                |
| X-1+N-1 (P6-2)*      | None               | 1                  | None                |

<sup>\*</sup> See Appendix D for list of G-1 generators and X-1 transformers tested



### Recap – Study Area Map with Violations Seen by ERCOT





## Recap – Preliminary Results of Reliability Assessment – Options

|        | N-1                   |                       | X-1+N-1*              |                       | G-1+N-1**             |                       |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Option | Thermal<br>Violations | Voltage<br>Violations | Thermal<br>Violations | Voltage<br>Violations | Thermal<br>Violations | Voltage<br>Violations |
| 1      | None                  | None                  | None                  | None                  | None                  | None                  |
| 2      | None                  | None                  | None                  | None                  | None                  | None                  |
| 2A     | None                  | None                  | None                  | None                  | None                  | None                  |
| 2B     | None                  | None                  | None                  | None                  | None                  | None                  |
| 3      | None                  | None                  | None                  | None                  | 3                     | None                  |
| 4      | None                  | None                  | None                  | None                  | None                  | None                  |
| 5      | None                  | None                  | None                  | None                  | None                  | None                  |
| 5A     | None                  | None                  | None                  | None                  | 1                     | None                  |

<sup>\*\*</sup> X-1: Coleto Creek 345/138-kV transformer



<sup>\*</sup> G-1: Victoria Port Unit and Formosa Unit

## **Recap – Preliminary Results of Planned Maintenance Outage Analysis – Options**

 ERCOT conducted planned maintenance outage analysis on the Six options to determine relative performance between the options

| Option | Thermal<br>Violations | Voltage Violations | Unsolvable<br>Contingencies |
|--------|-----------------------|--------------------|-----------------------------|
| 1      | None                  | None               | None                        |
| 2      | None                  | None               | None                        |
| 2A     | None                  | None               | None                        |
| 2B     | 3                     | None               | None                        |
| 4      | None                  | None               | None                        |
| 5      | None                  | None               | None                        |

 Option 1, Option 2, Option 2A, Option 4 and Option 5 are short-listed for further evaluation.



#### Long-Term Load-Serving Capability Assessment

- Adjusted load up in substations in the Study Area
- Adjusted conforming load down outside of the Coast Weather Zones to balance power
- Based on N-1 contingency limits

| Option | Incremental Load-Serving Capability (~MW) |
|--------|-------------------------------------------|
| 1      | 375                                       |
| 2      | 175                                       |
| 2A     | 125                                       |
| 4      | 375                                       |
| 5      | 75                                        |



### Preliminary Cost Estimate and Feasibility Assessment

 Transmission Service Providers (TSPs) performed feasibility assessments and provided preliminary cost estimates for the five options

| Option | Cost Estimates (~\$M) | CCN Required (~Miles) | Feasibility |
|--------|-----------------------|-----------------------|-------------|
| 1      | 117.38                | Yes (11.1)            | Yes         |
| 2      | 117.52                | Yes (23.0)            | Yes         |
| 2A     | 132.38                | Yes (22.6)            | Yes         |
| 4      | 96.66                 | Yes (12.5)            | No          |
| 5      | 154.54                | Yes (11.4)            | Yes         |

• Option 1, Option 2, Option 2A and Option 5 are further short-listed for additional comparison.



#### **Comparison of Short-Listed Options**

|                                            | Option 1   | Option 2   | Option 2A  | Option 5   |
|--------------------------------------------|------------|------------|------------|------------|
| Meets ERCOT and NERC Reliability Criteria  | Yes        | Yes        | Yes        | Yes        |
| Improves Long-Term Load-Serving Capability | Yes (Best) | Yes        | Yes        | Yes        |
| Requires CCN (~miles)                      | Yes (11.1) | Yes (23.0) | Yes (22.6) | Yes (11.4) |
| Project Feasibility                        | Yes        | Yes        | Yes        | Yes        |
| Cost Estimate* (~\$M)                      | 117.38     | 117.52     | 132.38     | 154.54     |

<sup>\*</sup>Cost estimates were provided by the TSPs

#### **ERCOT Preferred Option**

- Option 1 is selected as the preferred option because it
  - Addresses NERC and ERCOT reliability issues
  - Significantly improves Long-Term Load-Serving Capability compared to the least expensive options
  - Requires the least amount of CCN mileage of all the options
- This project will be reclassified as a Tier 1 project due to the revised cost estimate exceeding \$100 million.



