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Executive Summary 
The rapid transformation of the energy landscape, driven by increasing 
renewable energy integration and growing demand, has necessitated 
advanced operational strategies for grid management. The Electric 
Reliability Council of Texas (ERCOT), managing 90% of the Texas electric 
load, faces growing challenges as it manages an evolving grid.          

The role of Machine Learning (ML) in ERCOT’s operational and planning 
processes can bring about transformative changes in several critical areas, 
including predictive accuracy, renewable energy management, risk 
mitigation, resource optimization, decision-making, and regulatory 
compliance. By integrating ML into its existing framework, ERCOT can 
move from reactive to more proactive grid management, delivering a more 
robust and forward-looking system.         

One of the core responsibilities of ERCOT is to forecast electricity demand 
and supply to maintain grid reliability. As the Texas grid becomes more 
complex, traditional forecasting methods often fall short of accurately 
predicting the rapidly shifting demand patterns, especially with the 
unpredictable nature of renewable energy sources like wind and solar. ML 
offers a significant advantage in this regard by analyzing vast quantities of 
historical data, weather conditions, consumer behavior, and grid metrics in 
real-time, thus enabling even more accurate and reliable forecasts.         

In real-time grid operations, speed and accuracy are critical. Grid operators 
must respond quickly to changes in demand, generation, and other factors 
that affect grid stability. ML-powered decision support systems can assist 
ERCOT’s operators by providing real-time insights and recommendations, 
allowing them to make more informed and faster decisions during critical 
moments.         

This white paper lists various applications with different ML techniques in 
Independent System Operator (ISO) or /Regional Transmission Operator 
(RTO) operations and planning processes, such as those in ERCOT. 
Artificial Intelligence (AI)/ML techniques have proven their ability to 
enhance real-time decision-making, improve demand response, and 
mitigate risks associated with grid reliability and equipment maintenance 
[1]. This paper outlines some current use cases, the potential for AI/ML 
integration in ERCOT’s operational and planning processes, and the 
opportunities and challenges in adopting these such innovations.         



1. Introduction 
ERCOT operates as an ISO, managing the flow of electric power to more 
than 27 million Texas customers. It handles approximately 1,250 power 
generation units, with over 142.6 GW of installed capacity, and maintains 
the delicate balance of energy supply and demand in real-time.          

The grid is increasingly dynamic due to the high penetration of renewable 
energy sources, like wind and solar, which add variability to supply. 
Accurate forecasting, reliable equipment maintenance, and balancing 
supply with demand are critical. Traditional approaches rely heavily on 
historical data and linear models, which fail to capture the complex and 
nonlinear patterns of modern electricity grids, hence the need for AI/ML 
techniques to enhance operational efficiency and resilience.         

There is widespread recognition across the industry that many organizations 
are already exploring AI/ML applications, with adoption levels ranging from 
minimal to full integration [2]. At ERCOT, we see significant potential for 
AI/ML to address critical operational  and planning challenges, such as 
optimizing energy resource dispatch, improving demand forecasting, and 
enabling faster decision-making during periods of grid stress. By integrating 
AI-driven automation into grid management, ERCOT can enhance overall 
system reliability, minimize manual errors, and improve real-time control. 
Furthermore, leveraging advancements in computation and AI/ML to adapt 
to the rapidly evolving ERCOT grid is a key strategic priority outlined in 
ERCOT’s 2024-2028 strategic plan [3].         
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2. Definitions
The terms AI, ML, Deep Learning (DL), Generative AI, and Large Language 
Models (LLM) are all related but represent different levels or subfields within 
a hierarchy of technology. Here's how they are connected [4, 5, 6, 7]:         

 l AI is the broadest term, encompassing all techniques that allow 
machines to mimic or simulate human intelligence. It includes any 
system or algorithm that can perform tasks that usually require human 
intelligence, such as reasoning, learning, problem-solving, 
understanding language, and perception. It can be divided into three 
types:                  

 o Narrow AI: Designed for specific tasks (e.g., voice assistants, 
recommendation systems).                         

 o General AI: A theoretical system capable of performing any 
intellectual task that a human can do.                         

 o Super AI: Another theoretical concept, Super AI would surpass 
human cognitive abilities, including thinking, reasoning, learning, and 
even feeling emotions and having desires                         

 l ML is a subset of AI focused on creating systems that can automatically 
learn and improve from experience without being explicitly 
programmed. In ML, algorithms are trained on data to make predictions 
or decisions. There are three main types of ML:                 

 o Supervised Learning: The model is trained on labeled data.                         
 o Unsupervised Learning: The model learns patterns in data without 

labels.                         
 o Reinforcement Learning: The model learns through trial and error by 

receiving rewards or penalties.                         
 l DL is a specialized subset of ML that uses neural networks with many 

layers (hence the term "deep"). These deep neural networks are 
particularly effective for processing large amounts of data, such as 
images, audio, and text, and they have significantly advanced AI 
capabilities in fields like computer vision, speech recognition, and 
natural language processing. DL models, such as Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), are often 
used for tasks that require a high level of abstraction.                 
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 l Generative AI is a subfield of both AI and DL that focuses on creating 
new content, such as images, music, text, or even synthetic data. 
Generative AI models learn patterns from existing data and use this 
knowledge to generate new, realistic data or outputs. A key approach in 
generative AI is Generative Adversarial Networks (GANs), where two 
neural networks (a generator and a discriminator) work against each 
other to create increasingly realistic outputs. Transformers (e.g., GPT, 
BERT) are another class of models commonly used in generative AI, 
particularly for tasks like text generation and natural language 
understanding.                 

