

VRT / PFR CONTROLS COORDINATION - GE VERNOVA PERSPECTIVE

Presenter: Dustin Howard

Other Contributors: Ignacio Vieto, Patrick Djan-Sampson

GE Vernova Consulting Services

8/15/2025

Outline

- Plant Control Functions
- Frequency Measurement Methods and Common Issues
- Common Mitigations for Frequency Measurement Issues
- Detecting Fault Ride Thru
- Typical Fault Ride Thru Behavior
- Transitioning between FRT and normal Operation

Plant Control Functions

- Plant Control Primarily for Steady-State Regulation at POI
 - Active Power Control
 - Voltage Control (or Q or PF)
 - Primary Frequency Response (PFR)
- Dispatches downstream IBRs to meet POI setpoints
 - For variable resources (wind/solar), power only regulated when curtailed or to regulate dP/dt
- Generally slow control (e.g. few seconds to minutes) response times
- Generally not intended to
 - impact plant in-fault behavior in a significant way
 - Impact behavior immediately after fault (e.g. until IBR has fully recovered from FRT)

Frequency Measurement Methods and Common Issues

- Controls estimate frequency based on voltage measurements
 - Zero Crossings in Voltage
 - PLLs
- Voltages provides good indication of frequency in steady-state conditions
- Frequency measurement "spikes" or other inaccuracies may occur due to
 - Noise related to non-fundamental frequency distortion
 - Phase jumps (e.g. line opening)
 - Faults

Common Mitigations for Frequency Measurement Issues

- Filtering
 - Heavy filtering reduces risk of "mis-detection" of voltage events as frequency events
 - Light filtering speeds up response to real frequency events, increases risk of mis-detection
- Temporary Control Freezing
 - Algorithms distinguish "real" frequency events from voltage transients/noise
 - Temporarily freeze output to avoid undesired response in power
- Deadbands
 - Wider reduces risk of mis-detection
 - Narrower reduces plant response time for grid support

Detecting Fault Ride Thru

- IBR Decides how to React to Grid Event Using Local Feedbacks Not necessarily dictated by Plant Controller
- Explicit vs Non-Explicit Mode Switch Using Local Signals
 - Explicit Switch: Different controls/regulators, gains or commands once a VRT mode is initialized
 - Non-Explicit: Continuous limits that constrain commands based on feedback strategy
- Sequence Voltages at the Inverter Terminal are a Good Option for Feedback:
 - Fault Severity can be Inferred from Positive Sequence Voltage
 - Fault Type Inferred From Negative Sequence Voltage
 - Filtering Exists in the Sequence Calculation

Typical Fault Ride Thru Behavior

- Typical In-fault behavior of IBR
 - Reduce active power
 - Increase reactive current
 - Temporarily override/ignore plant-control dispatch
- Typical Post-Fault behavior of IBR
 - Rapidly attempt to return to pre-disturbance voltage or reactive power
 - Ramp back to pre-disturbance power
 - Resume following plant-control dispatch after recovery of power and V/Q
- Voltage un-steady during and immediately after faults
 - Phase jumps due to rapidly changing power, line openings, etc.
 - Non-fundamental components in voltage due to xfmr saturation, resonances, etc.

Transition from Fault Ride Thru to Normal Operation

- Smooth transition achieved by
 - Adjusting reactive current based on local voltage conditions
 - Ramping power slow enough to avoid subsequent voltage collapse
 - slowly transitioning back from IBR-dominated response to resumption of plant control
 - Avoiding aggressive control response to perceived frequency events that also coincide with large voltage events
- "Bumps" in transition are unlikely
 - If observed, are likely resolved by configuration/parameter changes
 - May require verification that changes don't adversely impact other performance aspects