#### Next Steps and Tentative Timeline

- Generation Addition and Load Scaling Sensitivity Analyses
  - Planning Guide Section 3.1.3(4)
- Subsynchronous Resonance (SSR) Assessment
  - Nodal Protocol Section 3.22.1.3(2)
- Congestion Analysis
  - Congestion analysis may be performed based on the recommended transmission upgrades to ensure that the identified transmission upgrades do not result in new congestion within the study area
- Tentative timeline
  - Final recommendation Q4 2025



# Thank you!



Stakeholder comments also welcomed through:

Abishek.Penti@ercot.com
Robert.Golen@ercot.com



#### **Appendix A – Transmission Projects**

List of transmission projects added to study base case

| RPG/TPIT<br>No | Project Name                                                         | Tier   | Project<br>ISD | TSP     |
|----------------|----------------------------------------------------------------------|--------|----------------|---------|
| 25RPG021       | Victoria to Warburton 138-kV Line Rebuild Project                    | Tier 3 | Sep-28         | AEP TCC |
| 82829          | New Furhman Substation                                               | Tier 4 | Apr-25         | STEC    |
| 69473          | Jaguar: Construct New Distribution Station                           | Tier 4 | Jul-25         | AEP TCC |
| 76788          | Upgrade Victoria-Rayburn                                             | Tier 4 | Dec-25         | STEC    |
| 69489          | Shepley: Construct New Distribution Station                          | Tier 4 | Feb-26         | AEP TCC |
| 81647          | Dupont Switch to Sardinia: Construct New 138 kV Line                 | Tier 4 | Jun-26         | AEP TCC |
| 76818          | Upgrade Rayburn Auto Station                                         | Tier 4 | Oct-26         | STEC    |
| 87029          | Chocolate Bayou to Portside Energy Center: Construct New 138 kV Line | Tier 4 | Dec-26         | AEP TCC |
| 87027          | Black Bayou: Construct New 138 kV Terminal                           | Tier 4 | Apr-27         | AEP TCC |
| 76777          | Rebuild Nursery-El Toro                                              | Tier 4 | May-27         | STEC    |
| 81556          | Haber: Construct New 345 kV Terminal                                 | Tier 4 | May-27         | AEP TCC |
| 73441          | Dupont Switch to Joslin: Rebuild 138 kV Line                         | Tier 4 | May-27         | AEP TCC |
| 81548          | Haber: Construct New 345 kV Station                                  | Tier 4 | May-27         | AEP TCC |
| 81553          | Haber: Construct New 345 kV Terminal                                 | Tier 4 | May-27         | AEP TCC |



#### **Appendix B – Transmission Projects**

List of transmission projects removed from the study base case

| TPIT No  | Project Name                                                                                  | County            |
|----------|-----------------------------------------------------------------------------------------------|-------------------|
| 2024-CS2 | Victoria (8169) to Refugio (8410) 69-kV Line Upgrades                                         | Victoria, Refugio |
| 2024-C12 | Sam Rayburn Switchyd (5500) to Warburton Road Switching Station (5605)<br>69-kV Line Upgrades | Victoria          |
| 2024-C15 | Victoria Area 138-kV Line Ungrades and Eurhman Switch (5506) to Magruder                      |                   |
| 2024-C19 | Joslin (8140) to Gohlke (8141) to Dacosta (8722) 138-kV Line Upgrades                         | Calhoun, Victoria |



