

Blackout of the Iberian Peninsula April 28th 2025 Summary of Available Information

June 5th, 2025

Key Contacts:

Sean McGuinness, Snr Technical Executive, <u>smcguinness@epri.com</u> Eamonn Lannoye, Snr Program Manager, <u>elannoye@epri.com</u>

INTEGRATED

GRID & ENERGY

SYSTEMS

Razvan Pabat-Stroe, Technical Lead, <u>rpabat-stroe@epri.com</u>

Agenda and Objectives

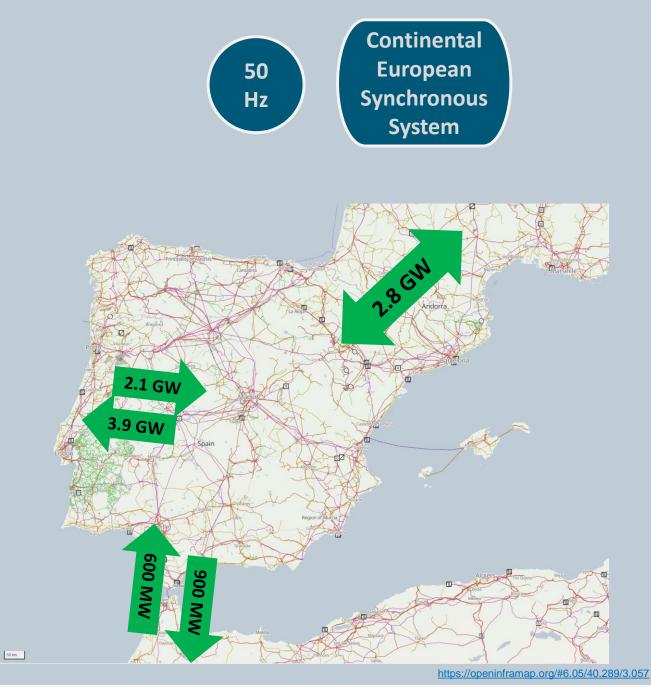
- Iberian/European Grid Context
- Confirmed April 28 Event Details
- System Restoration Details
- Potential Influencing Factors

Disclaimers

- Publicly available information only
- Data from public data systems during and after the event may be determined to be inaccurate and subject to change
- Highly limited ability to draw conclusions at this stage due to lack of confirmed data

We will not speculate on unconfirmed specifics of this event. The investigation is on-going, and further information is expected to be made available in time.

Iberian & Continental European Systems Background

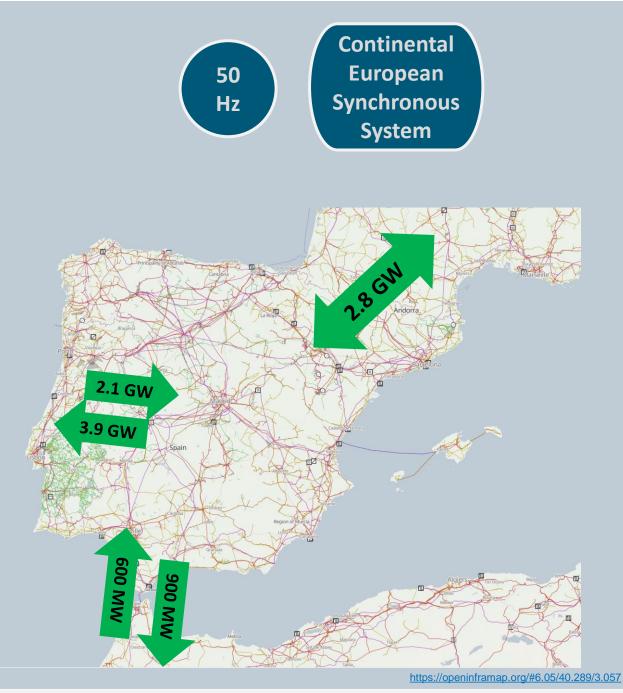

Population (Peninsular) ~44M

Peak Load	Transmission System Operator					
~45 GW (2007)	Red Electrica de Espana (REE)					

Grid Size:

~25,000 miles of 400 kV and 220 kV network

Generation Type	Installed capacity [GW]
Solar PV	32
Wind	31
Gas – CCGT	24
Hydro	17
Nuclear	7
Combined Heat & Power	5.5
Pumped storage	3.3
Solar thermal	2.5
Coal	1.8
BESS	0.023
Total	>125

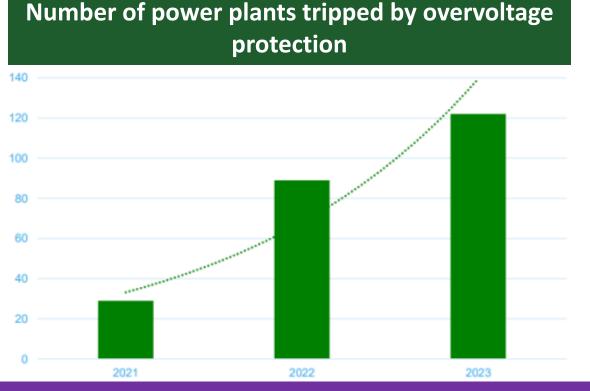

Population ~11M

Peak Load	Transmission System Operator					
~9 GW (2009)	Redes Energeticas Nacionais (REN)					

