

Item 5.3: Grid Transformation Update

Venkat Tirupati Vice-President, DevOps and Grid Transformation

Technology and Security Committee Meeting Public Session

ERCOT Public June 23, 2025

Overview

Purpose •

Provide an update on the unbudgeted expense for the Innovation Summit

Voting Items / Requests

No action is requested of the ERCOT Board; for discussion only

Key Takeaway(s)

- Grid Transformation Initiatives are all trending to plan —
- 2025 Innovation Sumit was successful

Grid Transformation – Technology Initiatives – Roadmaps

Technology Initiative		20	24			20	25			20	26			20	27			20	28	
(Strategic Objective Alignment)	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
. Look Ahead Commitment of ESRs		White	Paper		Proof	of C	icept	G	Ð	NPRR		Implem	entatior	ı						
(Reliability/Efficiency)																				
2. Receive operational info from DERs		White	Paper		Proof	of C	icept	Ċ	Ð	Ir	npleme	entation	Phase	es)						
(Reliability/Efficiency)																				
3. Meter data disaggregation for DR		Proof	of Con	cept			RFP	Ð	Imp	lementa	ation									
(Reliability/Efficiency)																				
l. Measure and estimate the regional nertia and system strength	Proo	<mark>f of Cor</mark>	i <mark>cept (F</mark>	^p hases)				G	Ð Im	plemen	tation									
(Reliability)																				
5. Reactive Power Coordination					Proc	of of 🔵	ncept	Ð	С	Charter		I	mpleme	entation						
(Reliability)																				
6. Robust Security Constrained Optimizations		White	Paper		Proof	f of C	ncept	Ð	C	Charter		l	mpleme	entation						
(Reliability/Efficiency)																				
7. Impedance Scanning tool for stability assessment		White	Paper			Pr	<mark>f of Cor</mark>	ncept		Ð	Imp	lementa	ation							
(Reliability)																				

Grid Transformation – Technology Initiatives – Roadmaps

Technology Initiative		20	24			20)25			20	26			20	27			20	28	
(Strategic Objective Alignment)	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
8. Improvements to large load modeling		White	Paper		Proc	of of C	ncept -	Models		(Ð	Imp	lementa	ation						
(Reliability)																				
9. Machine learning models for optimal power flows		White	Paper		Proof	f of C	cept		Œ		Charte	er		Imple	ementat	ion				
(Reliability)																				
10. Assessment of short circuit protection									White	Paper		N	IP feed	back		Best F	Practice	s Guide	lines	
(Reliability)																				
11. Assessment of power quality					White	e Pap			1	VIP feed	lback			Proof o	f Conce	ept		Charter		mp.
(Reliability)																				
12. Smart grid edge control of DERs and load					Rese	earch	aper		ſ	VP feed	lback		Pro	of of Co	oncept	Ð) NPRI	२	Imp).
(Reliability)																				
13. Overload current capability in inverters								White	Paper		N	IP feed	back	Ð	N	PRR		Impler	nentatio	on
(Reliability)																				
14. Combined economic/reliability analysis tools						Wh	Paper			Proof	of Conc	ept 🤇	Ð	Ch	narter		In	nplemer	ntation	
(Reliability)																				
6.3 COT Public	Leger	nd: C	complete	e In	-Progre	ss I	Potentia	al Next S	steps		On T	rack	Ð	Transi	tion		Decisio	n		4

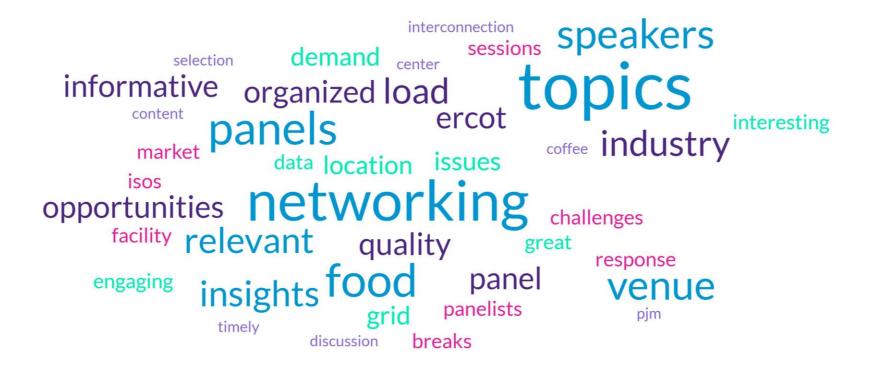
ERCOT Second Annual Innovation Summit

Positive Feedback

• 66% - "Excellent" & 33% - "Good"