 l LLMs are a specific type of generative AI that focuses specifically on 
language understanding and generation. They are trained on vast 
amounts of text data and use deep learning (often transformers) to 
generate coherent, human-like text. LLMs are typically built using deep 
learning architectures, like transformers, which allow them to 
understand and generate complex natural language. LLMs are 
generative AI models focused specifically on text. They "generate" 
language-based outputs, whether it's answering questions, writing 
articles, or translating languages. They are the most common type of 
Gen AI model. These models are trained on vast amounts of text to be 
able to generate natural language after being given prompts. Some 
examples are ChatGPT, Gemini, Claude Ab, etc.                 
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Figure 1. AI, ML, DL, Generative AI, and LLM 

In summary, AI is the umbrella term that includes ML, DL, Generative AI, 
and LLM ("Figure 1. AI, ML, DL, Generative AI, and LLM " above). ML is a 
method within AI as it represents a way of implementing AI by allowing 
machines to learn from data. DL is a more specialized form of ML and a 
more advanced, neural network-based technique within ML that can solve 
complex tasks like image recognition and natural language processing. 
Generative AI is a specific application of DL focused on content creation as 
it applies DL (often through GANs or transformers) to generate new data or 
content, such as creating images, videos, or text. LLMs are a specific form 
of generative AI focused on generating human-like text.         
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3. Commonly Used Machine Learning 
Techniques

ML is a subset of AI focused on enabling systems to learn from data and 
improve their performance autonomously. The following are some ML 
techniques used in the power industry [4, 5, 8]:         

 1. Supervised Learning – In supervised learning, the algorithm learns 
from a labeled dataset. This means that for every input, there is a 
corresponding output (or label), and the goal is for the model to learn 
the mapping from inputs to output. The following are some major 
supervised learning algorithms:         

 l Linear Regression: Linear regression is one of the simplest 
methods to predict continuous values. It works by finding the best-
fitting straight line through data points. This line represents the 
relationship between variables. In the power industry, for example, 
it helps forecast energy demand based on factors like temperature 
and time of day.                 

 l Logistic Regression: While called "regression," this is used for 
classification tasks, where the output is categorical (e.g., yes/no, 
fail/succeed). It is often used to predict binary outcomes, such as 
whether a piece of equipment is likely to fail soon. It assigns 
probabilities to each outcome and then classifies the result into 
one category or another.                 

 l Decision Trees: A decision tree is a flowchart-like model where 
each internal node represents a decision based on a feature (such 
as sensor reading), and each leaf represents the outcome. The 
tree asks a series of "if-then" questions to decide, making it easy 
to understand and interpret. For example, in grid monitoring, a 
decision tree could predict whether a transformer needs 
maintenance by asking questions based on historical data.                 
Random Forests: A random forest is an ensemble of decision 
trees. Instead of relying on a single tree, it builds many trees using 
different parts of the data and combines their results. This makes 
it more accurate and robust than a single decision tree. In the 
power industry, it can predict when equipment is likely to fail by 
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combining predictions from different models, reduing the chance 
of errors.                 

 2. Unsupervised Learning – In unsupervised learning, the algorithm 
works with unlabeled data, meaning the model doesn't have predefined 
labels or outcomes. The goal is to find hidden patterns, groupings, or 
structures in the data. The following are some major unsupervised 
learning algorithms:                 

 l k-Means Clustering: In k-means clustering, the algorithm groups 
data points into clusters based on their similarity. It tries to 
minimize the distance between points in the same cluster and 
maximize the distance between clusters. This is helpful for 
segmenting customers based on their energy usage, allowing 
power companies to create targeted pricing models.

 l Hierarchical Clustering: Hierarchical clustering groups data into a 
hierarchy, creating a tree-like structure where clusters are formed 
step by step. The algorithm either starts with individual data points 
and merges them (agglomerative) or starts with all data points in 
one cluster and splits them (divisive). In the power industry, this 
technique is useful for grouping similar types of faults in the grid, 
making fault detection more efficient.

 l Principal Component Analysis (PCA): PCA is a technique used to 
reduce the number of variables (or dimensions) in a dataset while 
preserving as much information as possible. It does this by finding 
new variables (called principal components) that capture most of 
the variance in the data. This is useful when dealing with large 
data sets from smart meters or sensors, allowing utilities to focus 
on the most important features and spot anomalies.                 