Grid Size:

~6,000 miles of 400 kV, 220 kV and 150 kV network

Generation Type	Installed capacity [GW]
Hydro	8.3
Wind	5.4
Gas – CCGT	4.4
Solar PV	3.9
Pumped storage	3.6
BESS	0.01
Total	>25

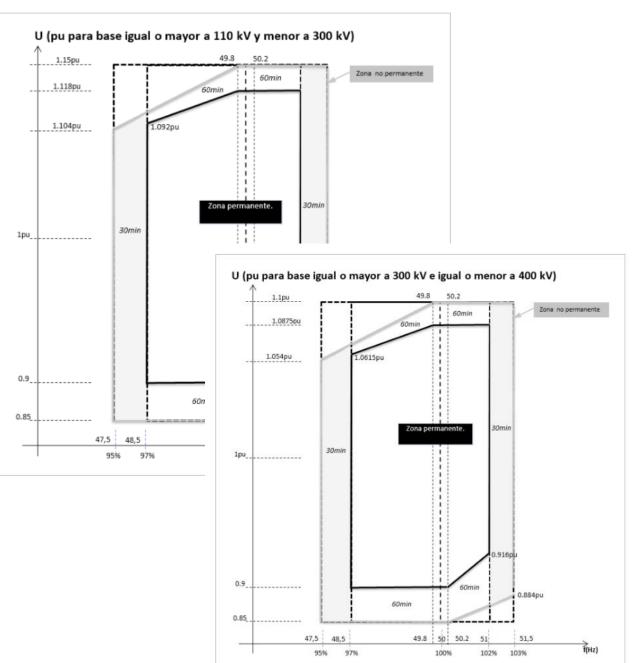

50 km

Voltage Control Spain

Most renewable generation in Spain operates in fixed power factor control mode. Voltage control capability has been required for many years, but not used. The system operator is scheduled to start using it from Q4-2025

Number of hours with voltage above 240 / 420 kV at a substation

Why overvoltages? Improving load power factor. Regional solar PV means 400 kV grid is very lightly loaded


Sources:

PO resol 10mar2000 correc.pdf P.O. - 7.4

https://www.boe.es/buscar/act.php?id=BOE-A-2007-10556 Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de produ CIGRE Jornadas Technicas, 2023, PABLO MARTÍNEZ-FRESNEDA CERECEDA, REE

Voltage Ride-Through

- Most IBR overvoltage protection set to trip like:
 - <400kV: ~1.16pu for ~1 second</p>
 - 400kV: ~1.11pu for ~1 second
 - ~1.2pu for ~0.2 seconds

BOE-A-2020-8965 Orden TED/749/2020, de 16 de julio, por la que se establecen los requisitos técnicos para la conexión a la red necesarios para la implementación de los códigos de red de conexión.

Pre-Disturbance

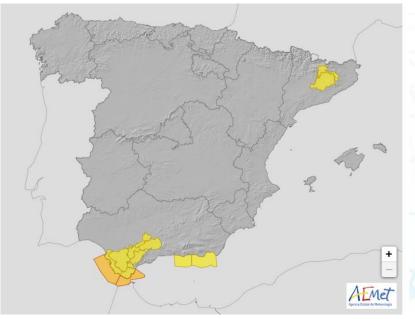
Pre-Disturbance System Conditions

Demand: 28 GW /45 GW_{peak} 27.7 GW /9 GW_{peak}

- DER output not published
- 25 GW IBR/37 GW total production (66%)

Weather conditions:

– Sunny, no rain, high winds in south


Outage season underway

- Several generation units on seasonal outage
- Many lines out of maintenance/upgrades

Reserves

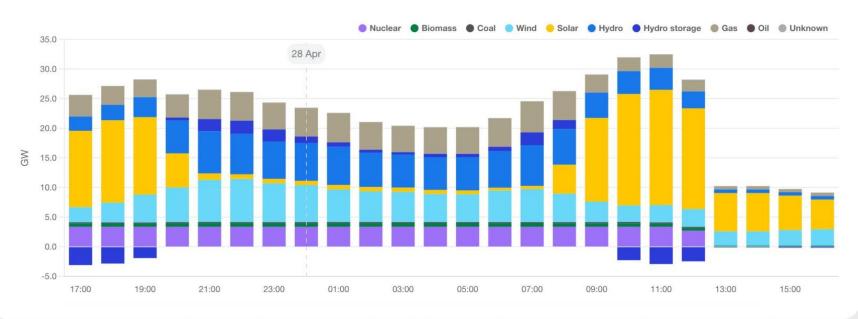
- Sufficient reserve for 2 GW event (2x Nuclear units)
- Plenty of inertia as many sync gens were at min load

Weather advisories active before event (source: AEmet)

Recent Changes:

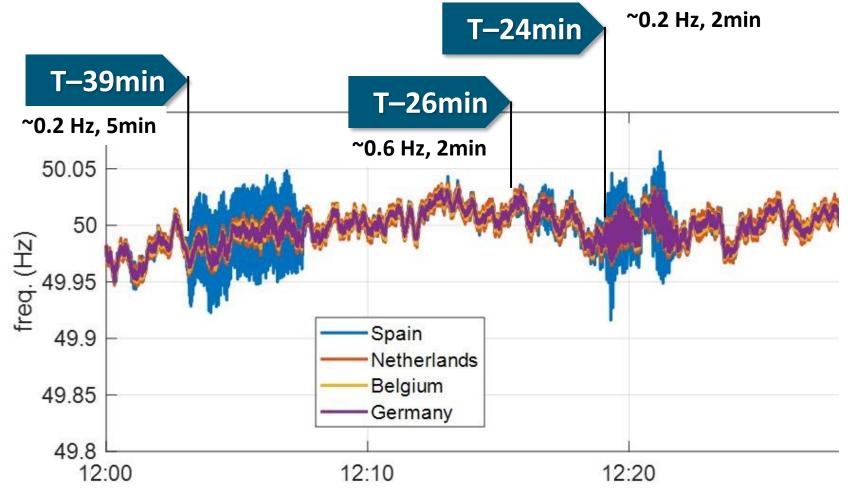
February 8: Baltic countries synchronized to the North-East of the continental EU grid +10GW March 18: Spain switched from hourly to 15-minute intra-day markets

Pre-Disturbance Dispatch (Portugal plus Spain)


Values based on ENTSO-E Transparency Platform https://transparency.entsoe.eu

Plant	Output (GW)					
Solar PV	20.1					
Solar thermal	1.0					
Wind	4.7					
Hydro	4.5					
Nuclear	3.4					
Gas, coal, biomass	2.8					
Pumped Hydro	-5.0 (pumping)					
Pumped HydroSpain to France	-5.0 (pumping) 1.0					
• •						
Spain to France	1.0					
Spain to France Spain to Morocco	1.0 0.8					
Spain to France Spain to Morocco Spain to Portugal	1.0 0.8 2.3					

Electricity Maps

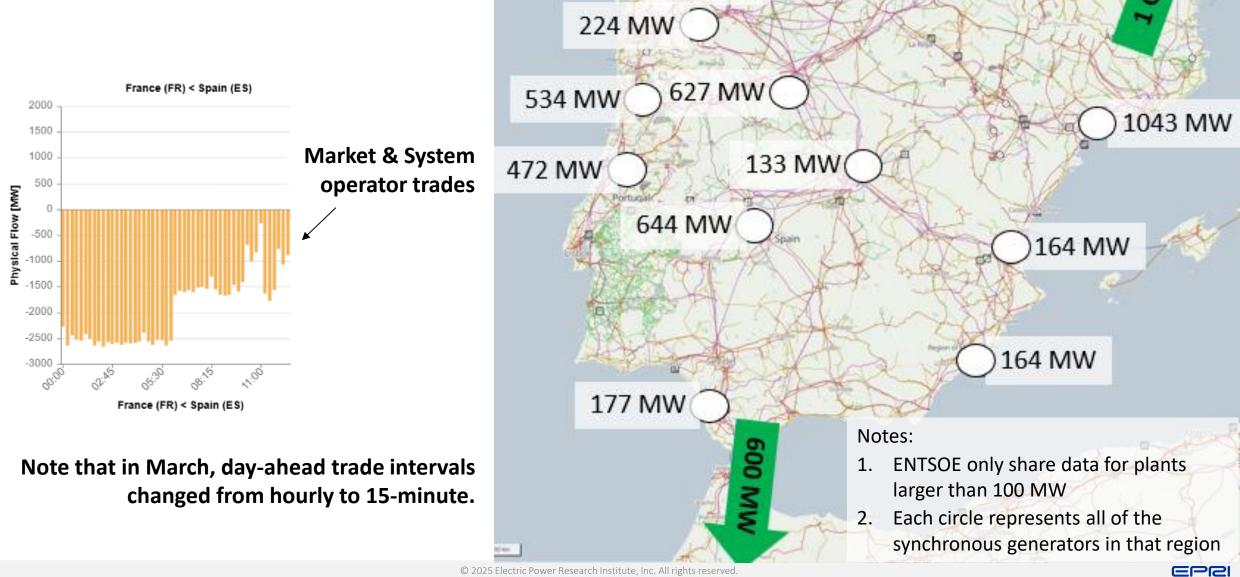

Power outage in Spain and Portugal

Electricity Mix

Event Details

Inter-area Oscillations

Possible Operator Actions:


- Re-dispatch plants
- Counter-trades
- Switched HVDC to fixed P
 (HVDC normally operates in ACline-emulation mode)
- Switching lines back in

Comment:

 Looks like operator actions might have mitigated the oscillations?