Suggestions for Improvement

- Improving audience engagement
 - Enhancing the format of panels


Interest in Future Innovation Summit

• 92% Yes – Will Attend

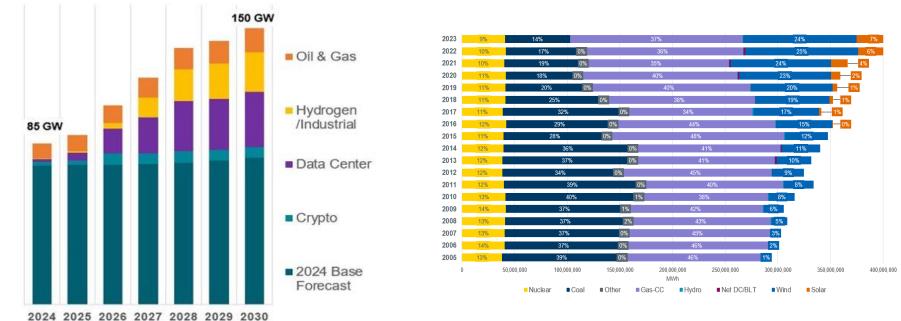
ERCOT Public

Survey – Tell us what you liked?

Survey – Suggestions on how we could improve?

Item 5.3

ERCOT Public

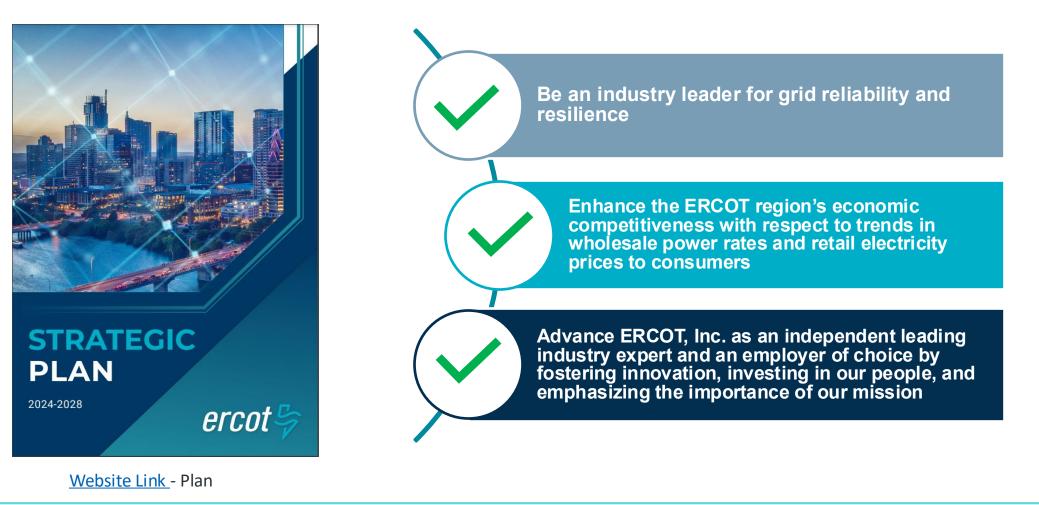

Appendix

Grid Transformation (GT)