 l Autoencoders: Autoencoders are a type of neural network used for 
compressing data and then reconstructing it. They can capture the 
essential structure of the data, which makes them excellent for 
anomaly detection. In the power industry, they can learn the 
typical behavior of the grid and detect deviations from the norm, 
such as voltage fluctuations or unusual energy usage, indicating 
potential issues.

 l Gaussian Mixture Models (GMM): GMM is a probabilistic model 
that assumes the data is generated from a mixture of several 
Gaussian distributions. Each distribution represents a different 
cluster. Unlike k-means, which assigns each data point to one 
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cluster, GMM assigns probabilities of belonging to multiple 
clusters. In the power industry, GMM can be used for load profiling 
by identifying different patterns in energy consumption and 
modeling uncertainty.

 l DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise): DBSCAN is a clustering method that groups data points 
based on their density. It can identify clusters of varying shapes 
and sizes and can also detect outliers (noise). In energy usage 
pattern analysis, DBSCAN can be used to find areas in the grid 
where energy consumption is significantly different from normal 
behavior, which might indicate energy theft or inefficiencies.

 3. Reinforcement Learning – In reinforcement learning, an agent learns to 
make decisions by interacting with an environment and receiving 
feedback in the form of rewards or penalties. The agent's goal is to 
maximize cumulative rewards over time. The following are some of the 
major reinforcements learning algorithms:          

 l Q-Learning: Q-learning is a reinforcement learning algorithm 
where an agent learns the best action to take in each state by 
receiving rewards (positive or negative feedback) for its actions. 
Over time, it learns to maximize its total reward. In the power 
industry, it can be used to optimize energy distribution across the 
grid by learning how to balance energy supply with varying 
demand levels, ensuring grid stability.                 

 l Deep Q-Networks (DQN): DQN combines Q-learning with deep 
neural networks to handle complex environments where the 
number of possible states and actions is very large. This is useful 
for managing the integration of renewable energy sources, such 
as solar or wind, into the grid. The network can learn from past 
grid data and make real-time decisions to balance traditional and 
renewable energy sources, ensuring a smooth energy supply.                 

 l Policy Gradient Methods: Instead of learning the value of actions, 
policy gradient methods directly learn the optimal policy (or 
strategy) that the agent should follow to maximize its total reward. 
These methods are useful when the action space is large or 
continuous. In demand response optimization, for example, the 
algorithm can learn how to adjust energy pricing dynamically to 
incentivize users to reduce their energy consumption during peak 
hours.
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 l Actor-Critic Methods: Actor-critic methods combine the benefits of 
both value-based and policy-based approaches. The actor decides 
which action to take, and the critic evaluates how good that action 
was. Over time, both the actor and the critic improve. In dynamic 
energy pricing, this method can be used to balance supply and 
demand in real-time by learning which pricing actions lead to 
optimal energy usage patterns.
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4. Emerging Machine Learning 
Techniques

As AI/ML capabilities continue to advance, new methods are emerging with 
the potential to advance decision making, transparency, and explainability. 
The following subsections highlight two emerging AI/ML developments 
across a range of applications.         

4.1  Large Language Models
The power industry faces challenges such as increased data from sensor 
integration, renewable energy adoption, and evolving technologies like 
inverter-Based Resources (IBRs) and Electric Vehicles (EVs). These 
changes, coupled with rising customer expectations and workforce 
constraints, demand innovative solutions. LLMs could play a key role by 
interpreting human prompts, managing complex data, and providing near 
real-time guidance during crises like extreme weather events. However, 
understanding their capabilities and limitations is critical for their effective 
use in power-engineering tasks.

Unlike traditional ML models requiring domain-specific data and labor-
intensive setup, foundation models provide versatile, interactive solutions 
[6]. LLMs have demonstrated strengths in language understanding, prompt 
engineering, tool embedding, and multi-modal data handling, enabling tasks 
such as power flow analysis, forecasting, and risk assessments. Enhanced 
by fine-tuning and prompt engineering, they can process complex queries, 
integrate with external tools, and interpret non-text data like images. 
However, LLMs face challenges such as limited domain-specific training 
data, the absence of safety guardrails, lack of adaptation to physical 
principles, and cybersecurity risks. Their probabilistic nature and context 
window limitations restrict their reliability in critical applications. Despite 
these issues, LLMs offer promise as supportive tools in power systems 
when combined with governance frameworks and expert oversight [9].           
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4.2  Explainable Artificial Intelligence
Recent advancements in DL have led to more effective and accurate ML 
algorithms for power system applications. While these algorithms are 
claimed to be able to perform better than traditional methods, their complex 
nature makes it hard to understand how they make decisions and process 
real-world data. This lack of clarity can make power system experts, who 
rely on their knowledge and experience, hesitant to trust ML-driven 
recommendations, especially in situations where reliability is crucial. To 
address this issue, Explainable Artificial Intelligence (XAI) has been 
introduced to make ML models easier to understand without reducing their 
performance or accuracy.

