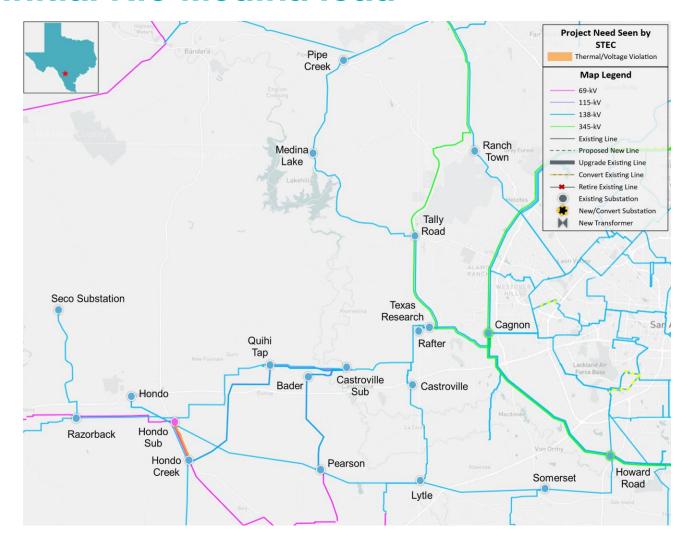


STEC – Rio Medina Project ERCOT Independent Review Status Update

Abishek Penti


RPG Meeting January 17, 2024

Recap

- STEC submitted the Rio Medina Project for Regional Planning Group (RPG) review in September 2023
 - This Tier 2 project is estimated to cost \$38.0 million and will require Certificate of Convenience and Necessity (CCN) filings
 - Estimated in-service date is January 2027
 - The project serves a new 129 MW load at the new Rio Medina substation
- STEC provided a project overview at the October RPG meeting
 - https://www.ercot.com/calendar/10182023-RPG-Meeting
- ERCOT provided Scope at the November RPG Meeting
 - https://www.ercot.com/calendar/11142023-RPG-Meeting

Study Area Map with Project Need Seen by STEC with initial Rio Medina load

Recap: Study Assumption

- Final 2022 Regional Transmission Planning (RTP) 2027 summer peak case for South and South Central (SSC) weather zones was used as the start case
- Transmission updates
 - Recently approved Tier 1 CPS San Antonio South Reliability Project was added
 - Recently approved Tier 2 Hondo Creek to Pearson 69-kV Transmission Line Rebuild Project was added
 - Recently approved Tier 4 Big Foot to Dilley Switch 138-kV Conversion Project was added
- Generation updates
 - None
- Load updates
 - Added the following Confirmed loads to the base case

Bus No	Substation Name	Load (MW)
5809	Dunlay	129.5
5355	Rafter	38.4

Analysis Performed

- Reliability Assessment Need Analysis
 - N-1, G-1+N-1, and X-1+N-1
 - Planned maintenance outage analysis (N-2 as a proxy for N-1-1)
- Initial Options Identified
- Options Evaluation
 - Reliability Analysis (N-1)
 - Planned Maintenance Outage Analysis
 - Long-Term Load Serving Capability Assessment
- Short-listed Options Identified

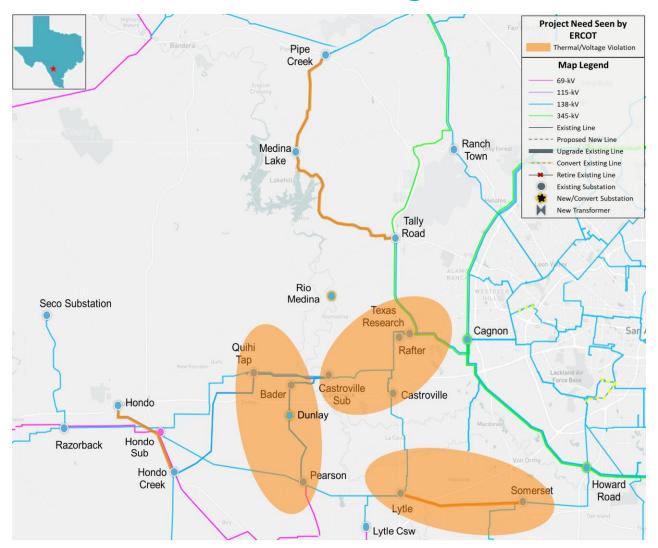
Preliminary Results of Reliability Assessment – Need Analysis

 ERCOT conducted steady-state load flow analysis for the study base case according to the NERC TPL-001-5.1 and ERCOT Planning Criteria