Projected demand is growing

Energy Fuel mix is changing

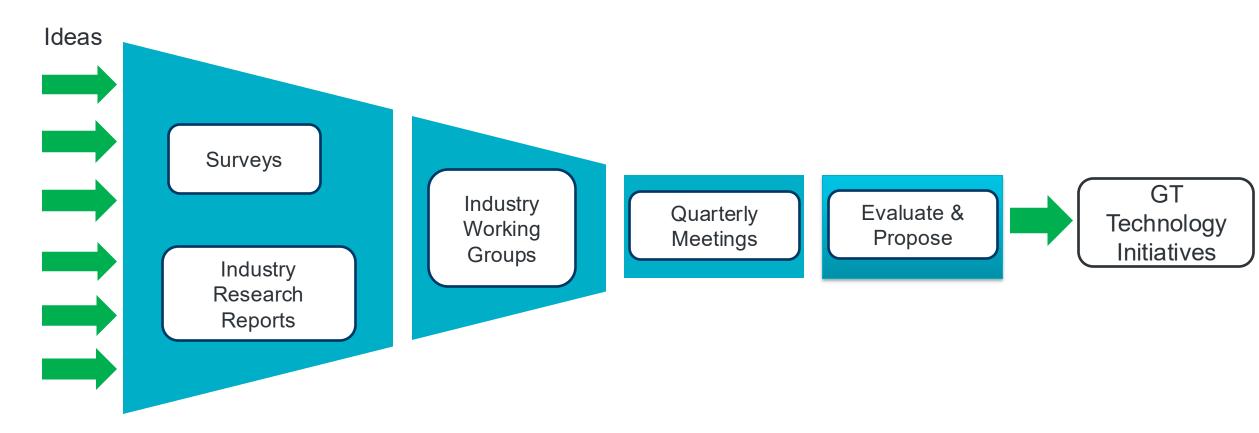
Distributed Energy Resources are increasing


Grid Transformation – The mix of energy sources and locations where electricity is generated are changing to keep up with demand

Item 5.3

ERCOT Public

ERCOT Strategic Objectives

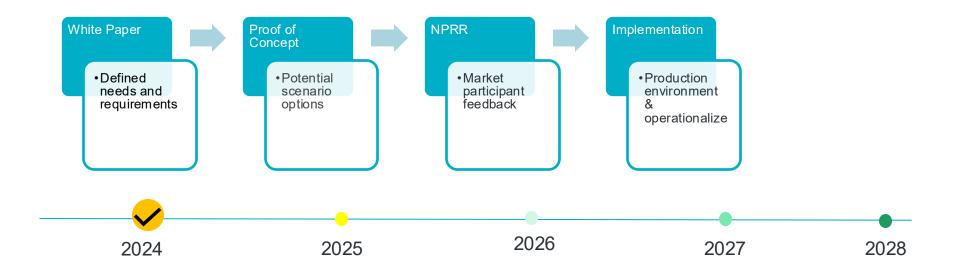

Grid Transformation organizational function's role is to evaluate and propose technology pathways to enable ERCOT to efficiently and effectively achieve these strategic objectives.

Item 5.3

ERCOT Public

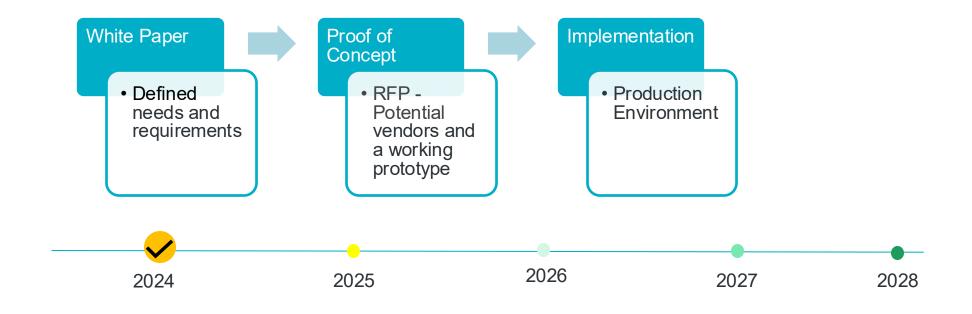
Grid Transformation – Technology Initiatives – Stage Gate Process

Process in place to strategically pick, focused initiatives from lot of ideas along with periodic review to access progress and impact


GT How: 1. Look Ahead commitment of Energy Storage Resources (ESR)

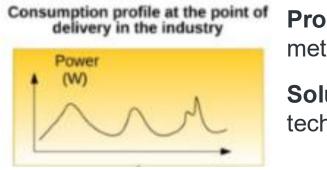
Problem: Large penetration of Energy Storage Resources which operate differently than traditional energy sources