EPRI

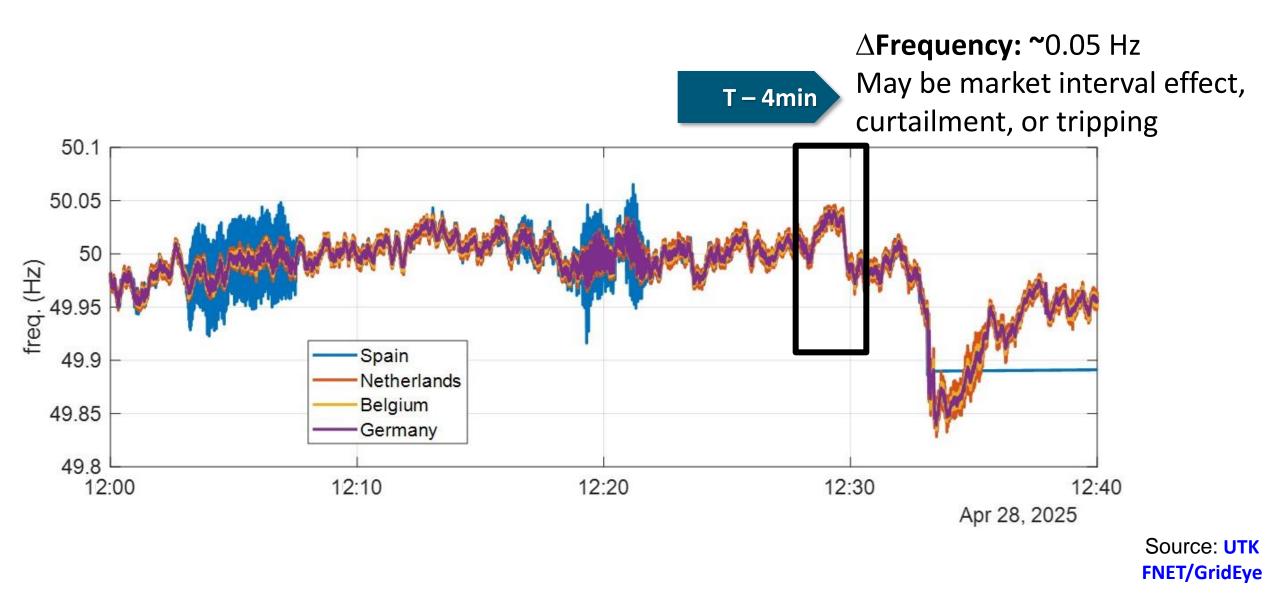
Map of Synchronous Generator Output at 12:00 in Each Region

232 MW

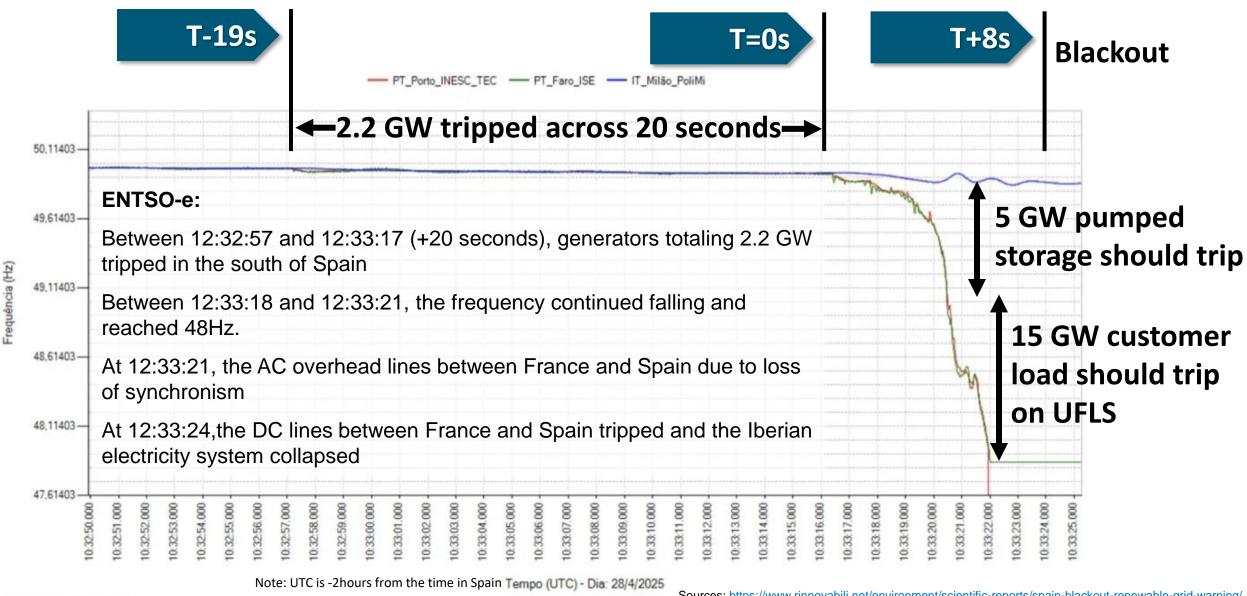
Sources: https://transparency.entsoe.eu https://openinframap.org/#6.05/40.289/3.057

Inter-Area Oscillations Mitigation Actions France – Spain HVDC switched from AC line emulation to fixed P

