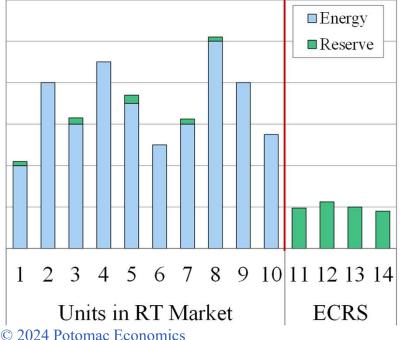


IMM Comments on NPRR 1224

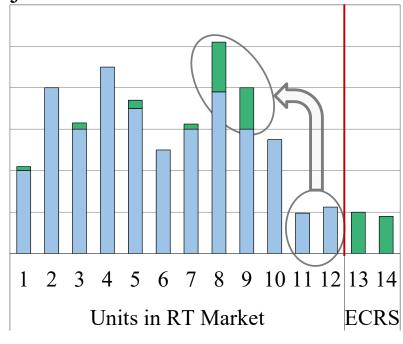
David Patton, Ph.D. Potomac Economics

ERCOT Reliability and Markets Committee June 17, 2024



What Happens When ECRS is Deployed?

Understanding ECRS Deployment is key for evaluation NPRR 1224


Before Deployment

• 10-minute reserves are procured in advance and sequestered from the real-time dispatch

After Deployment

- Available to the RT market and may be turned on
- Reserves are *not* depleted, they just move to online units

What are the Reliability Implications of Deploying ECRS?

- Refusing the deploy ECRS when the real-time market dispatch (SCED) needs more resources and flexibility diminishes reliability:
 - ✓ Prevents the dispatch from keeping supply and demand in balance, exposing the system to a high risk of frequency deviations
 - ✓ Limits access to resources that are valuable and sometimes essential for managing flows on the transmission system
 - ✓ Reduces the speed with which the reserves can be accessed because ERCOT must wait for them to start (versus having the reserves online)
- Deploying ECRS generally improves reliability by:
 - ✓ Making resources available to the real-time market that are needed to (a) balance supply and demand, and (b) manage congestion
 - ✓ Converting a portion of ERCOT's reserves from offline to online spinning reserves, which can be accessed much more quickly

What are the Economic Implications of Not Deploying ECRS

- The ORDC determines the increased value of reserves and energy when reserves levels drop in shortage or near shortage conditions
- Refusing to deploy ECRS when SCED needs more resources:
 - ✓ Tricks SCED into believing ERCOT is short
 - ✓ This causes it to price shortages that are not real.
- If the system is truly short, the ORDC will price the shortage.
 - ✓ Nothing is accomplished by SCED to pricing shortages when it cannot see all the available resources.
- This was the source of the enormous and inefficient market costs we have reported on in 2023

Evaluating NPRR 1224

- Should ERCOT wait to deploy ECRS until SCED is short? No
 - ✓ The reliability harm and artificial price spikes happen because SCED is allowed to go into shortage before deployment
 - ✓ Deploying ECRS before it is shortage
- Does the \$750 floor to deployed ECRS have a reasonable basis? **No**
 - ✓ Proponents have argued that the floor reflects the shortage value of ECRS (the ECRS demand curve level) under a co-optimized market
 - ✓ This argument conflates: *deploying* ECRS with *depleting* ECRS
 - ✓ These are two different things deploying ECRS *does not* reduce the reserve capability available to ERCOT it moves it to online units
 - ✓ Therefore, forcing prices to be set as if the system is short of ECRS is simply not efficient or competitive

Conclusion and Recommendation

- NPRR 1224 constitutes a fundamental departure from the objective of achieving competitive and efficient market outcomes
- In effect, it proposes ERCOT administer a withholding framework where:
 - ✓ Key economic units are physically withheld from the real-time market until the market can not serve the demand for more than 10 minutes; and
 - ✓ Economically withholds these resources after deployment be attaching a \$750 offer floor, for which there is no competitive basis
- If conditions were identical to 2023, we estimate this NPRR would generate inefficient and anticompetitive costs exceeding \$5.7 Billion.
- We recommend the Board (a) not approve NPRR and (b) direct ERCOT staff to develop procedures that would deploy ECRS in anticipation of a SCED shortage with no delay
- This will improve the reliability of the ERCOT system and help ensure the market outcomes are competitive and efficient.