

Impact of the Al datacenter on the nearby generation plant

SVC PLUS FS ® www.siemens-energy.com

If no mitigation measures put in place such load might damage the nearby electrical equipment (such as generators and turbines at the power plant)

Negative concerns on the nearby generators:

- Torsional resonance
- Local mode oscillations
- •Might lead to unavailability due to poor operational behavior
- Premature Component damage

Al-training datacenter load pattern

Al datacenters exhibit unique power consumption patterns, with rapid load transitions—shifting from idle (~40%) to full load (100%) and back within fractions of a second.

This is a behavior that no other load has done before.

Source: NERC White Paper: Characteristics and Risks of Emerging Large Loads

If not addressed load fluctuation will enter the gen-set.

Depending on the magnitude and frequency of the fluctuation it might cause control malfunctioning, frequent unintended trips, and ultimately damage to critical components, and significantly reduce the expected life-time

Consistent fluctuations are significant risk to the gen-set

How fluctuating load impacts nearby plant?

Major factors: 1. Strength of the grid

The fraction of a fast load disturbance ΔP that appears at the generator terminals depends on the grid configuration.

Hence a generator tied to a weak grid can see up to 2-3 times of the data-center fluctuation compared to the same unit on a strong grid.

Major factors:

Load [MW]

Gen-Set [MW]

Grid [MW]

2. Frequence of the disturbance

If the forcing frequency coincides with local mode (typically 0.5-2Hz), the generator can resonate with the grid, magnifying the oscillation by up to 50 % even when the external SCR is high.

Major factors:

Load [MW]

Gen-Set [MW]

Grid [MW]

3. Ramp of the change

A step change forces large sub-transient currents; the same load change delivered as a ramp (e.g. dP/dt ≤ ~10 %/sec) produces only small additional current and torque, since the machine impedance can now be represented by the larger synchronous reactance Xd.

Operational Risks of Gen-set

Frequence of the load change		Risk to the nearby plant	
5-55 Hz		risk of torsional resonance, shaft and turbine damage	
0.5-5 Hz		risk of local swing-mode resonance, control mal-operation	
<0.5 Hz,	Iltiple events per day	risk of high-cycle mechanical / thermal fatigue	

E-STATCOM for Al datacenters

SVC PLUS FS ® www.siemens-energy.com

nearby GRID plant E-STATCOM **DATA-CENTER**

How to mitigate the risk to the nearby plant

The most effective way to mitigate the risk is to reduce the fluctuation at its source – adding an E-STATCOM at data center facility

The source of the fluctuation must be reduced, such that the impact on the generator is neglectable, for example magnitude of the fluctuations are <1-2% * at the machine terminals

^{* 1-2%} is a suggestive figure and can depend on individual shaft train's design and configuration and can vary by application

E-STATCOM for Al Datacenter load fluctuation

Product	SVC PLUS FS (Siemen	VC PLUS FS (Siemens Energy)	
Active power	+/-75MW		
Reactive Power	+/-75MVAR	Very fast response time	
System Voltage	34.5kV or higher	is critical 10.	
Response time	- <5ms	load	
Special Features	Variable Load CompensationFault-ride through supportReactive Power CompensationVoltage control		

E-STATCOM as a mitigation measure Example1: 5Hz oscillation

E-STATCOM effectively absorbs sub-synchronous oscillations, thereby protecting the grid and nearby rotating equipment.

It achieves the same degree of compensation regardless of whether it is connected to a strong or weak grid.

GRID nearby plant

E-STATCOM

DATA-CENTER

E-STATCOM as a mitigation measure Example 2: 1Hz oscillation

E-STATCOM can reduce load fluctuations by up to 99% in critical local and interarea mode regions (0.1-2 Hz)

E-STATCOM as a mitigation measure **Example3: 0.1Hz load change**

E-STATCOM smooths out abrupt changes in the load, resulting in a more gradual and stable load transition

Example. Based on NERC Report

E-STATCOM during Voltage-Sensitive Load Reduction¹

Zoom out: Minutes timescale

Al Workload concerns E-Statcom as a mitigation measure

Type of load changes	Concerns	Effect of E-STATCOM
5-55 Hz (any abrupt load change contains these high frequence components)	Torsional resonance, shaft, and turbine damage High-cycle mechanical/thermal fatigue	effectively damps in the entire range of the sub-synchronous oscillations. slows down the millisecond ramps into minute ramps
0.1-2 Hz	local swing-mode resonance, control mal-operation inter-area oscillation, grid instability	eliminates oscillations in critical regions for local and interarea mode.
Load reduction after LVRT	angular or frequence instability, Potential over-voltages	compensates load dip up to its MW and energy capability provides voltage control by reactive power
Large power ramps (in minutes range)	Resource balancing and dispatch Voltage control might be a challenge	does not resist slow, minute-scale ramps. provides voltage control by reactive power

Contact information

Sergey Kynev

Siemens Energy Raleigh, NC, USA

E-mail: sergey.kynev@siemens-energy.com

www.siemens-energy.com