15

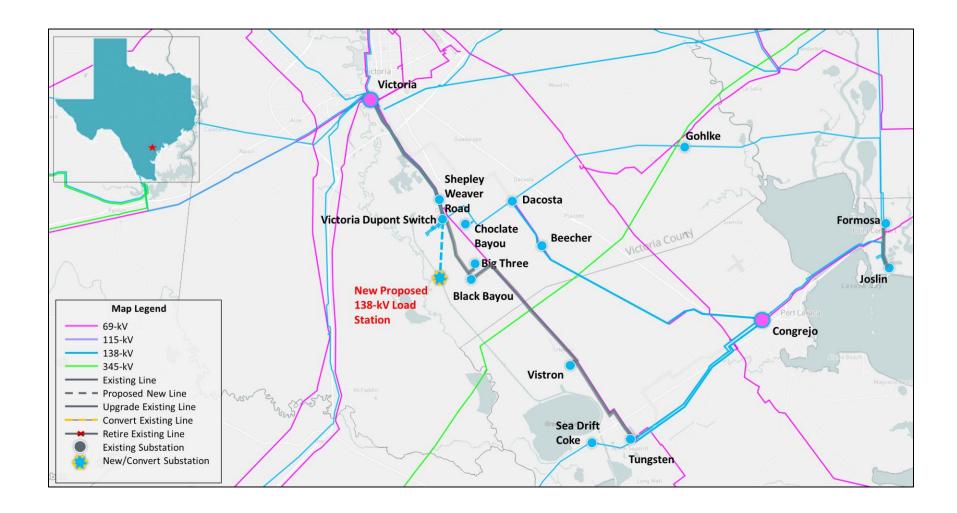
#### **Appendix C – New Generation Projects to Add**

| GINR      | Project Name     | Fuel | Projected COD | Max Capacity<br>(~MW) | County   |
|-----------|------------------|------|---------------|-----------------------|----------|
| 24INR0093 | Oriana Solar     | SOL  | 08/08/2025    | 181.0                 | Victoria |
| 24INR0109 | Oriana BESS      | OTH  | 06/15/2026    | 60.3                  | Victoria |
| 24INR0425 | Two Brothers ESS | OTH  | 04/07/2027    | 152.0                 | Victoria |



## Appendix D – G-1 Generators and X-1 Transformers

| G-1 Generators      | X-1 Transformers                |
|---------------------|---------------------------------|
| Victoria Port Units | Coleto Creek – Ckt 1 345/138-kV |
| Formosa Units       |                                 |

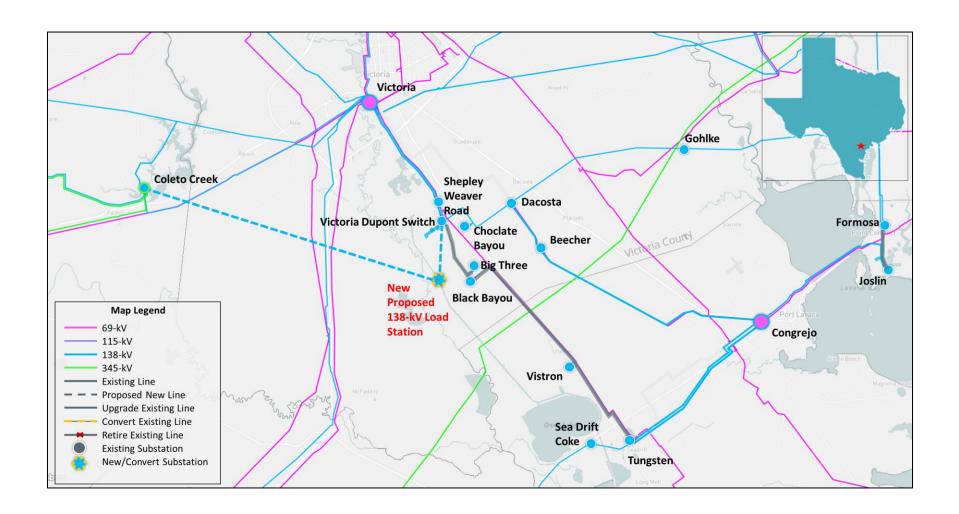



#### **Option 1 – STEC Proposed Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP) Attestation Letter by connecting STEC's new load serving station to AEP's 138-kV Dupont Switching station via a 138-kV transmission line, with normal and emergency ratings of at least 427 MVA and 478 MVA, respectively, which will require a new ROW, approximately 3.4-mile;
- Rebuild the existing Victoria Plant to Shepley to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 7.66-mile;
- Rebuild the existing Victoria Plant to Dupont 138-kV transmission line ckt2 with normal and emergency ratings of at least 485 MVA, approximately 7.66-mile;
- Remove the double-circuit section of the Victoria Plant to Shepley and Victoria Plant to Dupont circuits (by rebuilding the two circuits on separate structures) to eliminate the NERC P7/ERCOT\_1 (common tower outage) events. This would require a new ROW;
- Rebuild the existing Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.



