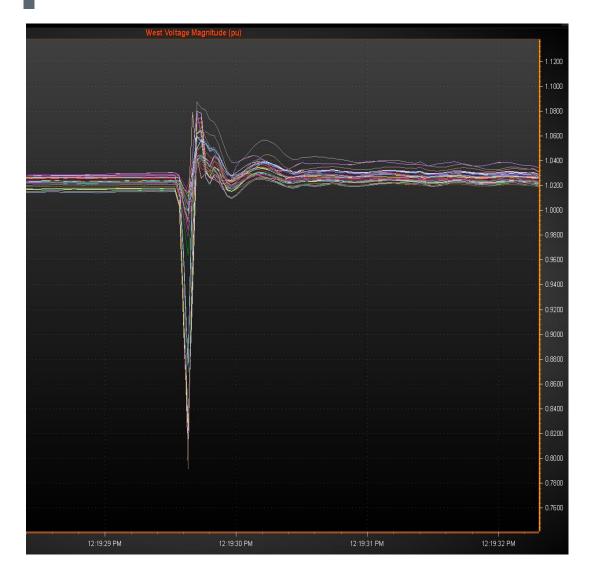


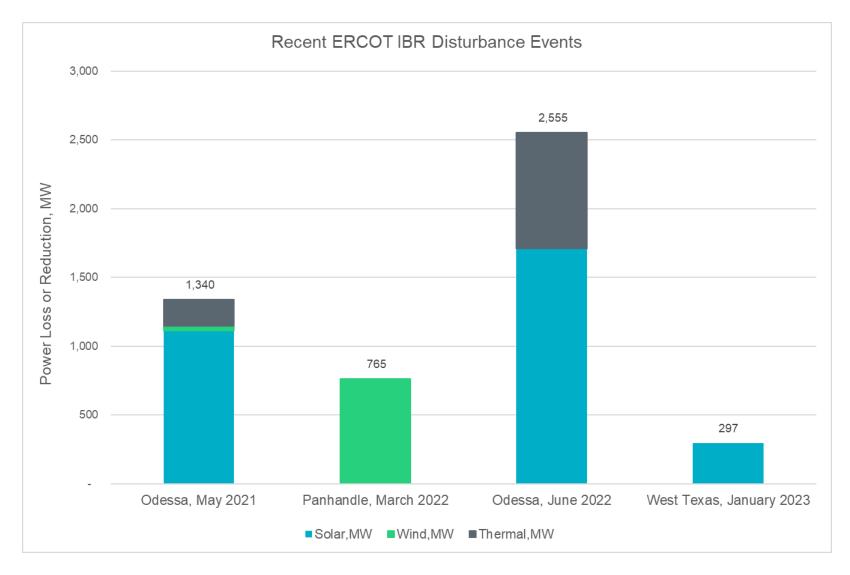
Solar Generation Loss Event January 23, 2023

Patrick Gravois Operations Engineer – Operations Analysis


IBRTF Meeting March 10, 2023

January 23 Event Overview

- On January 23, 2023, @ 12:19 PM CST, Phase-A-to-ground fault occurred on 138 kV line in West Texas
- Fault cleared normally in 3 cycles
- Analysis shows approximate non-consequential loss of 297 MW of solar generation from 8 different facilities
- Aggregate MW loss includes facilities that did not return to pre-disturbance output within 1 second after the fault cleared
- 7 of 8 facilities involved in Odessa events
- ~208 MW of load reduction occurred at four different LFL sites (crypto) immediately following fault
- System frequency dropped to 59.955 Hz and recovered in 6 seconds
- PMU/ relay event data requested from 25 surrounding solar facilities; 20 submitted PMU data
- No significant Wind/BESS reductions seen in SCADA (>10MW)
- RFIs sent to 8 facilities with due date of Feb. 24 several needed follow up questions or have pending investigations
- Several facilities involved in Odessa events did not see voltage excursions large enough to test mitigation actions; others initially show an improvement in performance (less inverter tripping)


PMU Voltage During Event

- Lowest voltage of 0.677 pu recorded at 138 kV station close to fault
- Highest voltage of 1.088 pu recorded at 69 KV station in Far West Texas
- Lowest recorded voltage on 345 kV system was 0.878 pu; highest was 1.07 pu
- Voltage remained within NOG VRT "No Trip Zone"
- Phase angle jumps in West Texas in the 10-to-15degree range (over ~100 ms – 200 ms time frame)

PUBLIC

ERCOT IBR Disturbance Events

PUBLIC

Solar Capacity and Output During Recent Events

Event	Odessa 2021	Odessa 2022	West Texas 2023
Date/Time	May 9, 2021 @ 11:21 CT	June 4, 2022 @ 12:59 CT	January 23, 2023 @ 12:19 CT
Installed Solar Capacity	7,505 MW	11,440 MW	14,249 MW
Solar Output at Time of Event	4,533 MW	8,740 MW	8,236 MW
Solar % of Total Generation at Time of Event	9%	15.8%	17.9%

