

Item 7.1.1: Reliability Standard Study Preliminary Results

Woody Rickerson Vice President, System Planning and Weatherization

Reliability and Markets Committee Meeting

ERCOT Public June 19, 2023

Preliminary Modeling Results for the Reliability Standard Study

Purpose

- Provide preliminary modeling results from the Reliability Standard Study

Voting Items / Requests

- No action is requested of the R&M Committee or Board; for discussion only

Key Takeaways:

- 1. Varying Reserve Margin levels in the analysis provide insight into Frequency, Duration, and Magnitude of events.
- 2. A single metric for Frequency of events will result in a set of events that have a wide range of Duration and Magnitude.
- 3. Even at 1 in 10 years Frequency (traditionally used LOLE standard) some events will be extreme, illustrating the short coming of just having a Frequency measurement for reliability.
- 4. Avoiding all extreme Magnitude and/or Duration events may require inordinately high resource investment.
- 5. Recommend incorporating a risk tolerance metric, like exceedance probability, to appropriately calibrate the reliability standard.

Modeling Overview

- Simulation year is 2026
- Simulated 24 different Reserve Margin levels, ranging from 9% to 28%
 - Started with November 2022 Capacity Demand and Reserves resources
 - Wind, Solar, and Batteries were included at their Effective Load Carrying Capacity (ELCC)
 - Thermal capacity (mainly coal) removed to start at the 9% Reserve Margin level
 - An increment of generic Combustion Turbine (CT) capacity, 742 MW, added to build up the resource portfolios for simulation
- 1,050 Monte Carlo simulations performed for each resource portfolio
- Initial runs do not fully reflect weatherization standard impacts

Key Takeaway: The model tallies the frequency, magnitude and duration of loss-of-load events; for each resource portfolio, 9.2 million hours are simulated (8,760 hours x 1,050 simulations).

Framework Definitions Used

Event: Defined as an hour during which firm load exceeds available generation capacity plus 1,000 MW of operating reserves; Event is equivalent to loss-of-load (LOL) event in this presentation.

- FREQUENCY
 - LOLE: Loss of Load Expectation. The expected number of LOL days for 2026 (calculated as the probability-weighted average for 1,050 simulations), where an LOL day means that at least one event occurs during that day. Example: LOLE of 0.1 days in 1 year, or equivalently, 1 day in 10 years
- MAGNITUDE
 - Unserved Energy (UE): The hourly unserved energy amount in MWh for an Event (Equivalent to MW/hour); for multi-hour events, only the highest hourly UE is used; Maximum Magnitude is the highest hourly unserved energy amount in MWh across 1,050 simulations; for multi-hour events, only the highest hourly UE is used
- DURATION
 - The longest period of consecutive Events; *Maximum Duration* is the longest period of consecutive Events across 1,050 simulations

Reserve Margin vs LOLE and Frequency

The following five slides show the Magnitude and Duration of every event observed in simulations for selected frequency levels (LOLE)

• The Reserve Margin (RM) levels, corresponding LOLEs, and generic CT capacity added for each RM are shown in the table below:

Reserve Margin	LOLE (Expected Event Frequency)	LOLE (Expected Event Frequency <u>per Year</u>)	CT Non-Summer Capacity Added (MW)
9.36%	1 day with at least one event every 0.6 years	1.710	-
13.50%	1 day with at least one event every 2.7 years	0.360	3,710
18.46%	1 day with at least one event every 10 years	0.100	8,162
23.43%	1 day with at least one event every 27.7 years	0.036	12,614
28.40%	1 day with at least one event every 142.8 years	0.007	17,066

Magnitude vs. Duration at a Frequency of one Event every 0.6 years, (9.36% Reserve Margin)

• 0.072% of the hours simulated were Events (when Load > Generation + 1,000 MW Reserves)

Key Takeaway: A single metric for event frequency, like Loss of Load Expectation (LOLE), will result in a set of events with a wide range of Duration and Magnitude.

Magnitude vs. Duration at a Frequency of one event every 2.7 years, (13.50% Reserve Margin)

• 0.016% of the hours had an Event (~1,470 Event hours)

Magnitude vs. Duration at a Frequency of one event every 10 years, (18.46% Reserve Margin)

Key Takeaway: Even at 1 in 10 years Frequency, many events are extreme, illustrating the short-coming of just having a Frequency measurement for Reliability

Magnitude vs. Duration at a Frequency of one event every 27.7 years, (23.43% Reserve Margin)

• 0.002% of the hours evaluated had an Event (184 Event hours)

Magnitude vs. Duration at a Frequency of one event every 142.7 years (28.40% Reserve Margin)

0.00029% of the hours had an Event

Key Takeaway: Even at this low LOLE, there are event outliers.