Contingency Category	Voltage Violations	Thermal Overloads	Unsolved Power Flow
N-0 (P0)	None	None	None
N-1 (P1, P2-1, P7)	None	None	None
G-1+N-1 (P3)*	None	None	None
X-1+N-1 (P6-2)**	None	None	None
Total	None	None	None

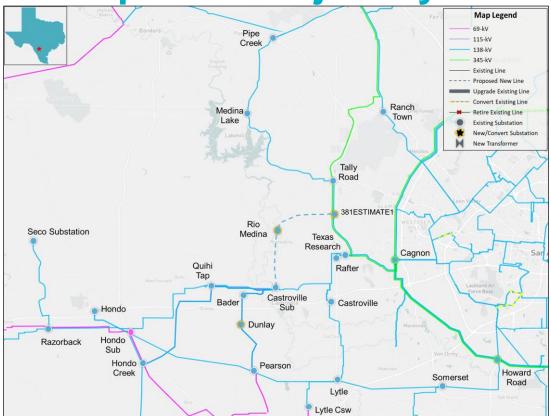
^{*} G-1: JK Spruce generator

^{**} X-1: Cagnon 345/138-kV transformer

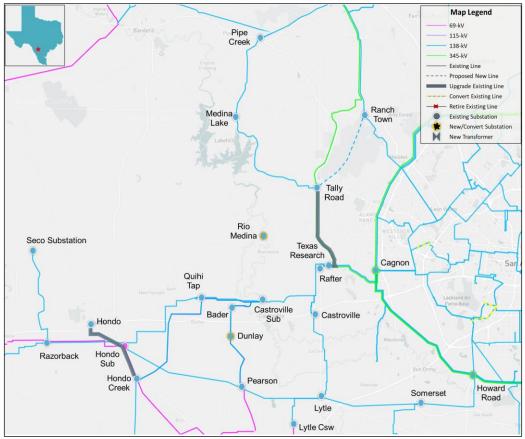

Preliminary Results of Planned Maintenance Outage Analysis – Need Analysis

- ERCOT conducted planned maintenance outage analysis on base case with confirmed loads added to identify the project need
 - Load level in the South-South Central weather zone was scaled down to 83.7% of the summer peak load in the study base case based on ERCOT load forecast, historical load, and ratio of residential/commercial load from TSP, in order to mimic the non-summer peak load condition
 - N-2 contingencies were tested as a proxy for N-1-1
 - The transmission elements in the area of Rio Medina Project were monitored in the maintenance outage evaluation
- Planned maintenance outage analysis results

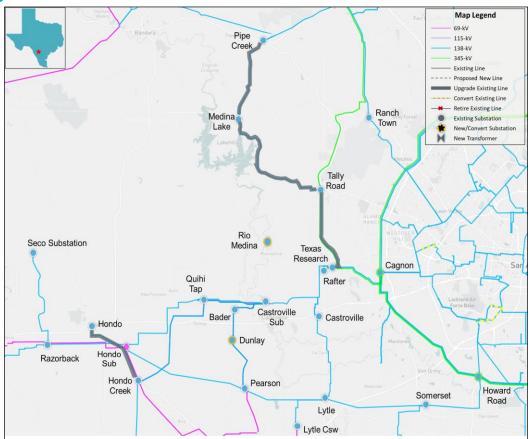
Thermal Overloads	Voltage Violations	Unsolved Power Flow
39.3 miles of 138-kV line	12	2

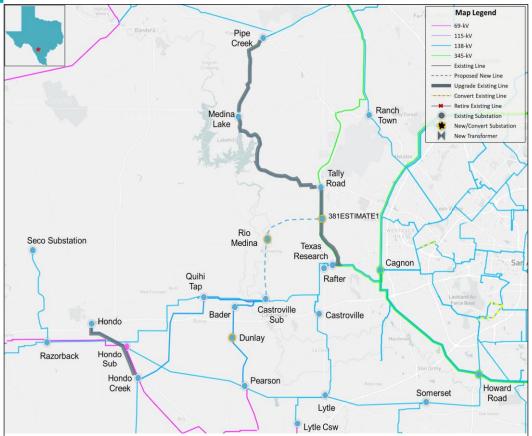


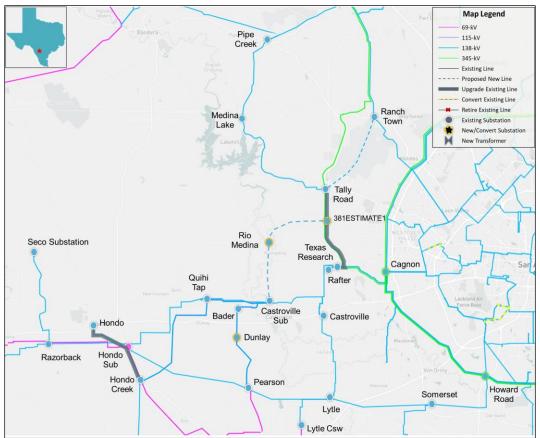
Study Area Map with Project Need as Seen by ERCOT under Planned Maintenance Outage Scenarios