Solution: Look ahead commitment and dispatch of ESRs leveraging state of charge

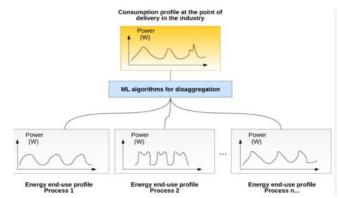

GT How: 2. Receive operational info from Distributed Energy Resources (DER)

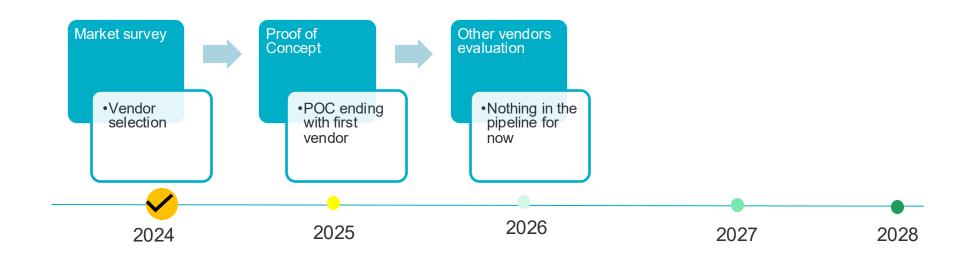
Problem: Lack of situational awareness in a DERs dominated grid

Solution: ERCOT Distribution Awareness Platform (EDAP) to bring operational data into ERCOT systems



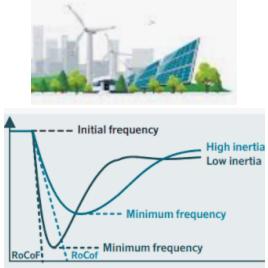
Item 5.3

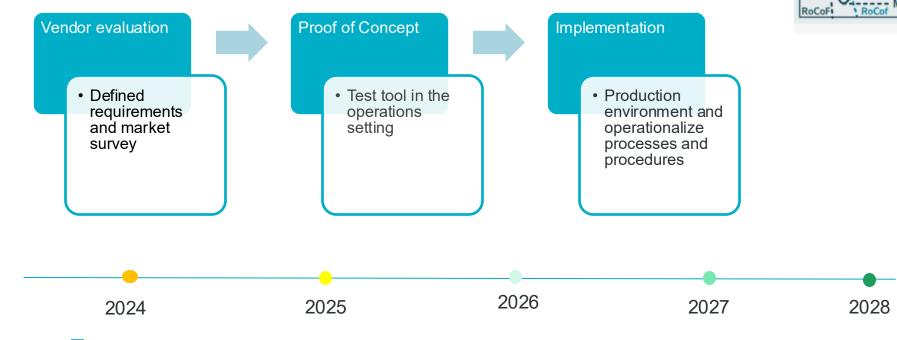

13


GT How: 3. Meter Data disaggregation for demand response

Problem: Lack of situational awareness of behind the meter assets

Solution: Meter Data disaggregation using AI/ML techniques

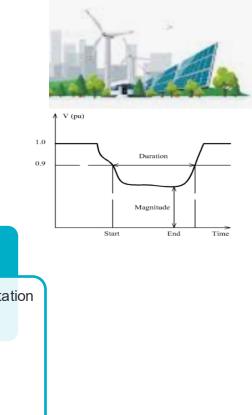


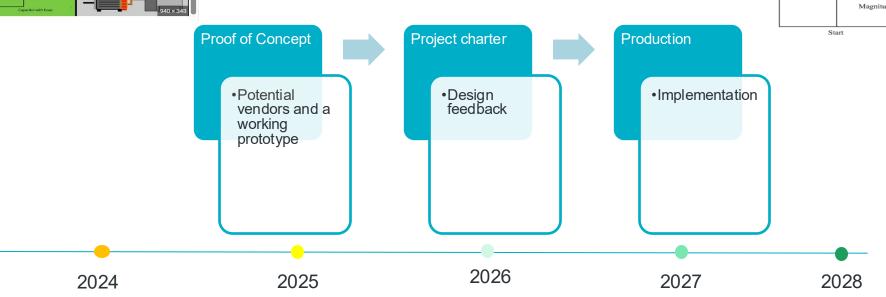

GT How: 4. Measure and estimate regional inertia and system strength

Problem: Inertia and system strength are measure of system stability. With high IBR penetration, it is important to measure them real time as they might decrease to critical levels during operations