Item 7.1.1 ERCOT Public

1% Duration and Magnitude Exceedance Probability Concept based on a Frequency of One Event every 10 years

Item 7.1.1 **ERCOT**

Exceedance Probabilities Comparison: 1%, 2% and 5% based on 1-in-10 years Frequency

Key Takeaway: An exceedance probability should be considered for the Reliability Standard; the PUC would need to determine an acceptable risk tolerance threshold.

erc Item 7.1.1 **ERCOT** Public

Next Steps

- Solicit guidance from the Commission on project direction
- Present preliminary modeling results to Market Participants
- Prior to executing further simulations, make the following model changes:
 - Incorporate weatherization standard impacts into the model
 - Build a more accurate low temperature vs. thermal outage relationship in the model to improve the representation of winter season impacts to the thermal fleet
 - Potentially incorporate the recently proposed ORDC multi-step floor pricing approach
 - Align modeled costs to the customer costs realized in E3's market design study
 - Incorporate the impacts of the Firm Fuel Supply Service
 - Report findings resulting from PUC and Market Participant feedback to the Board in August 2023.

Generation Capacity Used in SERVM Modeling

Starting Point

Item 7.1.1

15

Generic Combustion Turbine Attributes

Characteristic	Unit	Simple Cycle
Plant Configuration		
Turbine		GE 7HA.02
Configuration		1 x 0
Heat Rate (HHV)		
Base Load		
Non-Summer	(Btu/kWh)	9,138
Summer	(Btu/kWh)	9,274
Installed Capacity		
Base Load		
Non-Summer	(MW)	371
Summer	(MW)	352
CONE	(\$/kW-yr)	93.5
Maintenance Rate	(%)	5
EFOR	(%)	1.98

Sources and Notes:

Technical and performance parameters use region EMAAC as most closely resembling ERCOT in altitude and ambient conditions from Newell, et al. (2018a).

Based on ambient conditions of 92°F Max. Summer (55.5% Humidity) and 59°F Non-Summer.

Modeling Treatment of Extreme Winter Storm Events

- The risk of weather-induced thermal outages (including those related to fuel limitations) is expressed as a "low-temperature versus outage magnitude" curve
- The curve incorporates 2011 winter event data to represent an extreme winter outage scenario that factors in recent weatherization efforts
 - Unplanned thermal outage levels during Winter Storm Uri are assumed to be too extreme for this purpose
 - However, fuel limitation outages from Winter Storm Uri are reflected
- Weatherization impacts are not explicitly included in the temp vs. outage curve
 - Weatherization should reduce both extreme outage occurrences as well as the overall outage frequency
 - ERCOT is analyzing recent weather events to determine curve modifications that reflect expected unit performance based on weatherization standard compliance

Reserve Margin Levels vs LOLE vs Capacity Added

	Number of CTs Added	Reserve Margin	LOLE (Days per Year)	Summer Capacity for Added CTs (MW)	Non-Summer Capcity for Added CTs (MW)
	0	9.36%	1.710	0	-
	2	10.18%	1.276	704	742
	4	11.01%	0.888	1,408	1,484
	6	11.84%	0.677	2,112	2,226
	8	12.67%	0.475	2,816	2,968
	10	13.50%	0.360	3,520	3,710
	12	14.32%	0.302	4,224	4,452
	14	15.15%	0.220	4,928	5,194
	16	15.98%	0.170	5,632	5,936
	18	16.81%	0.146	6,336	6,678
	20	17.64%	0.116	7,040	7,420
Daugh Equivalent of	22	18.46%	0.100	7,744	8,162
the expected 2026	24	19.29%	0.080	8,448	8,904
Reserve Margin	26	20.12%	0.070	9,152	9,646
	28	20.95%	0.057	9,856	10,388
	30	21.78%	0.049	10,560	11,130
	32	22.60%	0.040	11,264	11,872
	34	23.43%	0.036	11,968	12,614
	36	24.26%	0.028	12,672	13,356
	38	25.09%	0.027	13,376	14,098
	40	25.92%	0.018	14,080	14,840
	42	26.74%	0.015	14,784	15,582
	44	27.57%	0.014	15,488	16,324
	46	28.40%	0.007	16,192	17,066

erco Item 7.1.1 **ERCOT** Public

Potential 13-hour Duration and 14K-MW Magnitude Load Shed Shape Summer Rotation Percentages