XAI refers to a set of techniques and frameworks designed to make the 
decisions and inner workings of AI models understandable to humans. 
Traditional AI models, especially deep learning-based systems, often 
operate as "black boxes," producing results without offering clear 
explanations for their predictions [10]. XAI bridges this gap by providing 
insights into why and how an AI system reaches its conclusions. "Figure 2. 
High-level Illustration of Explainable AI         " on the next page presents a high-
level illustration of an explainable AI model. The XAI framework enhances 
this process by providing an explainable model that works alongside the 
AI/ML model, ensuring that the results are not only accurate but also 
understandable and trustworthy.         

The key objectives of XAI include:

 1. Transparency: Making AI models comprehensible by exposing their 
decision-making processes.                 

 2. Interpretability: Ensuring that users can understand how input features 
contribute to an AI prediction.                 

 3. Trust and Accountability: Allowing stakeholders to verify and validate 
AI-driven outcomes.                 

 4. Bias Detection: Identifying and mitigating biases in AI models, 
ensuring fairness in decision-making.                 
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Figure 2. High-level Illustration of Explainable AI         

 

XAI methods can be categorized into the following two main types, each 
offering different approaches for interpreting complex AI models [10]:         

 1. Model-Agnostic Techniques: These methods can be applied to any AI 
model without altering its structure. They focus on explaining 
predictions by analyzing inputs and outputs. Common approaches 
include:                 

 l SHAP (Shapley Additive Explanations): Inspired by cooperative 
game theory, SHAP assigns each feature an important value 
based on its contribution to a prediction. This technique offers 
both global and local interpretability.                         

 l LIME (Local Interpretable Model-Agnostic Explanations): LIME 
generates simplified, interpretable models (such as linear 
regressions) around specific predictions, making it easier to 
understand why an AI model made a particular decision.                         

 l Partial Dependence Plots (PDP) and Accumulated Local Effects 
(ALE): These visualization techniques show how individual 
features impact predictions across the entire dataset, providing 
insight into model behavior.                         

 l Counterfactual Explanations: These highlight how changes in 
input variables would alter the output, helping users understand 
the conditions under which a different decision might occur.                         

 2. Model-Specific Techniques: These methods are tailored to specific AI 
architectures, such as decision trees, neural networks, or support 



ERCOT | AUGUST 2025 13

GRID RESEARCH, INNOVATION, AND TRANSFORMATION

vector machines. Examples include:                 
 l Feature Importance Scores: Used in tree-based models like 

XGBoost and Random Forests, these scores rank features based 
on their contribution to the overall prediction.                         

 l Layer-wise Relevance Propagation (LRP): In deep learning 
models, LRP traces the contribution of each neuron in the network 
back to the input features, providing detailed explanations for 
predictions.                         

 l Saliency Maps: Commonly used in computer vision models, 
saliency maps highlight the most influential parts of an input image 
or dataset, revealing what the model “focused” on when deciding.                         
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5. Possible Use Cases in the Power 
Industry for Machine Learning

ML offers numerous potential applications in the power industry, particularly 
within ISO/RTO and transmission operations. These applications can 
significantly enhance various aspects of grid management and operations. 
"Table 1: Possible ML Use Cases in the Power Industry         " on page 16 
illustrates typical use cases for various ML techniques. In practice, multiple 
techniques have been applied to address the same issues as highlighted in 
the past ML literature review [4, 5, 8].         

Type Algorithm Possible Use Case[1]                           

 Linear 
Regression

Load forecasting, renewable energy forecasting, energy 
price prediction, demand response optimization, grid 
stability and frequency control, spot pricing forecasting, 
predictive maintenance for power equipment

 Logistic 
Regression

Fault detection and classification, predictive maintenance 
for power equipment, outage prediction and 
classification, renewable energy curtailment 
classification, voltage stability assessment, contingency 
classification, distributed energy resource (DER) 
integration, EV load classification

 Decision Trees Fault diagnosis and classification, predictive 
maintenance for power equipment, demand response 
management, renewable energy generation prediction, 
power outage prediction, grid congestion management, 
EV charging load prediction, DER management, 
contingency analysis

 Random 
Forests

Load forecasting, renewable energy forecasting, energy 
price forecasting, equipment failure prediction and 
maintenance, anomaly detection in grid operations, grid 
stability and contingency analysis, battery energy storage 
system (BESS) optimization

Supervised 
Learning

Support Vector 
Machines 
(SVM)

Load classification and forecasting, fault detection, 
power quality disturbance classification, renewable 
energy integration and forecasting, price forecasting, 
predictive maintenance of power equipment, weather-
driven grid optimization                         