Solution: On-line tools for operations to measure inertia and system strength

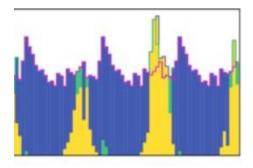
GT How: 5. Reactive Power Coordination

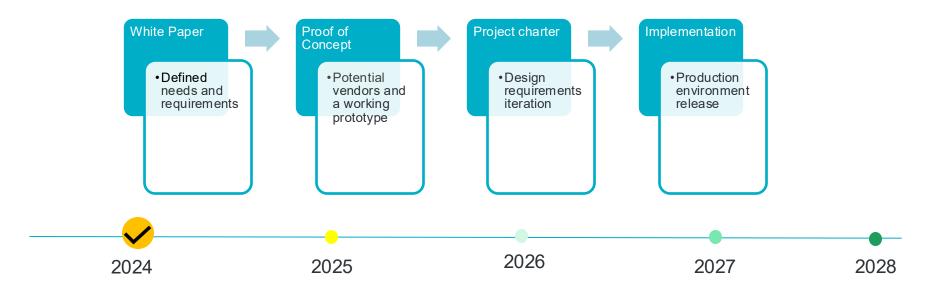

Office appliances


-

Problem: Need to ensure reliable system voltages with changes in generation mix

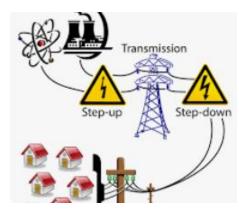
Solution: Look ahead multi-time interval reactive power coordination to ensure reliable system voltages

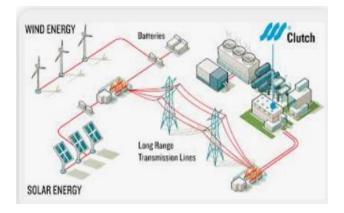


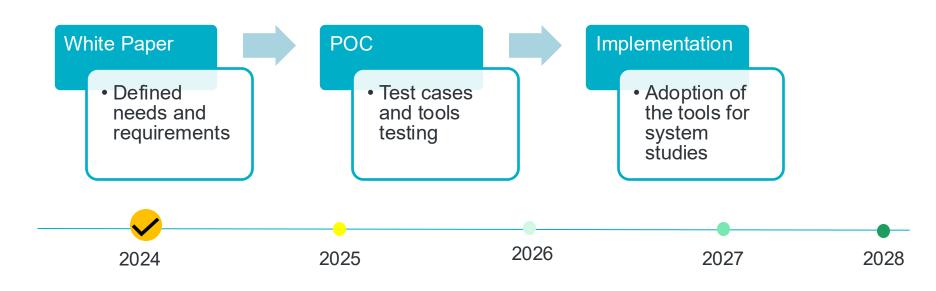


GT How: 6. Robust Security Constrained Optimizations

Problem: Need for intra-hour fast security constrained AC OPF analysis due to increased uncertainty & variability

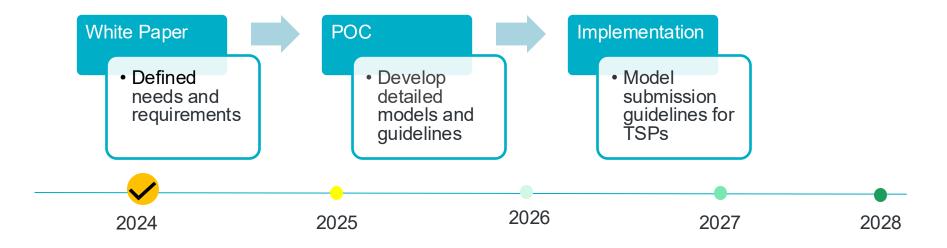

Solution: Fast & robust techniques/tools to move to intra-hour analysis




GT How: 7. Impedance scanning tool for stability assessment

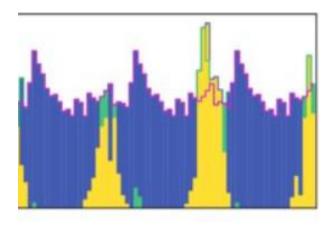
Problem: Existing stability studies tools are hitting the limits with high IBR penetration making analysis complicated