Source: https://www.youtube.com/live/RxWztqbxeOo


EPRI

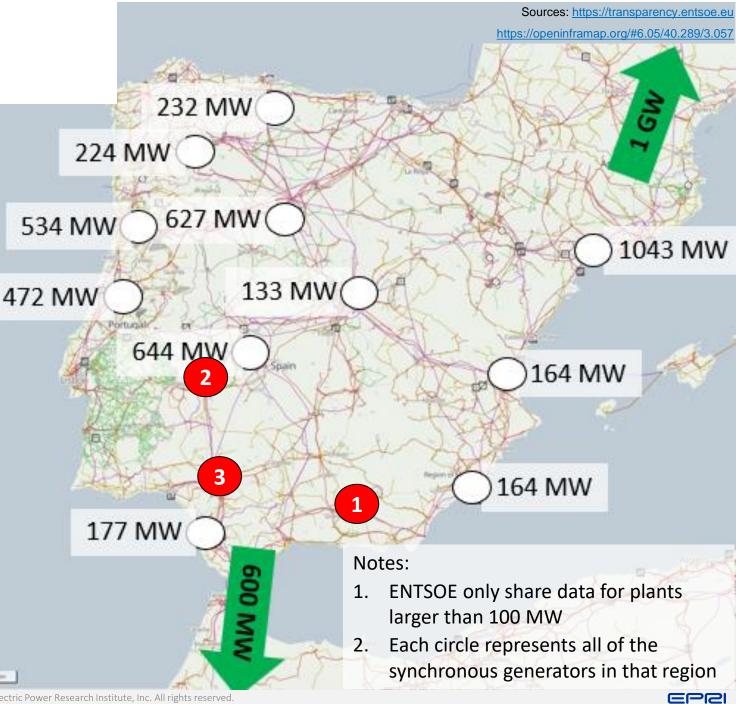
Interconexión con Francia día 28/04/2025



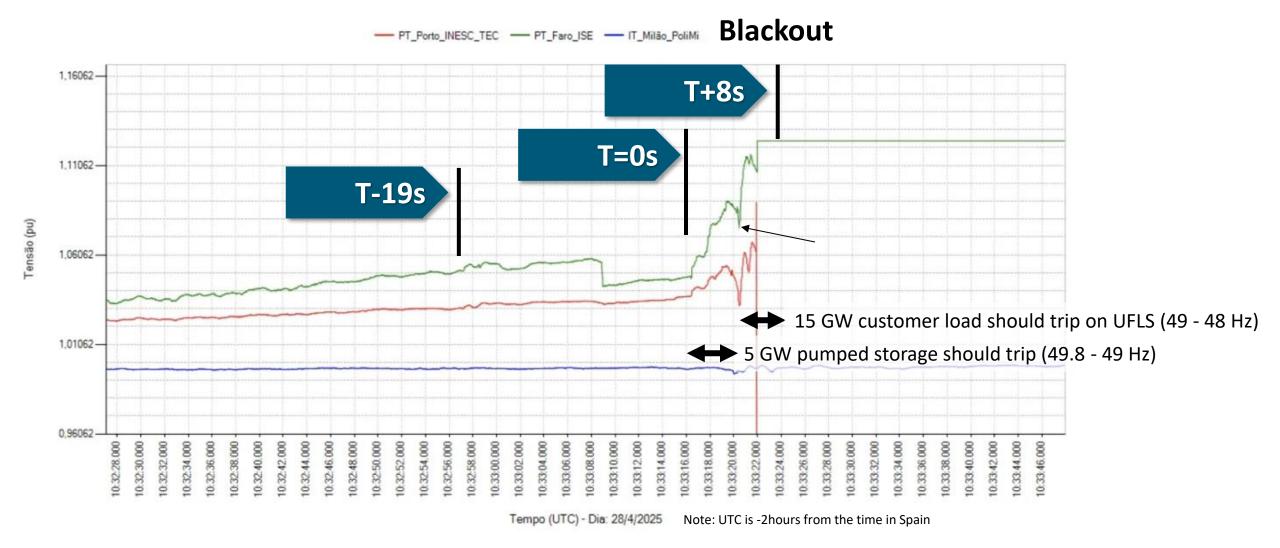
Noticeable frequency step-change at 12:30

EPSI

Evolution of the Event: Frequency in Portugal



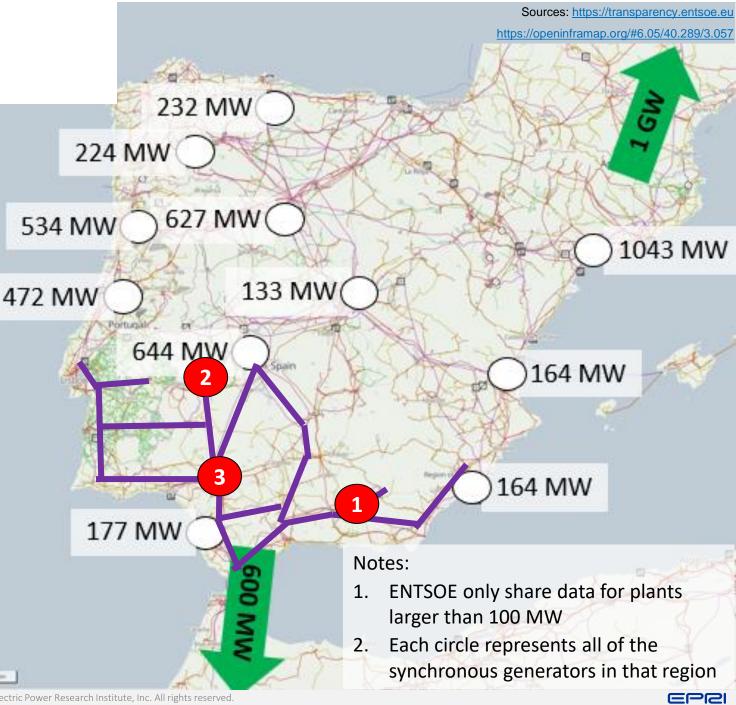
Sources: https://www.rinnovabili.net/environment/scientific-reports/spain-blackout-renewable-grid-warning/ https://www.entsoe.eu/news/2025/05/09/entso-e-expert-panel-initiates-the-investigation-into-the-causes-of-iberian-blackout/