#### **Option 1 – STEC Proposed Option**



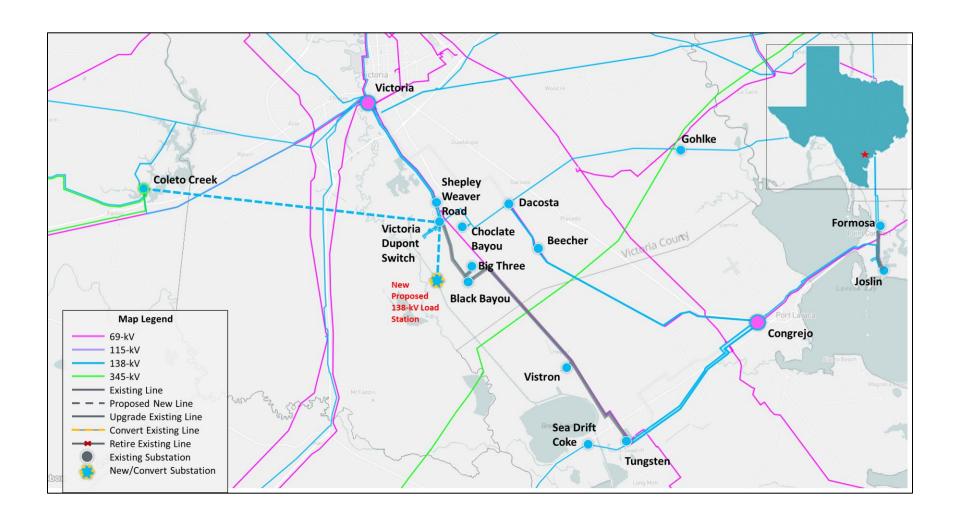



#### **Option 2 – Modified STEC Alternative Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP)
   Attestation Letter by connecting STEC's new load serving station to AEP's
   138-kV Dupont Switching station via a 138-kV transmission line, with normal
   and emergency ratings of at least 427 MVA and 478 MVA, respectively, which
   will require a new ROW, approximately 3.4-mile;
- Construct a new 138-kV transmission line from STEC's load serving station to Coleto Creek station on single-circuit capable structures using a conductor with normal and emergency ratings of at least 427 MVA and 478 MVA, approximately 19.55-mile. This will require a new ROW;
- Rebuild the existing Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.