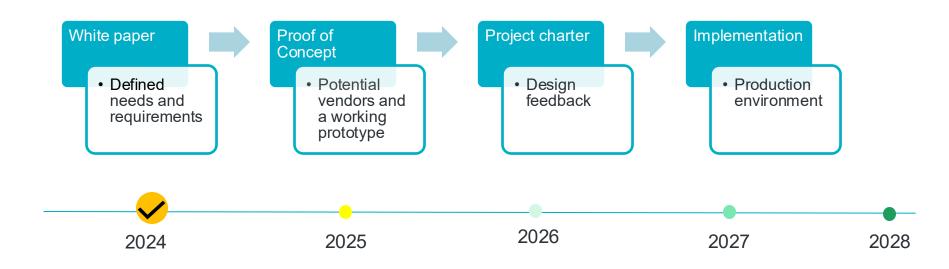
Solution: Fundamentally understand tools vs actual grid issues and implement new tools for stability studies


GT How: 8. Improvements to large load modeling

Problem: Large power electronics-based loads behave differently then conventional loads and are large enough to impact grid reliability

Solution: Understand how crypto, data centers, and Electrolyzers work; develop models and model submission guidelines




GT How: 9. Machine Learning models for optimal power flows

Problem: Power systems simulations requires complex optimization and can limit the run time of the simulation tools and hence how the grid is studied

Solution: Experiment fast AI/ML techniques to make the tools fast

GT How: 10. Assessment of short circuit protection

Problem: With high IBR penetration, system short circuit contribution is changing which can impact how protection system operates

Solution: Investigate protection study models and methodologies, and best practices guideline for future improvements

GT How: 11. Assessment of Power Quality

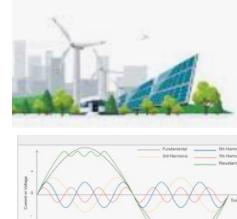
13

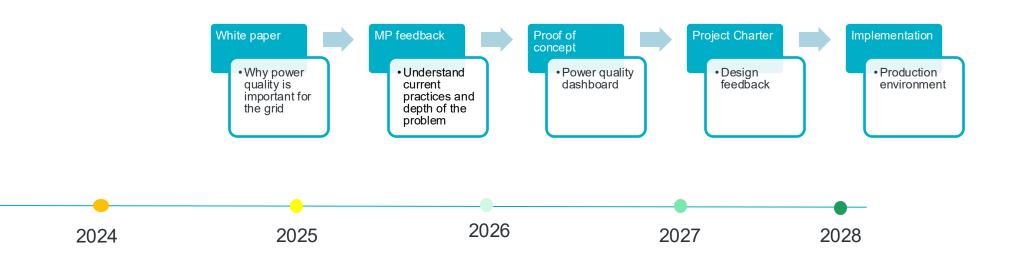
Time (ms)

23

28

200 150


100


-150 -200 5

Item 5.3

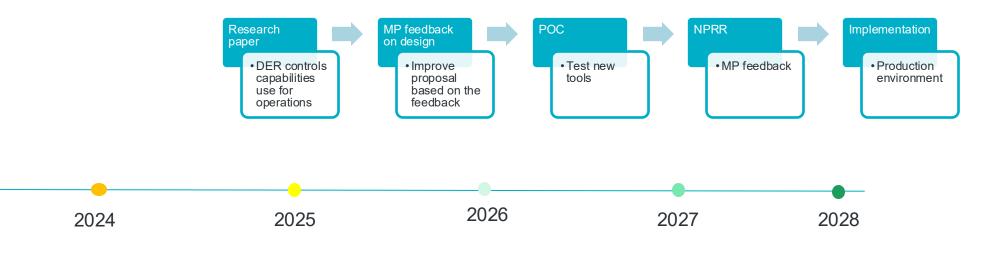
Problem: IBRs and large loads create harmonics which are required to be within the 519 standard limits but with the increasing penetration, there can higher background harmonics in some areas of the grid

Solution: White paper on importance of power quality, current practices, and operational dashboard