				Target Rotation
	Example Load Shed	Shape	TSP	Time (min)
16000			American Electric Power	30
		This would be	Brazos Electric Power Cooperative	30
14000	Based on TSP	represented as a 13-	Brownsville Public Utilities Board	30
	14K MW is the	14K MW Magnitude	Bryan Texas Utilities	60
≥ 12000 ·	highest amount	Event on the results	Centerpoint Energy	depends
She	be rotated	giaph	City of Austin dba Austin Energy	10
000 10000			City of College Station	15
Ĺ Lo			Garland Power and Light	15
0008 of			Lubbock Power & Light	30
Inou	Magnituda		CPS Energy	15
6000 A	14.000 MW		Denton Municipal Electric	30
			Greenville	20
4000			Golden Spread	60
			Lamar County Electric Cooperative	20
2000			Lower Colorado River Authority	30
	Duration of 13 hours	→ \	Oncor Electric Delivery Company LLC	15-30
0		15 16 17 18 19 20 21 22 23 24	Rayburn Electric Cooperative	15-30
	Hours	13 10 17 10 15 20 21 22 23 24	South Texas Electric Cooperative	30
			Texas-New Mexico Power Company	25

Maximum Magnitude and Maximum Duration Comparison

- These charts show plots of the maximum Magnitude and Maximum Duration Event for each LOLE (Reserve Margin)
- The shapes of the Max Magnitude and Max Duration curves are distinctly different

Overview of Exceedance Probability Approach

Exceedance Probability is defined as the likelihood that Magnitude and Duration will be higher than a given risk tolerance threshold

For example, a 1% Exceedance Probability means that the expected frequency of Magnitude and Duration exceeding certain levels should occur no more than 1 day in 100 years, or 0.01 day in a year

Calculation Steps:

- For each Frequency level, rank all the Events independently by Magnitude from highest to lowest, and Duration from longest to shortest
- 2. Select an exceedance probability; for example, 1%, or a 1-in-100 chance
- 3. Determine the ranking that corresponds to the exceedance probability; the Magnitude and Duration values associated with that ranking are the risk tolerance thresholds

Exceedance Probability Example

For the 0.116 LOLE portfolio, the 1,050 simulations resulted in 114 events that are independently ranked by severity. Given a 1% exceedance probability, the risk tolerance ranking is: 0.01 x 1,050 = 10.5 (rounded to 10)

After ranking the events, the table indicates that having Events equal to or greater than a 14,171 MWh Magnitude and 13-hour Duration is an acceptable risk

	Magnitude	Duration
Rank	(MWh)	(hrs)
1	19,208	14
2	18,304	14
3	17,816	14
4	16,058	14
5	16,041	14
6	15,894	13
7	15,663	13
8	15,621	13
9	15,029	13
10	14,171	13
11	13,260	13
12	13,228	12

Application of Exceedance Probability Approach for each LOLE portfolio

- Extending the example on the previous slides, the following two charts show the Magnitude and Duration, respectively, for each of the 24 LOLE resource portfolios based on a 1% Exceedance Probability
 - The LOLEs are expressed as the chance of an Event in x years
 - The example's 0.116 LOLE is highlighted
- The third chart compares Durations for the summer and winter seasons

Magnitude for each LOLE at a 1% Exceedance Probability

- The Magnitude at a 1% Exceedance Probability is 14,171 MWh; in contrast, the Max Magnitude at the same 0.116 LOLE (17.64% RM) is ~17,500 MWh
- The Magnitudes do not consistently decrease with a lower LOLE, although there are fewer instances of this behavior than for Max Magnitude (Slide 17)

Duration for each LOLE at a 1% Exceedance Probability

• The Duration at a 1% Exceedance Probability is 13 hours; in contrast, the Max Duration at the same 0.116 LOLE (17.64% RM) is 14 hours

ercot 5 Item 7.1.1 **ERCOT** Public

Summer and Winter Durations for each LOLE at a 1% Exceedance Probability

Summer and Winter - Duration

• The number of Events with multi-hour Durations is significantly higher for the winter than the summer; at a Frequency of greater than one Event in 14.4 years no summer Events occurred, whereas for the winter, Events occurred at all LOLEs