Evolution of the Event

Initial 2.2 GW disconnected:

- 1. Granada
- Badajoz 2.
- 3. Seville
- Only one sync gen (SG) left in the South
- Next nearest sync gens:
- 250 miles North
- 440 miles East

Evolution of the Event: LV Voltage in Portugal



Sources: https://www.rinnovabili.net/environment/scientific-reports/spain-blackout-renewable-grid-warning/

Evolution of the Event

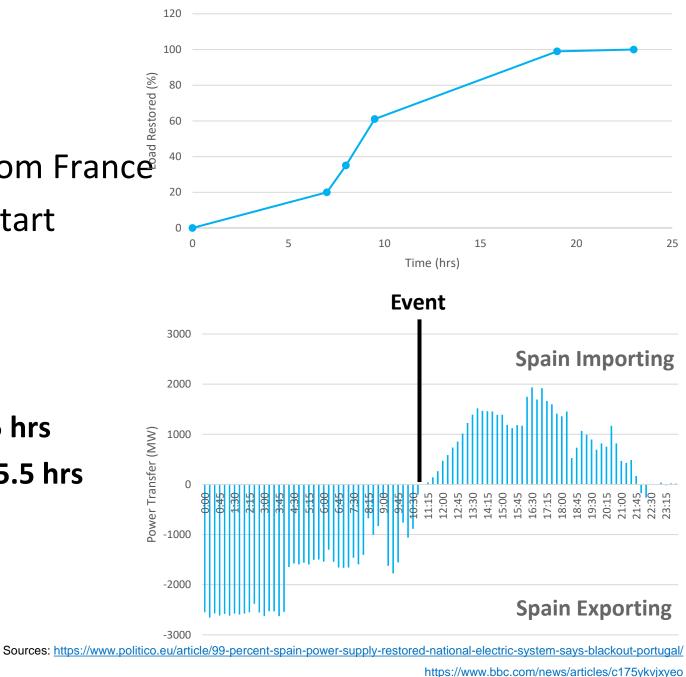
Initial 2.2 GW disconnected:

- 1. Granada
- Badajoz 2.
- Seville 3.
- Notes:
- Many long 400 kV lines

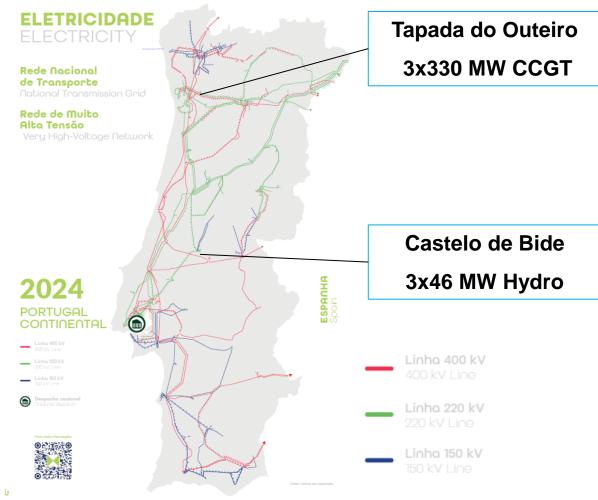
Red Electrica Public Statements

No transmission faults or abnormal conditions at 12:32
Power plants did not provide expected reactive power

Could REE have operated the system differently to avoid the consequence?"


- "No. With the information that exists today, the operators are absolutely convinced that the actions taken were the correct ones complying with the established operating protocols."
- "Our network did not fail. The operation did not fail. There was no excess of renewables or shortage of synchronous power. It is also known that there was sufficient inertia, there was no short circuit, no overload, or cyberattack."