#### Option 2 – Modified STEC Alternative Option





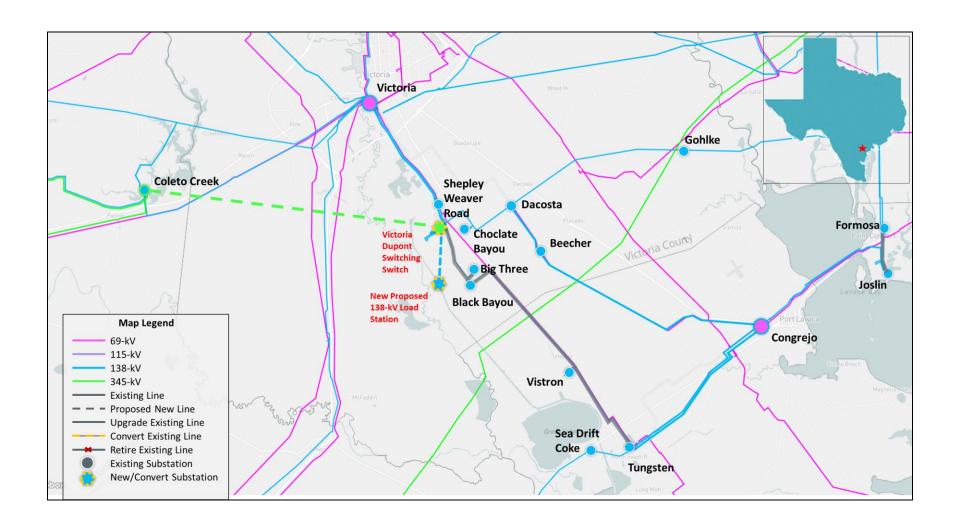

#### **Option 2A – AEP Alternative Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP) Attestation Letter by connecting STEC's new load serving station to AEP's 138-kV Dupont Switching station via a 138-kV transmission line, with normal and emergency ratings of at least 427 MVA and 478 MVA, respectively, which will require a new ROW, approximately 3.4-mile;
- Construct a new 138-kV transmission line from Victoria Dupont Switch to Coleto Creek station on single-circuit capable structures using a conductor with normal and emergency ratings of at least 427 MVA and 478 MVA, approximately 19.20-mile. This will require a new ROW;
- Rebuild the existing 138-kV Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.



#### **Option 2A – AEP Alternative Option**





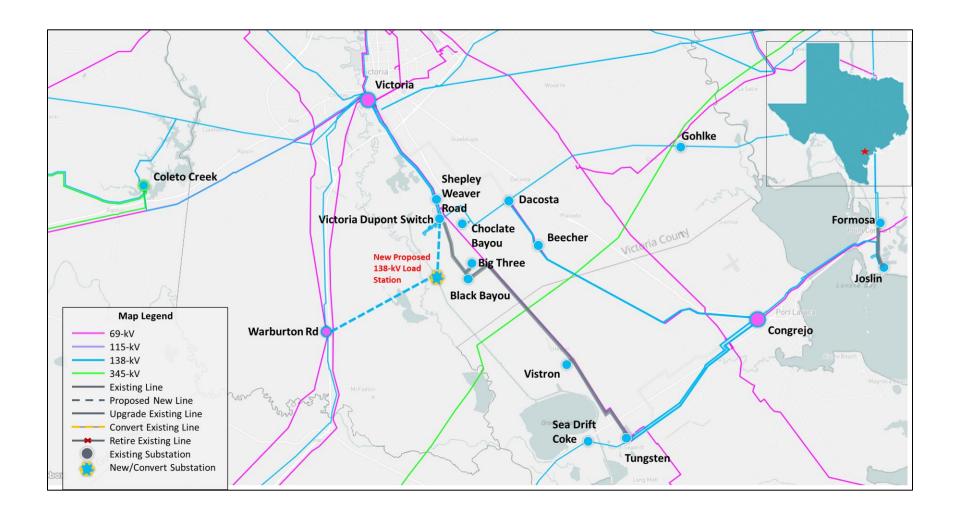

#### **Option 2B – AEP Alternative Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP) Attestation Letter by connecting STEC's new load serving station to AEP's 138-kV Dupont Switching station via a 138-kV transmission line, with normal and emergency ratings of at least 427 MVA and 478 MVA, respectively, which will require a new ROW, approximately 3.4-mile;
- Convert the existing Victoria Dupont Station to a 345/138-kV sub-station;
- Install two 345/138-kV autotransformers at the Victoria Dupont 345/138-kV station with a normal and emergency ratings of 675 MVA;
- Construct a new 345-kV transmission line from Victoria Dupont Switch to Coleto Creek station on single-circuit capable structures using a conductor with normal and emergency ratings of at least 1316 MVA and 1423 MVA, approximately 19.20-mile. This will require a new ROW;
- Rebuild the existing 138-kV Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.