 Neural 
Networks

Load forecasting, renewable energy output forecasting, 
smart grid management and optimization, energy price 
forecasting, fault detection and diagnosis, predictive 
maintenance of power equipment, cybersecurity, optimal 
dispatch of BESS, blackout prediction and prevention, 
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Type Algorithm Possible Use Case[1]                           

forecasting EV charging demand, anomaly detection in 
smart grids, power quality analysis, energy consumption 
behavior prediction                         

 k-Nearest 
Neighbors 
(k-NN)

Load forecasting, energy theft detection, fault detection 
in power equipment, power quality monitoring, renewable 
energy integration, customer segmentation for demand-
side management, predictive maintenance of power grid 
assets, anomaly detection in energy markets, voltage 
stability prediction, smart grid demand prediction

 Extreme 
Gradient 
Boosting 
(XGBoost)

Load forecasting, renewable energy output forecasting, 
smart grid management and optimization, energy price 
forecasting, anomaly detection in grid operations, energy 
consumption behavior prediction                         

 k-Means 
Clustering

Energy consumption behavior analysis, anomaly 
detection in smart grid operations, fault classification in 
power equipment, load forecasting for DERs, power 
quality monitoring, peak load management, load profile 
classification for grid planning, renewable energy 
curtailment analysis, seasonal consumption trend 
identification                         

 Hierarchical 
Clustering

Grid reliability analysis, power quality event 
classification, load profile analysis for grid optimization, 
renewable energy generation clustering

Unsupervised 
Learning

Principal 
Component 
Analysis (PCA)

Load forecasting, anomaly detection in power grids, 
power quality analysis, renewable energy generation 
forecasting, predictive maintenance of power equipment, 
voltage stability monitoring, energy consumption pattern 
analysis, climate impact analysis on energy consumption, 
BESS optimization                         

 Autoencoders Anomaly detection, energy consumption pattern 
recognition, power quality monitoring and fault detection, 
predictive maintenance of grid assets, load forecasting 
enhancement, renewable energy integration and 
forecasting, demand response optimization, smart meter 
data compression, stability monitoring, cybersecurity, EV 
charging station optimization                         

 Density-Based 
Spatial 
Clustering of 
Applications 
with Noise 
(DBSCAN)                         

Anomaly detection in meter data, power grid stability and 
islanding detection, renewable energy production 
forecasting, EV charging behavior clustering, load 
profiling and forecasting, outlier detection in power 
market data

 Q-Learning BESS optimization, demand response management, grid 
frequency and voltage control, transmission line 
congestion management, unit commitment, EV charging 
optimization, renewable energy curtailment minimization, 
power market bidding strategy optimization                         
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Type Algorithm Possible Use Case[1] 

Reinforcement 
Learning

Deep Q-
Networks 
(DQN)

Renewable energy integration, Optimal Power Flow (OPF) 
with renewable energy integration, EV charging coordination, 
demand response optimization, unit commitment, power 
system restoration after blackouts, grid frequency control, 
preventive maintenance scheduling, renewable energy 
curtailment minimization

Policy Gradient 
Methods

Optimal Power Flow (OPF), real-time control of DERs, BESS 
optimization, demand response management, grid frequency 
regulation, EV charging coordination, power system 
restoration after blackouts, transmission congestion 
management

Actor-Critic 
Methods

Optimal Power Flow (OPF), BESS management, demand 
response management, fault detection and system 
resilience, EV charging infrastructure optimization, 
predictive maintenance of power equipment, real-time 
grid frequency and voltage control                         

Table 1: Possible ML Use Cases in the Power Industry 
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6. Current Machine Learning Uses
Within ERCOT

ERCOT has already deployed several ML techniques in the areas of 
forecasting and market anomaly detection [11, 12, 13]. Below are some 
details about these implementations.          

6.1 SOC and Large Flexible 
Load (LFL) Forecasting Tool         
ERCOT developed two ML-based tools to forecast the system-wide value of 
battery SOC and LFL in real time. Both tools are integrated into the ERCOT 
Trend Analysis Tool (TAT) and serve as open-access, web-based platforms 
within ERCOT to identify and analyze issues that appear in the market 
based on real-time operational data. The SOC forecasting tool also provides 
SOC forecasts on each individual battery as well. Both tools will provide 
forecasts for the short-term (2-hour look-ahead in 5-min resolution), day-
ahead (24-hour look-ahead in 1-hour resolution), and week-ahead (168-
hour look-ahead in 1-hour resolution) on an hourly update basis. ML models 
used include Decision Tree (DT), Random Forest (RF) regression, 
AdaBoost (AB) regression, Bagging (BR) regression, Gradient Boosting 
(GB) regression, Extreme Gradient Boosting (XGB) regression, and Support 
Vector Regression (SVR). The Ensemble model calculates average results 
provided by all the above-mentioned models. Meanwhile, a Deep Learning 
(DL) model named the Long Short-Term Memory (LSTM) model is also used 
to provide additional forecast for some extreme weather conditions. See 
Appendix B for some actual forecasting results.