Source: https://www-lavanguardia-com.cdn.ampproject.org/c/s/www.lavanguardia.com/economia/20250528/10727221/beatriz-corredor-energias-convencionales-controlaron-tension-dia-apagon.amp.html


Restoration

Spanish Grid Restoration

- Blackstart began at 12:44
- 0 to 1500 MW ramp on the ties from France
- Hydro units provided initial blackstart
- CCGTs later picked up
- Transmission substations:
 - 62% of substations restored after 9.5 hrs
 - 100% of substations restored after 15.5 hrs
- Load fully restored after 23 hrs

Portuguese Grid Restoration

- Blackstart began within minutes
- 3xCCGT and 3xhydro units
- First two blackstart attempts failed
- Plants successfully started at 16:11 and 17:26 respectively

Transmission substations:

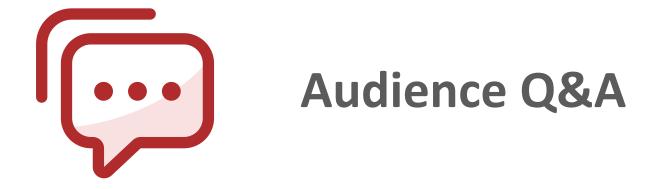
- 96% of substations restored within 10.5 hrs
- Load Restoration:
 - 12 hrs to 100% load restored

Source: https://www.ren.pt/en-gb/media/news/national-grid-stabilised

https://www.entsoe.eu/news/2025/05/09/entso-e-expert-panel-initiates-the-investigation-into-the-causes-of-iberian-blackout/

Factors to Consider in the Context of Events like the April 28 Blackout

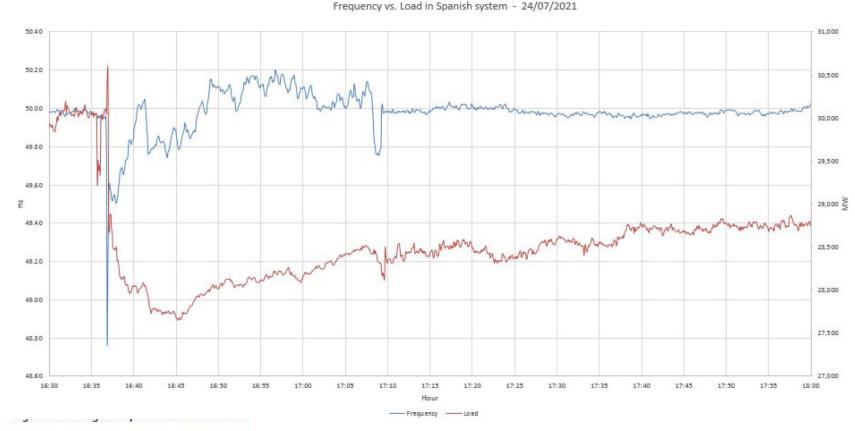
Factors Potentially Influencing the Event


Factors for Consideration	Potential Influence
Voltage Control	Insufficient reactive capability, or capability at limits could risk cascade tripping. UFLS and IBR tripping can increase grid voltage, accelerating cascade overvoltage tripping
Protection Coordination	Insufficient voltage protection coordination may result in simultaneous tripping of large numbers of power plants. Coordination of UFLS and overvoltage protection.
Oscillations	Undamped oscillations can result in abnormal voltage and frequency that drive protection trips. Operator mitigation actions may impact grid resiliency
Synchronizing Torque	Reduced torque increases potential for oscillations and loss of synchronism. Operating plants at min load or switching lines out for voltage control may reduce torque.
Ride Through Capability	Power plant protection and controls may not meet required performance.
Inertia	Reduced inertia can lead to higher rate of change of frequency and loss of synchronism.

The extent to which any of these factors contributed to the April 28 event is <u>unknown</u>. <u>Many challenges were happening simultaneously: voltage, oscillations, market trades</u>

General Considerations for Evolving Grids

- A more dynamic system requires reliability resources, faster controls, improved coordination of protection
- Clearer visualization and understanding of system resilience during multifactorial, abnormal/stressed conditions
- More rigorous reliability standard and security assessments are needed for more dynamic and complex grids
- Maintaining dynamic reactive support, synchronizing torque is critical as resources retire
- Power plant protection and control should be coordinated to avoid cascade events


TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved

2021 Continental European System Separation

- Initiated by N-2 of 400 kV lines carrying 2.5 GW in SE France
- Overloads and power swings tripped the 4xFrance-Spain ties
- 2.6 GW of generation tripped in Spain
 - Overvoltages caused ~1GW
- 6.4 GW Load disconnected by 1st and 2nd stage UFLS
 - 2.3 GW pumped storage
 - 0.4 GW industrial customers
 - 3.6 GW end-customers

https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/SOC%20Reports/entsoe CESysSep 210724 211112.pdf#:~:text=On%20Saturday%2C%2024%20July%202021%20at%2016%3A36%20CET %2C,the%20rest%20of%20the%20Continental%20European%20power%20system

2021 Continental European System Separation

Over 1 GW of generation tripped on overvoltage

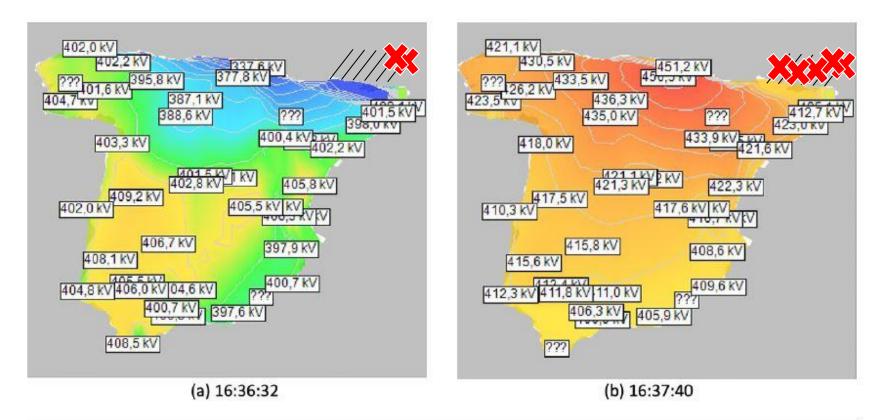


Figure 18: Voltages in Spanish 400 kV network.