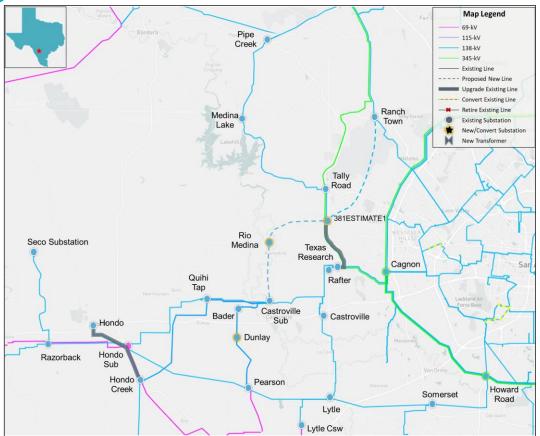


Option 1 - Proposed Project by STEC


- Construct a new Rio Medina 138-kV substation
- Construct a new 4.5 miles Rio Media Castroville Sub 138-kV single-circuit line on a double-circuit structure with at least 427 MVA normal rating and 474 MVA emergency rating
- Construct a new 381Estimate1 138-kV substation which cuts into the existing Texas Research and Tally Road 138-kV line
- Construct a new 8.8 miles Rio Media 381Estimate1 138-kV single-circuit line on a double-circuit structure with at least 427 MVA normal rating and 474 MVA emergency rating


- Upgrade Hondo to Hondo Creek 138-kV line with at least 285 MVA normal rating and emergency rating
- Upgrade approximately 8 miles Tally Road to Texas Research 138-kV line with at least 469 MVA normal rating and emergency rating
- Construct a new approximately 9.5 miles Tally Road Ranch Town 138-kV line with at least 469 MVA normal rating and emergency rating
- Add a Capacitor bank at Dunlay substation


- Upgrade Hondo to Hondo Creek 138-kV line with at least 285 MVA normal rating and emergency rating
- Upgrade approximately 8 miles Tally Road to Texas Research 138-kV line with at least 469 MVA normal rating and emergency rating
- Upgrade approximately 8 miles Pipe Creek- Medina Lake and approximately 12.4 miles Medina Lake Tally Road
 138-kV line with at least 469 MVA normal rating and emergency rating
- Add a Capacitor bank at Dunlay substation


- Construct Rio Medina and 381Estimate1 138-kV substations. Construct Castroville Sub Rio Medina 138-kV line and Rio Medina 381Estimate1 138-kV lines with at least 427 MVA normal rating and 474 MVA emergency rating
- Upgrade Hondo to Hondo Creek 138-kV line with at least 285 MVA normal rating and emergency rating
- Upgrade approximately 3 miles Tally Road to 381Estimate1 and approximately 5 miles 381Estimate1 to Texas Research 138-kV lines with at least 469 MVA normal rating and emergency rating
- Upgrade approximately 8 miles Pipe Creek- Medina Lake and approximately 12.4 miles Medina Lake Tally Road 138-kV line with at least 469 MVA normal rating and emergency rating
- Add a Capacitor bank at Dunlay substation and Rio Medina substation

- Construct Rio Medina and 381Estimate1 138-kV substations. Construct Castroville Sub Rio Medina 138-kV line and Rio Medina 381Estimate1 138-kV lines with at least 427 MVA normal rating and 474 MVA emergency rating
- Upgrade Hondo to Hondo Creek 138-kV line with at least 285 MVA normal rating and emergency rating
- Upgrade approximately 3 miles Tally Road to 381Estimate1 and approximately 5 miles 381Estimate1 to Texas Research 138-kV lines with at least 469 MVA normal rating and emergency rating
- Construct a new approximately 11 miles Tally Road Ranch Town 138-kV line with at least 469 MVA normal rating and emergency rating
- Add a Capacitor bank at Dunlay substation