6.2  Automated Anomaly Detection Tool for 
Market Price Spike and Separation
The ERCOT market validation team is responsible for anomaly detection 
across all trading results in the real-time market. Analysis has revealed that 
most market pricing anomalies were due to erroneous SCED input data from 
various sources. Currently, ERCOT uses a rule-based model to detect these 



ERCOT | AUGUST 2025 18

GRID RESEARCH, INNOVATION, AND TRANSFORMATION

anomalies, a process that is time-consuming and prone to errors. Some 
issues could remain undetected for over six months. To address this, 
ERCOT is developing an automated anomaly detection tool that analyzes 
SCED input data and real-time prices. This tool leverages both statistical 
methods (Z-score and Grubb’s test) and ML algorithms, including logistic 
regression, Extreme Gradient Boosting (XGB) regression, Long Short-Term 
Memory (LSTM), and some transformer-based methods. Early results 
indicate that the tool can identify and diagnose the root cause of pricing 
anomalies more efficiently and quickly. More details about this tool can be 
found in reference item.         
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7. Potential Uses of Machine Learning
at ERCOT

"Table 2:Potential Applications at ERCOT         " on page 22 illustrates areas 
where the increased use of ML could provide benefits to ERCOT [11]. For 
each item, a brief description is included. The table includes a qualitative 
assessment of the benefit and level of effort required for implementation. 
The details and assessments should be considered preliminary, and a more 
thorough examination will be required before implementation efforts begin.         

Application Sub-topic Details Benefits Possible 
ML Types 

Forecasting for 
planning and 
real-time 
analysis

Price-responsive 
demand 
forecasting

ML could be used to 
analyze customer 
load telemetry 
and/or meter data to 
determine price 
responsiveness and 
make predictions on 
how load will 
respond to prices in 
the day-ahead to 
real-time timeframe. 

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Reinforcement 
Learning                         

Private Use 
Network (PUN) 
forecasting                         

ML could be used to 
analyze PUN 
telemetry and/or 
meter data to 
determine behavior 
and make 
predictions on how 
PUNs will behave in 
the day-ahead to 
real-time timeframe. 

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Unsupervised 
Learning                          

BESS behavior 
prediction

ML could be used to 
analyze BESS 
charging and 
discharging patterns 
with respect to other 
variables and make 
predictions on 
charge/discharge 
behavior in the day-
ahead to real-time 
timeframe.                         

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Unsupervised 
Learning 

DER ML could be used to Risk Supervised 
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Application Sub-topic Details Benefits Possible 
ML Types 

identify DER activity 
by detecting drops in 
substation loads 
when LMP 
increases.

Mitigation
Reliability

Learning or 
Unsupervised 
Learning

Net load forecast 
risk                         

ML could be used to 
analyze weather 
patterns that present 
increased risk for net 
load forecast errors 
and provide a risk 
assessment for 
operators.

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Reinforcement 
Learning                         

Forced outage 
forecasting

ML can learn from 
past forced outage 
samples and derive 
the relationship 
between forced 
outage rate and 
other exogenous 
factors.

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Unsupervised 
Learning or 
Reinforcement 
Learning

Inertia ML can provide 
another layer of 
intelligence to 
correct the results 
generated from the 
current model-based 
inertia prediction 
application.

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Reinforcement 
Learning

4CP detection and 
forecasting                         

ML can be used to 
detect 4CP activity 
by monitoring loads 
at substations for 
reductions not 
conforming to the 
overall system load 
curve or non-4CP 
historic behavior.

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Reinforcement 
Learning

Stressed 
conditions

The quantity of 
ancillary services 
need is calculated 
on an annual basis. 
While this provides 
more advantage to 
load service entities 
to hedge against the 
financial risk, it 
could underestimate 

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Reinforcement 
Learning
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Application Sub-topic Details Benefits Possible 
ML Types 

the system reliability 
need at times. ML 
could forecast the 
ancillary services 
need and the impact 
if sufficient Ancillary 
Services are 
unavailable in real 
time.                         

Dynamic load 
model 
parameterization 

ML could be used to 
“learn” the dynamic 
behavior of loads 
during disturbances 
to create a set of 
dynamic load model 
parameters for an 
area.

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Reinforcement 
Learning                          

Anomaly 
detection

Telemetry that 
does not match 
model specs

ML can be used to 
characterize 
telemetry from a 
source and identify 
telemetry that does 
not match those 
characteristics.

Risk 
Mitigation
Reliability

Supervised 
Learning 

Oscillation 
detection

ML could be used to 
detect the origin of 
oscillations by 
“learning” over time 
how oscillatory 
signals travel over 
the multiple network 
paths and using 
wave features like 
amplitude, 
directionality, phase, 
etc.

Risk 
Mitigation
Reliability

Supervised 
Learning 

Generation 
Resource 
Interconnection 
or Change 
Request (GINR) 
projects 
forecasting

Predicting which 
GINR projects will 
be built.

