

Real-Time Co-Optimization + Batteries: Real-Time Simulation Examples Training

Ryan King Manager, Market Design

RTC+B Task Force Meeting April 22, 2025 ERCOT Public

- Focus of this presentation is to illustrate how market clearing prices, basepoints and awards will be determined under RTC using different scenarios
- ERCOT will use an internal RTC simulation tool for these scenarios which uses a simple model of a 5 generator and 6 transmission line system

Today's market is designed to reflect scarcity through a process that is outside of the optimization

Currently

RTC is also designed to reflect scarcity, but now it occurs within the optimization

Under RTC

erco

RTC Simulator Scenarios

- Scenario 1: Optimal Allocation of Ancillary Services
- Scenario 2: Transmission Congestion
- Scenario 3: System Scarcity

- Goal: Illustrate how RTC will optimally allocate resource capacity to both ancillary services and energy in real time
- Exercise: Increase RRS plan by increments of 10MW and observe which resources receive awards

INFUIS			Resource Data											
		Offers (\$/MWh)						L	1					
		Resource	Bus	Energy	REGUP	RRS	ECRS	NSPIN	AS Qty	LSL	HSL]		
		G1	Α	14	-	20	-	-	20	-	110			
		G2	Α	15	-	20	-	-	20	-	100			
		G3	С	30	-	-	-	-	-	-	520			
		G4	D	29	-	20	-	-	20	-	200			
		G5	E	10	-	20	-	-	20	-	400			
		L1	E	10	-	-	-	-	-	-	-			
										TOTAL	1,330			
		Load Data					Line Dat	a			AS P	lan		
	Load	Bus	Load			Line	Limit*	Max Shadow			AS Type	Amount		
	AUS	В	300			L1	1000	4500			REGUP	0		
	HOU	С	300			L2	1000	4500			RRS	0		
	DFW	D	500			L3	1000	4500			ECRS	0		
		TOTAL	1100			L4	1000	4500			NSPIN	0		
		Load + AS Plan	1100			L5	1000	4500			TOTAL	0		
						L6	1000	4500						

erc

ercot 😓

ercot 💝

ercot 😓

ercot 💝

ercot 😓

ercot 💝

Scenario 1: Optimal Allocation of Ancillary Services Exercise: Calculate AS Prices (MCPCs)

ercot 5

Scenario 1: Optimal Allocation of Ancillary Services Exercise: Calculate AS Prices (MCPCs)

ercot 5

Scenario 1: Optimal Allocation of Ancillary Services Exercise: Calculate AS Prices (MCPCs)

Resource Data														
			Offers (\$/MWh) Limits (MW)											
Resource	Bus	Energy	REGUP	RRS	ECRS	NSPIN	AS Qty	LSL	HSL					
G1	Α	14	-	20	-	-	20	-	110					
G2	Α	15	-	20	-	-	20	-	100					
G3	С	30	-	-	-	-	-	-	520					
G4	D	29	-	20	-	-	20	-	200					
G5	E	10	-	20	-	-	20	-	400					
L1	E	10	-	-	-	-	-	-	-					

- Resource award changes:
 - G1's RRS award increases by 1 MW (+\$20)
 - G1's RRS award decreases by 1 MW (-\$14)
 - G3's Energy award increases by 1 MW (+\$30)
- MCPC of RRS = \$36
- MCPC = Shadow price of the AS constraint (the cost in the objective function to award an additional MW to satisfy the ASDC)

Why is G1 indifferent?

- G1 (via their offer) was willing to provide energy at \$14 and the LMP was \$30
- When G1 was awarded an additional MW of RRS, the opportunity cost (in the form of revenue forgone from selling energy) needs to be factored in the MCPC of RRS
- The opportunity cost of providing RRS is the lost revenue from selling energy
- This cost is factored in the MCPC so that G1 receives the same operating profit it would have received from the energy market –making it *indifferent* to the scheduling of its capacity for energy or AS
 - Optimization process ensures that Resources are not incentivized by the prices to deviate from their awards

G1 Offer	Price	Operating Profit
Energy: \$14	LMP: \$30	\$16
RRS: \$20	RRS MCPC: \$36	\$16

Scenario 2: Relieving Transmission Constraints

- Goal: Illustrate how RTC will adjust ancillary service awards to alleviate congestion
- Exercise: Decrease transmission limit of lines and observe rearrangement of awards to manage congestion