#### **Option 2B – AEP Alternative Option**





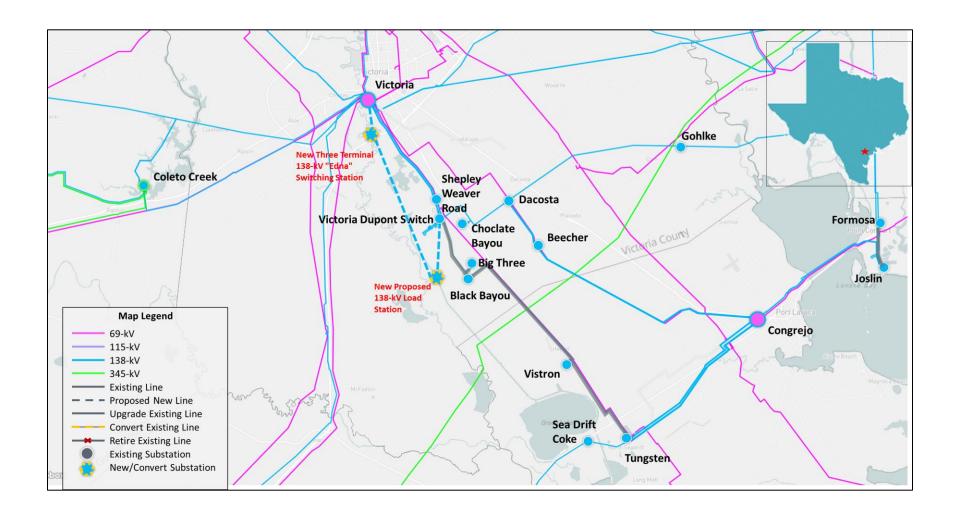

#### **Option 3 – Modified STEC Alternative Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP)
   Attestation Letter by connecting STEC's new load serving station to AEP's
   138-kV Dupont Switching station via a 138-kV transmission line, with normal
   and emergency ratings of at least 427 MVA and 478 MVA, respectively, which
   will require a new ROW, approximately 3.4-mile;
- Construct a new 138-kV transmission line from STEC's load serving station to Warburton Road station on single-circuit capable structures using a conductor with normal and emergency ratings of at least 427 MVA and 478 MVA, approximately 10.35-mile. This will require a new ROW; and
- Rebuild the existing 138-kV Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.



#### Option 3 – Modified STEC Alternative Option





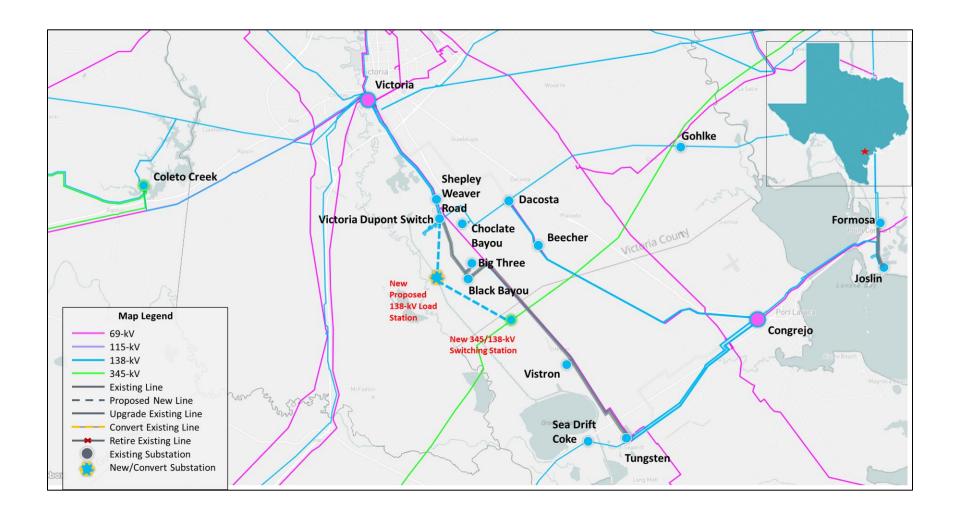

#### **Option 4 – Modified STEC Alternative Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP) Attestation Letter by connecting STEC's new load serving station to AEP's 138-kV Dupont Switching station via a 138-kV transmission line, with normal and emergency ratings of at least 427 MVA and 478 MVA, respectively, which will require a new ROW, approximately 3.4-mile;
- Construct a new 3-terminal Edna 138-kV switching station, approximately 1-mile from Victoria station;
- Construct a new 138-kV transmission line from the existing Victoria station to proposed Edna station on single-circuit capable structures using a conductor with normal and emergency ratings of at least 427 MVA and 478 MVA, approximately 1-mile. This will require a new ROW;
- Construct a new 138-kV transmission line from STEC's load serving station to proposed Edna station on single-circuit capable structures using a conductor with normal and emergency ratings of at least 427 MVA and 478 MVA, approximately 8.05-mile. This will require a new ROW; and
- Rebuild the existing 138-kV Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.