- Construct Rio Medina and 381Estimate1 138-kV substations. Construct Castroville Sub Rio Medina 138-kV line and Rio Medina 381Estimate1 138-kV lines with at least 427 MVA normal rating and 474 MVA emergency rating
- Upgrade Hondo to Hondo Creek 138-kV line with at least 285 MVA normal rating and emergency rating
- Upgrade approximately 5 miles 381Estimate1 to Texas Research 138-kV line with at least 469 MVA normal rating and emergency rating
- Construct a new approximately 13 miles 381Estimate1 Ranch Town 138-kV line with at least 469 MVA normal rating and emergency rating
- Add a Capacitor bank at Dunlay substation

Preliminary Results of Reliability Assessment - Options

	N-1		X-1 & N-1*		G-1 & N-1**	
	Thermal Violations	Voltage Violations	Thermal Violations	Voltage Violations	Thermal Violations	Voltage Violations
Option 1	None	None	None	None	None	None
Option 2	None	None	None	None	None	None
Option 3	None	None	None	None	None	None
Option 4	None	None	None	None	None	None
Option 5	None	None	None	None	None	None
Option 6	None	None	None	None	None	None

^{*} G-1: JK Spruce generator

^{**} X-1: Cagnon 345/138-kV transformer

Preliminary Results of Planned Maintenance Outage Analysis - Options

• ERCOT conducted planned maintenance outage analysis on the six options to determine relative performance between the options

	Thermal Violations	Voltage Violations	Unsolvable Contingencies
Option 1	6	6	0
Option 2	4	14	0
Option 3	2	6	2
Option 4	1	0	0
Option 5	0	0	0
Option 6	0	0	0

 Based on the results in the above table Option 5 and Option 6 were selected for further evaluation

Preliminary Results of Long-Term Load Serving Capability Assessment

Assumptions

- Adjusted load up in the study area, excluding flexible loads in the area
- Adjusted conforming load down outside of study area to balance power
- Based on N-1 contingency

Preliminary Findings

Option 6 provides more load serving capability then option 5

Option	Incremental Load Serving Capability (MW)
5	419 MW
6	447 MW

Next Steps and Tentative Timeline

Short-listed Options

Cost estimates and feasibility assessment

Congestion Analysis

 Congestion analysis will be performed based on the recommended transmission upgrades to ensure that the identified transmission upgrades do not result in new congestion within the study area

Tentative Timeline

- Status update at the February RPG meeting
- Final recommendation Q1 2024

Thank you!

Stakeholder comments also welcomed through:

Abishek.Penti@ercot.com

Robert.Golen@ercot.com

Appendix – New Transmission Projects Added

TPIT No	Project Name	Tier	Project ISD	TSP	From County
22RPG048	San Antonio South Reliability Project	Tier 1	Jun-27	CPS	Bexar, Atascosa
22RPG022	Hondo Creek to Pearson 69 kV Transmission Line Rebuild Project	Tier 2	Dec-23, Jun-24	STEC	Medina
23RPG024	Big Foot to Dilley Switch 138 kV Conversion	Tier 4	Aug-26	AEPSC	Frio
67992	CPSE_345KV_Howard_Switching_Station	Tier 3	Feb-24	CPS	Bexar
68266	Dry Frio: Build new 138 kV station	Tier 4	May-24	AEP TNC	Uvalde
70536	New 138 kV Verde Circle Substation	Tier 4	Oct-24	CPS	Bexar
72500	Rio Lago - New 138kV Substation	Tier 4	Nov-24	BEC	Bandera
72268	CPSE_New Ingram Rd Substation	Tier 4	May-25	CPS	Bexar
76576	Asherton to Uvalde: Convert to 138 kV	Tier 3	May-25	AEP TCC	Dimmit
76580	Poblano: Build new 138 kV station	Tier 3	May-25	AEP TCC	Uvalde
71873	CPSE_Hill Country Auto# 2 Impedance Upgrade	Tier 4	Sep-25	AEP	Medina
73063	Big Foot to Lytle: Convert to 138 kV	Tier 4	Sep-25	AEP	Medina
67915	Asherton to West Basteville 138 kV line Rebuild	Tier 3	Dec-26	BEC	Dimmit
71871	CPSE_Cagnon to Shepherd Rd Rebuild Phase A	Tier 4	May-23	CPS	Bexar

Appendix – New Generation Projects Added

GINR	Project Name	Fuel	Projected COD	Capacity (MW)	County
21INR0395	SunRay	Solar	05/23/2024	200	Uvalde
22INR0368	Padua Grid BESS	Battery	12/31/2024	51.39	Bexar
22INR0422	Ferdinand Grid BESS	Battery	05/31/2026	202.65	Bexar
23INR0381	Soportar ESS	Battery	03/15/2025	102.11	Bexar