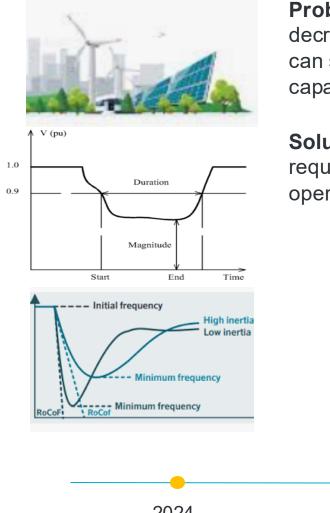
GT How: 12. Smart Grid edge control of distributed energy resources

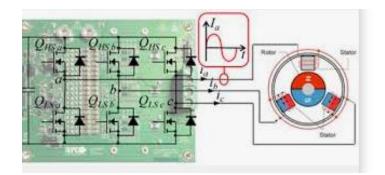
Problem: DERs are increasing in the system and ERCOT might need to control the DERs if their net impact on the grid is significant in some parts of the grid

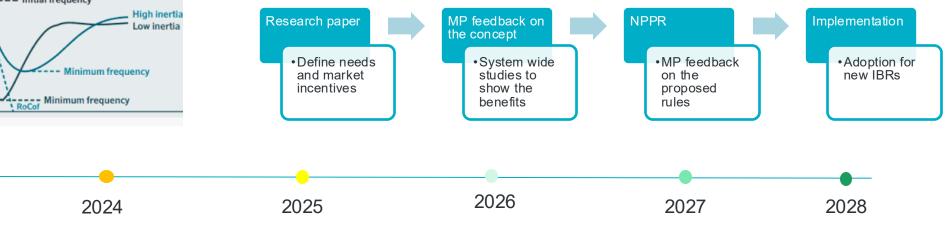
Solution: DER operational controls capabilities for high penetration areas


GT How: 12. Smart grid edge control for surgical load shed

Problem: Emergency load shed is currently managed by TSPs and is done on a feeder level. With AMIs, it might be possible to have customer sign-up for remote disconnection incentive during emergency conditions

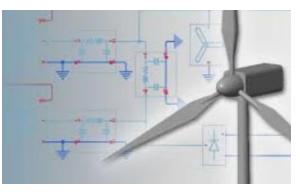

Solution: AMI meter remote disconnection/reconnection, market incentive, and program development




GT How: 13. Overload current capability in inverters

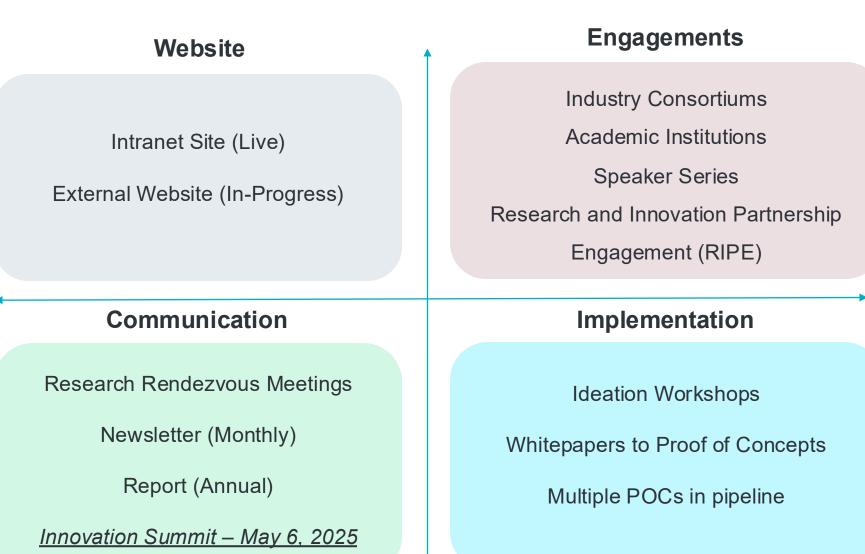
Problem: Inertia and system strength are decreasing with IBR penetration. IBRs however can support both by having higher overcurrent capability if there are requirements/incentives