#### Option 4 – Modified STEC Alternative Option





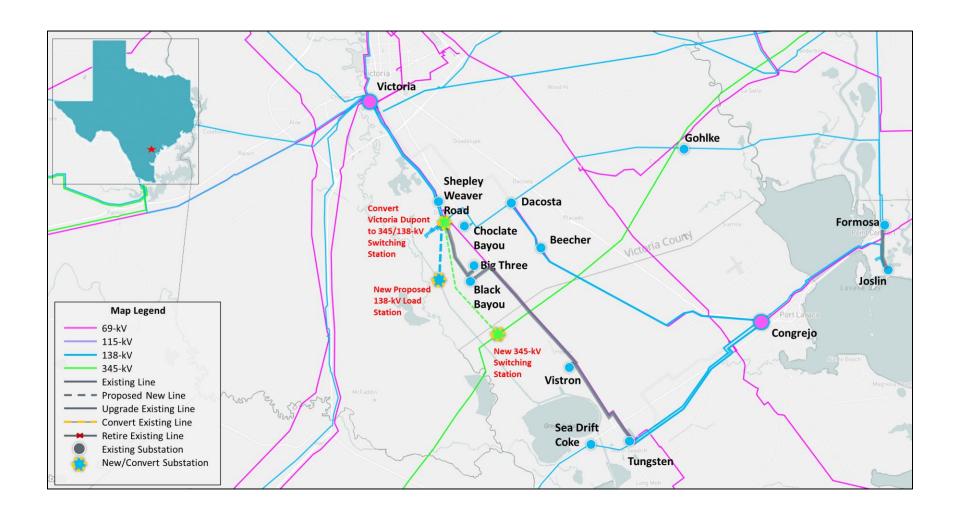

#### **Option 5 – Modified STEC Alternative Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP) Attestation Letter by connecting STEC's new load serving station to AEP's 138-kV Dupont Switching station via a 138-kV transmission line, with normal and emergency ratings of at least 427 MVA and 478 MVA, respectively, which will require a new ROW, approximately 3.4-mile;
- Construct a new 345/138-kV substation on Angstrom STP 345-kV transmission line, approximately 54.6-mile from Angstrom station;
- Install two 345/138-kV autotransformers at the new 345/138-kV station with a normal and emergency ratings of 675 MVA;
- Construct a new 138-kV transmission line from STEC's load serving station to new 345/138-kV station on single-circuit capable structures using a conductor with normal and emergency ratings of at least 427 MVA and 478 MVA, approximately 8-mile. This will require a new ROW;
- Rebuild the existing 138-kV Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.



#### Option 5 – Modified STEC Alternative Option






#### **Option 5A – ERCOT Option**

- Serve the new large load confirmed by Transmission Service Provider (TSP) Attestation Letter by connecting STEC's new load serving station to AEP's 138-kV Dupont Switching station via a 138-kV transmission line, with normal and emergency ratings of at least 427 MVA and 478 MVA, respectively, which will require a new ROW, approximately 3.4-mile;
- Install two 345/138-kV autotransformers at the Victoria Dupont 345/138-kV station with a normal and emergency ratings of 675 MVA;
- Construct a new 345-kV substation on Angstrom STP 345-kV transmission line, approximately 54.6-mile from Angstrom station;
- Construct a new 345-kV transmission line from Victoria Dupont 345-kV terminal to new 345-kV substation on single-circuit capable structures using a conductor with normal and emergency ratings of at least 1316 MVA and 1423 MVA, approximately 9-mile. This will require a new ROW;
- Rebuild the existing 138-kV Formosa to Joslin 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 2.41-mile; and
- Rebuild the existing Tungsten to Vistron to Black Bayou to Big Three to Dupont 138-kV transmission line with normal and emergency ratings of at least 485 MVA, approximately 21.11-mile.



#### **Option 5A – ERCOT Option**