https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/SOC%20Reports/entsoe CESysSep 210724 211112.pdf#:~:text=On%20Saturday%2C%2024%20July%202021%20at%2016%3A36%20CET %2C,the%20rest%20of%20the%20Continental%20European%20power%20system

Voltage Control Practices in Spain

- Today:
 - Voltage control defined by operating procedure P.O. 7.4 (2005)
 - All IBR are required to be capable of voltage control (Qmin = 15% of Pmax)
 - Most IBR in Spain set in fixed power factor control mode between 0.987 and 1.0
 - IBR rarely actively control voltage, except in unusual cases
 - Sync gens provide dynamic reactive power
 - Many shunt reactors plus several STATCOMs and synchronous condensers
- Future:
 - 2025-Q4: Real-time voltage setpoint control of IBR
 - 2026-H2: Possible implementation of a reactive power market
 - There are also plans for a nodal voltage control system
 - Ten-year network plan includes shunt reactors and a few STATCOMs

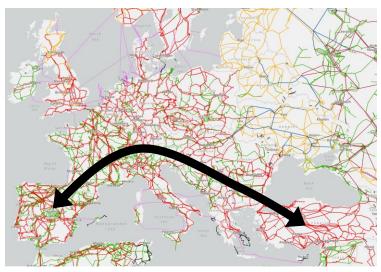
Underfrequency Load-Shedding

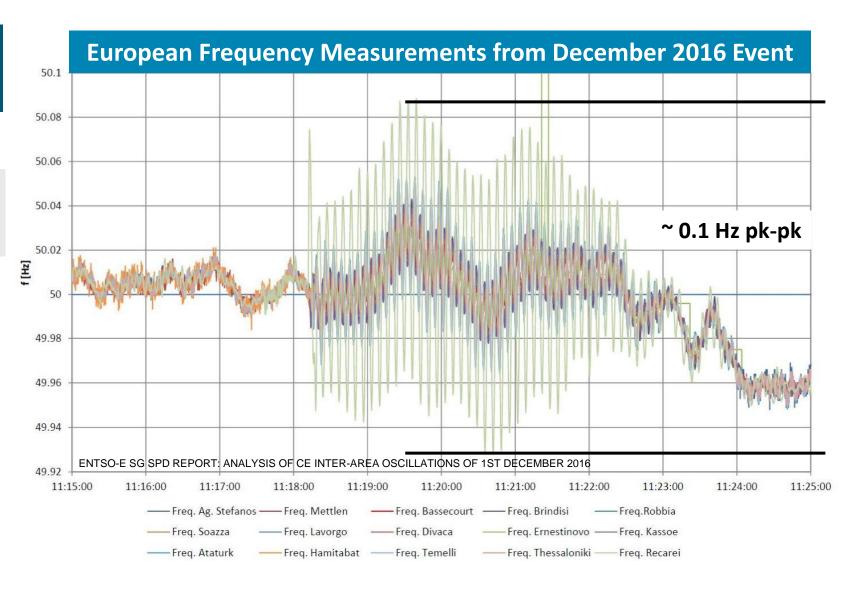
- Spain Pumped Hydro and Industrial Load Disconnection
 - Between 49.8 Hz and 49.0 Hz

- Customer UFLS in Spain
- Start tripping at 49.0 Hz
- >15% of load should trip once frequency breaches 48.8 Hz
- >50% of load should trip by 48.0 Hz
- Generators should remain connected down to 47.5 Hz

Frequency Range (Hz)			Min	Min Generator Trip Time (minutes)									
>51.5	.5			0	0								
51-51.	5			20 minutes									
49.0 -	49.0 – 51.0 48.5- 49.0			Unlimited									
48.5- 4				30 minutes									
47.5 –	48.5			30 n	30 minutes								
<47.5				0									
Load Shed (%)													
50													
45 40	-												
35	-												
30	Not required												
25	edn												
20	of												
15	z					Minimu	m Loa	d-					
10						Shee	ding						
5						Recom	mende	ed					
0													
	49.2	49	48.8	48.6	48.4	48.2	48.1	48	47.8	47.6	47.5	47.4	

Source: <u>https://www.entsoe.eu</u>


© 2025 Electric Power Research Institute, Inc. All rights reserved.


EPR

Inter-Area Oscillations Occur in the European Power System

East – West oscillations 0.15 Hz - 0.21 Hz

Spanish PSS tuned to damp 0.1-0.3 Hz frequency range

** https://www.ree.es/sites/default/files/12_CLIENTES/Documentos/GT_POD_guia_implementacion_controles_POD_EN.pdf