	Resource Data											
	Offers (\$/MWh) Limits (MW)								0			
	Resource	Bus	Energy	REGUP	RRS	ECRS	NSPIN	AS Qty	LSL	HSL]	
	G1	Α	14	-	20	-	-	20	-	110		
	G2	Α	15	-	20	-	-	20	-	100		
	G3	С	30	-	-	-	-	-	-	520		
	G4	D	29	-	20	-	-	20	-	200		
	G5	E	10	-	20	-	-	20	-	400		
	L1	E	10	-	-	-	-	-	-	-		
			_						TOTAL	1,330		
	Load Data					Line Dat	a			AS P	lan	
Load	Bus	Load			Line	Limit*	Max Shadow			AS Type	Amount	
AUS	В	300			L1	1000	4500			REGUP	0	
HOU	С	300			L2	1000	4500			RRS	67	
DFW	D	500			L3	1000	4500			ECRS	0	
	TOTAL	1100	_		L4	1000	4500			NSPIN	0	
	Load + AS Plan	1167			L5	1000	4500			TOTAL	67	
					L6	1000	4500					

erco

Scenario 2: Relieving Transmission Constraints

ercot 💝

Scenario 2: Relieving Transmission Constraints

ercot 😓

Scenario 2: Relieving Transmission Constraints Exercise: Calculate LMP at Bus B

ercot 5

Scenario 2: Relieving Transmission Constraints Exercise: Calculate LMP at Bus B

- $LMP_b = \lambda \sum_c SF_{b,c} * SP_c$
 - Where LMP_b is the LMP at bus b
 - $-\lambda$ is System Lambda, the Shadow Price of the Power Balance Constraint
 - $SF_{b,c}$ is the shift factor impact of the bus *b* on constraint *c*
 - $-SP_c$ is the shadow price on constraint c
- $LMP_b = \$32.72 (-0.113 * \$36.63) = \$36.88$

Scenario 3: Prioritization of Energy During Tight Conditions

- Goal: Demonstrate trade off between energy and ancillary service penalty costs during scarcity
- Exercise: Increase load and observe relationship between supply and demand as well as price changes

	Resource Data										
				Offers (\$/MV	L	1					
	Resource	Bus	Energy	REGUP	RRS	ECRS	NSPIN	AS Qty	LSL	HSL	
	G1	Α	14	-	20	-	-	20	-	110	
	G2	Α	15	-	20	-	-	20	-	100	
	G3	С	30	-	-	-	-	-	-	520	
	G4	D	29	-	20	-	-	20	-	200	
	G5	E	10	-	20	-	-	20	-	400	
	L1	E	9	-	-	-	-	-	-	-	
			_						TOTAL	1,330	_
	Load Data					Line Dat	a			AS P	lan
Load	Bus	Load			Line	Limit*	Max Shadow			AS Type	Amoun
AUS	В	419			L1	1000	4500			REGUP	0
HOU	С	400]		L2	1000	4500			RRS	10
DFW	D	500]		L3	1000	4500			ECRS	0
	TOTAL	1319	-		L4	1000	4500			NSPIN	0
	Load + AS Plan	1329			L5	1000	4500			TOTAL	10
					L6	1000	4500				

erc

Scenario 3: Prioritization of Energy During Tight Conditions

ercot 💝

Scenario 3: Prioritization of Energy During Tight

ercot 😓

Scenario 3: Prioritization of Energy During Tight

ercot 😓

Scenario 3: Prioritization of Energy During Tight Conditions

Illustrative scenario only – ERCOT Operators would undertake firm load shed to maintain reserves

- Previous examples highlight how RTC will impact prices, awards and dispatch under different scenarios
 - Scheduling:
 - Maximize gains from trade between energy and AS every 5 minutes to efficiently and reliably serve load
 - Ability to better manage congestion and cost by moving AS off of resources with helping shift factors
 - Pricing:
 - Scarcity pricing and the value of reserves is set by individual Ancillary Service Demand Curves (ASDCs) where the cost of Ancillary Service is factored directly into LMPs under RTC
 - MCPCs reflect the opportunity cost providing Ancillary Services (the operating profit -as a function offers - a unit that would have been received from providing energy) so that a resource owner is indifferent to its capacity being utilized for energy or Ancillary Services

Further Information

- RTC Simulator tool is available for download on the Real-Time Co-Optimization plus Batteries Task Force webpage under the 'Key Documents' section
- <u>https://www.ercot.com/files/docs/2024/06/10</u>
 <u>/rtc_simulator_v3.xlsm</u>