Accurate prediction 
of new unit 
commercialization 
can provide a clearer 
picture for long-term 
planning and 
seasonal reserve 
margin planning and, 
operationally, help 
anticipate the need 
for additional 
ancillary services.

Other 
(planning 
reserve 
margin)

Supervised 
Learning 
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Application Sub-topic Details Benefits Possible 
ML Types 

Real-time 
optimization

Security-
constrained 
Optimal Power 
Flow (SCOPF)

Currently, ERCOT 
SCOPF is a 
computationally 
intensive and time-
consuming process, 
which requires us to 
limit the scope of 
studies in real time. 
ML may help to 
accelerate the 
process and allow 
for a broader range 
of studies.                         

Risk 
Mitigation
Reliability

Supervised 
Learning or 
Unsupervised 
Learning or 
Reinforcement 
Learning

Table 2:Potential Applications at ERCOT 

In addition to the potential ML applications listed in Table 2, ERCOT 
believes that emerging ML techniques, such as LLMs can be instrumental in 
enhancing the operations and decision-making processes in the following 
areas:         

l Knowledge Base and Asset Management
LLMs can serve as intelligent gateways to enterprise knowledge bases,
streamlining access to complex information. Employees can query
LLMs for information about assets, operational guidelines,
maintenance schedules, or compliance protocols, reducing time spent
searching through documentation. Paired with IoT data, LLMs can
analyze equipment logs and suggest predictive maintenance schedules
or risk assessments.

l Real-Time Operational Decision Support
LLMs assist operators by collecting vast amounts of PMU and SCADA
data, identifying potential issues, and suggesting optimal operational
adjustments. They can also interpret complex system states and
recommend actions during emergencies, such as load shedding or
demand response activation. Operators receive real-time, context-
aware insights that can improve decision-making speed and accuracy
under high-stress conditions.

l Energy Demand Forecasting and Market Analysis
LLMs can analyze historical demand patterns, weather data, and
economic indicators to improve load forecasting accuracy. They also
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process news, economic reports, and weather predictions to provide 
real-time insights on how external events could affect demand market 
prices. Improved forecasting allows ERCOT to balance supply and 
demand more efficiently and optimize market pricing, helping reduce 
costs and improve grid stability.                 

l Outage Management and Grid Resilience
LLMs can assist in outage prediction and management by analyzing
grid data, maintenance logs, and historical weather-related outages.
During outages, LLMs can process live information to predict
restoration times and prioritize repair efforts. Faster, data-driven
responses to outages enhance grid resilience and help restore service
more quickly.

AI and machine learning have a lot of potential to improve ERCOT's 
operations and planning, but their adoption has been slow partly due to 
challenges with interpretability and explainability. ERCOT believes that 
using new techniques like Explainable AI (XAI) could change how AI-driven 
decisions are made, explained, and trusted across the energy sector. By 
making the grid more reliable, helping integrate renewable energy, 
improving market transparency, and empowering consumers, XAI would 
support ERCOT's mission of delivering reliable and efficient energy while 
keeping stakeholders confident. As the grid evolves to include more 
renewables and decentralized resources, XAI will be key to ensuring that AI-
driven innovations are understandable, accountable, and trustworthy. 
Techniques like iSHAP, LIME, Partial Dependence Plots, Accumulated 
Local Effects, Counterfactual Explanations, Feature Importance Scores, 
Layer-wise Relevance Propagation, and Saliency Maps will be crucial in this 
transformation.         



ERCOT | AUGUST 2025 24

GRID RESEARCH, INNOVATION, AND TRANSFORMATION

8. Challenges and Barriers to
Machine Learning Implementation

Implementation of the increased use of ML applications at ERCOT could 
face challenges and barriers as described in "Table 3:Challenges and 
Barriers to Machine Learning Implementation         " on the next page below [11].

Challenge Description

Organization 
direction, 
intentionality, 
OKRs

ERCOT 2025's OKRs emphasize addressing data and data governance, as 
well as establishing a framework for AI initiatives. We are laying the 
groundwork to enable AI and data analytics capabilities, empowering data-
driven decision-making. However, we face challenges such as ensuring data 
quality, integrating disparate data sources, and managing data privacy and 
security. In the upcoming years, we will continue to focus on OKRs related 
to AI and machine learning to further enhance our capabilities and drive 
innovation.

Scalability and 
cost                         

In some cases, ML initiatives may fit within the existing scope of work and 
budget of a department. However, other applications could require a 
significant amount of effort. Some AI/ML solutions can be very costly and 
resource-intensive, especially in terms of computational power and 
infrastructure.                         

Data quality 
and availability

To train a successful ML model requires a large amount of representative 
data, relevant to the scenarios trained. ERCOT has data repositories to 
archive historical operational data, including meter data, telemetry data 
(SCADA and PMU), and grid and market operation data (market participant 
submitted data, vendor provided data, ERCOT internal data). Four issues 
need to be addressed with regards to data access: 

1. Segregation of data located on different enterprise systems,

2. Access to data by users in a different department from the department
that owns the database,

3. Data governance, and

4. Data availability to meet granularity, latency, and data quality
requirements

The concept of a data lake may need to be explored to address this 
challenge.