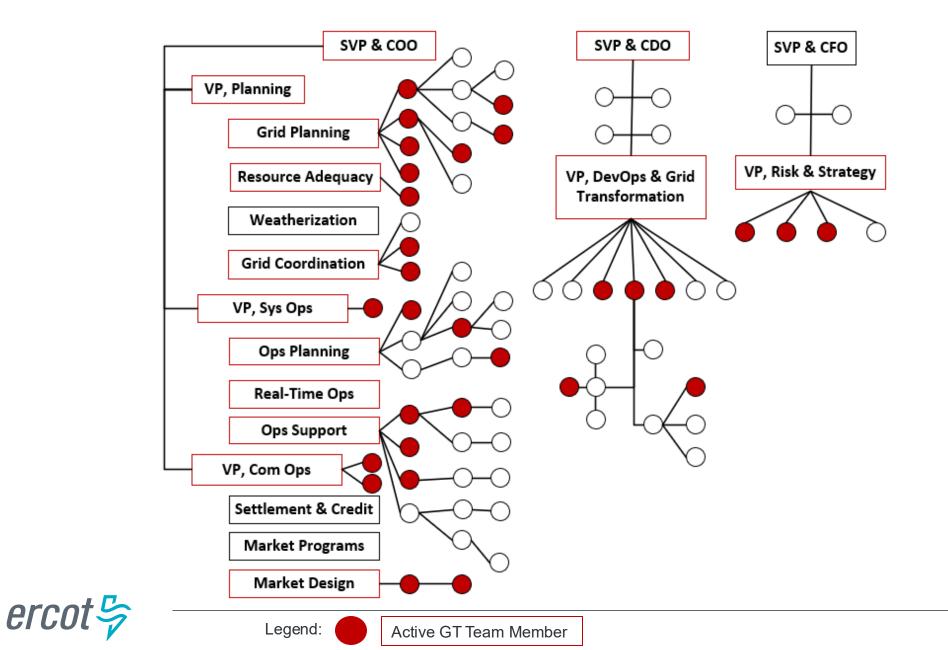
Solution: IBR overcurrent capability needs, requirements, market incentives and a path to operationalization



GT How: 14. Combined economic/reliability analysis tools

Problem: Need for intra-hour studies with same assumptions in economic and reliability analysis due to increasing supply variability


Solution: Single tool that performs both economic and reliability analysis



Grid Transformation – Sustaining Focus

Grid Transformation – Technology Initiatives – Matrixed Org Structure

Item 5.3 ERCOT Public

Grid Transformation – Technology Initiatives – Team Members

Grid Operations

Fred Huang – Director, Operations Support Jeff Billo – Director, Operations Planning Jimmy Hartmann – Sr. Director, Control Room Operations Luke Butler – Manager, Resource Forecasting & Analysis Sam Morris – Manager, Load Forecasting & Analysis Vamsi Madam – Manager, Operations Engineering Jimmy Zhang – Principal, IBR Integration Yunzhi Cheng – Manager, Ops Stability Analysis AJ Albaaj – Senior Operations Engineer Marilyn Jayachandran – Principal, Sys Ops Improvement Ali Yazdanpanah – Senior Stability Planning Engineer

Commercial Operations

Sai Moorty – Principal, Market Design & Analysis Kenneth Ragsdale – Principal, Market Design Ryan King – Manager, Market Design Gordon Drake – Director, Market Design & Analysis

Enterprise Risk & Strategy

Janice Ayson – Lead, Strategic Advisor Lauren Fleming – Lead, Strategic Advisor Weihui Fu – Principal, System Development

Grid Planning

Bill Blevins – Director, Grid Coordination Joel Koepke – Sr. Mgr., Grid Coordination Prabhu Gnanam – Director, Grid Planning Thinesh Mohanadhas – Principal, Emerging Technologies John Schmall – Principal, Grid Planning Sun Wook Kang – Sr. Manager, Dynamic Studies Jonathan Rose – Lead Planning Engineer Mehdi Daryabak – Lead Planning Engineer Jose Conto – Principal, Dynamic Studies Ping Yan – Sr. Manager, Transmission Strategy Julie Jin – Supervisor, Modelling & Analysis Tyler Long – Senior Planning Engineer Priya Ramasubbu – Lead Planning Engineer

Digital Team

Prashant Kansal – Director, Grid Transformation Sathya Krishnan – GMS Application Developer Lead Sreenivas Badri – Director, Grid and Market Solutions Seshu Rampalli – GMS Architect Lead Vamsi Paruchuri – GMS Application Engineer Lead

A cross-functional, collaborative effort spanning the organization within a matrixed structure.

