

NPRR 1255 Discussion

Ryan King Manager, Market Design

> CMWG May 19, 2025

Recap

- Energy Storage Resource (ESR) mitigation framework under NPRR 1255 was the product of consultations at CMWG beginning in September 2023
- Various options considered and analyzed including a design based on the CAISO model before arriving at a recommended approach
- Developing an enduring ESR mitigation design recommendation to TAC is also a requirement under protocol

Recap

- NPRR 1255 introduces a dynamic, 'just-in-time' mitigation framework that determines constraint contributions as a function of the maximum Shadow Price and the Shift Factor of the ESR in intervals when an ESR has been flagged for mitigation through the SCED CCT process
- Sets a very high threshold for mitigation (ESR flagged under CCT must have a large helping shift factor of at least -0.2)
- In this case the Mitigated Offer Cap is a function of the maximum shadow price for a given constraint and the ESR shift factor plus system lambda from step 1 of the SCED two-step mitigation process
- This is by definition the highest possible MOC that will allow the Resource to be dispatched in SCED to resolve the constraint (before requiring manual operator actions).
 - ERCOT performed a backcast and looking at 2023, this design would have impacted 0.34% of all intervals with 95% for one hour or less.

Available Stored Energy

- In response to stakeholder concerns around state of charge, ERCOT introduced an additional threshold to be considered before mitigation would be applied
- In addition to the previous requirements, when available stored energy for the next hour as calculated below falls below 25%, the MOC would revert to the SWCAP

Available stored energy = ((current SOC – MinSOC)/(HSL*1 hour))*100

 The conversion of SOC into available stored energy for the next hour helps to ensure that longer duration batteries only avoid mitigation when it truly has limited remaining energy.

Example 1

Case 1

100 MW/100 MWh battery with MinSOC of 0 -current SOC of 24 MWh

Available Stored Energy

= [(24-0)/(100*1)]*100

= 24%

Result: in this case the available stored energy of the ESR for the next hour was less than 25%; it would not be mitigated and would have its MOC set at SWCAP

Case 2

100 MW/400 MWh battery with MinSOC of 0 -current SOC of 99 MWh

Available Stored Energy

= [(99-0)/(100*1)]*100

= 99%

Result: in this case the available stored energy of the ESR for the next hour was 99%; it **would be mitigated**

5

Summary

- Just-in-time mitigation framework sets a very high threshold for when and how ESRs should be subject to mitigation
 - Highest possible MOC that will allow SCED to resolve congestion before requiring Operator actions
- Available stored energy provides a further filter to ensure no mitigation when available energy for the next hour as calculated falls below 25%
- A high mitigation threshold helps ensure that mitigation is rare and only when no other market options are available to manage congestion
- Post-RTC implementation
 - Greater ability to co-optimize energy and Ancillary Services to manage congestion and cost would further