ERCOT applications are generating and accumulating vast amounts of data, 
but much of it is incomplete, inconsistent, dispersed, and difficult to access. 
For ML models to work effectively, clean, well-labeled, and high-quality data 
is crucial. Inconsistent or missing data can lead to poor model performance, 
inaccurate predictions, or misleading insights. Addressing this issue should 
be our top priority.                         
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Challenge Description

Creation and 
tuning of 
models

The success of ML needs a good understanding of data itself and how the 
process is trained. Rather than treating ML as a black-box approach, a 
significant amount of effort is required to create and tune the ML models, on 
a continuous basis. This is especially the case for power system 
applications as the grid is evolving, sometimes at a very fast pace.                          

Staff training 
and level of 
experience

ERCOT has historically emphasized power systems experience in hiring and 
power systems concepts with on-the-job technical training, which do not 
necessarily involve knowledge or learning of ML methods. Thus, while 
ERCOT has access to statistical programming software (both proprietary 
and open source), not many of its staff are prepared to develop and use 
these software tools for ML applications.                          

Limited ability 
to use cloud 
services

ERCOT must comply with North American Electric Reliability Corporation 
(NERC) Critical Infrastructure Plan (CIP) standards. To properly
accommodate BES cyber assets and protected cyber assets in cloud 
computing, existing definitions in NERC CIP standards may need to be 
revised. Cloud computing is often utilized in other industries for heavy 
computation, typically for ML processes. While massive amounts of 
computation can be achieved by purchasing on-site super computers, cost 
and accessibility are concerns.                         

ML 
infrastructure 

ML implementation requires consideration of the location of data, network 
communication bandwidth and speed, processing power requirements, and 
security of data. Careful planning and investment for all these needs to 
occur to ensure successful implementation of ML. This is one of ERCOT 
2025's OKRs and presents a significant challenge.                         

Security Some data used by a new ML application may not have been considered 
sensitive previously. However, to the extent that the data is being used to 
make critical operational decisions, the security and redundancy associated 
with it may need to be revised. This can add cost and complexity to the 
application. 

Table 3:Challenges and Barriers to Machine Learning Implementation 
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9. Conclusions
This review paper gives an overview of various ML techniques and their 
applications across the  power industry, including use cases relevant to 
ISO/RTO planning and operations. It highlights selected use cases where 
ERCOT is currently applying AI/ML techniques. Additionally, the paper 
outlines some potential use cases for AI/ML integration into ERCOT’s 
operational and planning processes, along with key challenges and 
opportunities in incorporating these techniques into ERCOT’s workflows and 
decision-making processes.          
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11. Appendix A
The online SOC forecast and LFL forecast tools fetch historical and real-
time data from a database. Data pre-processing examines data quality, 
including handling inconsistent, missing, and noisy data points, checking for 
null values and outliers, scaling the data to a given range, and splitting the 
time-series data into training and testing subset while retaining the temporal 
order. The cleaned data then is fed into the ML engine to perform training 
and forecasting. Then, the forecast results are saved in CSV files and a 
database for visualization and/or post-off-line analysis.          

Real-time data and historical data are fed into ML models, each of which will 
produce a separate forecast result of aggregated SOC and aggregate LFL 
consumption on system-wide load-zone level and weather-zone level. The 
ensemble model calculates the average of all the forecast results provided 
by the ML models as the final forecast results. The ML models are trained at 
the beginning of every day using the past 240 hours of historical data 
(equivalent to 10 days length of data) and provide forecast results for the 
next 24 hours in 1-hour resolution. The forecast is updated every hour and 
runs 24/7 in an online environment.         

The following "Figure 3. BESS SOC Forecast Performance on November 18, 
2024         " on the next page and "Figure 4. Large Flexible Load Forecast 
Performance on November 18, 2024" on the next page show hour-ahead, 
system-wide SOC and LFL forecasts published on the ERCOT Trend 
Analysis Tool (TAT) website. "Table 4:Summary of Weekly Performance of 
System-Wide Forecast         " on page 30 shows the performance of both forecast 
tools in a typical week.         
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Figure 3. BESS SOC Forecast Performance on November 18, 2024 

Figure 4. Large Flexible Load Forecast Performance on November 18, 2024
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Forecast Weekly Average Morning Hour 
Average

(HE07, HE08, & 
HE09)                     

Evening Hour 
Average

(HE17, HE18, & 
HE19) 

MAPE MAE MAPE MAE MAPE MAE

ESR SOC 6.23% 619.34MWh 6.35% 631MWh 4.32% 428.74MWh

LFL 6.62% 185.39MW 4.83% 135.31MW 16.01% 448.51MW 

Table 4:Summary of Weekly Performance of System-Wide Forecast 
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