PUBLIC

Facilities with MW Loss After Fault Clearing

Facility ID*	OEM	Low Voltage During Fault	Pre-Disturbance Output	MW Reduction During Fault	MW Loss Post Fault	Recovery Time	Root Cause
Plant A**	KACO	0.728 pu (138)	141 MW	27 MW	6 MW	6 minutes	Inverters went into idle mode. Cause unknown.
Plant B	TMEIC	0.721 pu (138)	145 MW	118 MW	111 MW	7 seconds	Inverter ramp rate set to 10%/second.
Plant F	KACO	0.862 pu (69)	40 MW	20 MW	17 MW	6 minutes	Inverters tripped due to AC overcurrent protection.
Plant K/L	PE	0.877 pu (138)	91 MW	91 MW	74 MW	6 minutes	Most inverters entered momentary cessation with a small number tripping on overcurrent. Unknown slow ramp rate post disturbance; potential PPC interaction due to frequency.
Plant M	PE	0.793 pu (138)	67 MW	32 MW	32 MW	2 seconds	Large MW swings post disturbance. Improper LVRT setting.
Plant N/O	KACO	0.793 pu (138)	120 MW	47 MW	30 MW	10 seconds	Unknown cause of delayed recovery; Still investigating. One inverter trip current imbalance.
Plant P	KACO	0.642 pu (138)	132 MW	37 MW	1.5 MW	4 minutes	One inverter tripped to AC overcurrent.
Plant W***	PE	0.858 pu (345)	229 MW	229 MW	25 MW	1 minute	Unknown cause of slow ramp rate post disturbance.
Totals				601 MW	297 MW		

*Facility ID corresponds with <u>NERC 2022 Odessa Disturbance Report</u> Table A.1

**Facility involved in 2021 Odessa Event but not 2022 Odessa Event

***Facility not involved in either 2021 or 2022 Odessa Events

Causes of Solar PV Active Power Reductions

Cause of Reduction	Odessa 2021 Reduction (MW)	Odessa 2022 Reduction (MW)	West Texas 2023 Reduction (MW)
Inverter Instantaneous AC Overcurrent	-	459	18.5
Passive Anti-Islanding (Phase Jump)	-	385	-
Inverter Instantaneous AC Overvoltage	269	295	-
Inverter DC Bus Voltage Unbalance	-	211	-
Feeder Underfrequency	21	148*	-
Unknown/Misc.	85	96	61
Incorrect Ride-Through Configuration	-	135	147
Plant Controller Interactions	-	146	74
Momentary Cessation	153	130	74**
PLL Loss of Synchronism	389	-	-
Feeder AC Overvoltage	147	-	-
Inverter Underfrequency	48	-	-

*In addition to inverter-level tripping

**Facility had momentary cessation and plant controller interactions

ercot 😓

Facilities with MW Loss (Jan. 23 and Odessa Event Comparison)

Facility ID	OEM	MW Loss Odessa	Odessa Root Cause	Corrective Actions	MW Loss Jan. 23	Jan. 23 Root Cause	Corrective Actions
Plant A*	KACO	28 MW	Unknown	None	6 MW	Inverters went into idle mode. Cause unknown.	Still investigating; need to improve inverter logging capabilities.
Plant B**	TMEIC	133 MW	PLL Loss of Synch Volt Phase Jump	Disabled functions	111 MW	Inverter ramp rate set to 10%/second.	Change inverter ramp rate to 100%/sec.
Plant F	KACO	46 MW	Unknown	Increase VRT/FRT settings; improve inverter logging capabilities	17 MW	Inverters tripped due to AC overcurrent protection.	Still investigating; Undetermined if overcurrent issue can be improved in KACO inverters.
Plant K/L	PE	130 MW	Momentary cessation/ Power supply failure	Enable LVRT/MC to speed recovery	74 MW	Unknown slow ramp rate post disturbance; potential PPC interaction due to frequency event.	Adjusting inverter ramp rate; investigating potential PPC interaction.
Plant M	PE	146 MW	Incorrect inverter ride through configuration	Enable LVRT and tuned settings to improve ride through performance	32 MW	Large MW swings post disturbance. Improper LVRT setting.	Change LVRT threshold from 0.5pu to 0.9pu. PSCAD model to determine cause of oscillations; improved response.
Plant N/O	KACO	50 MW	Unknown	Increase VRT/FRT settings; improve inverter logging	30 MW	Unknown cause of delayed recovery; Still investigating. One inverter trip current imbalance.	Undetermined; improved response from Odessa events since minimal inverter tripping.
Plant P	KACO	10 MW	Inverter tripping to AC overcurrent	None	1.5 MW	One inverter tripped to AC overcurrent.	Undetermined if overcurrent issue can be improved in KACO inverters.
Plant W	PE	N/A	N/A	N/A	25 MW	Unknown cause of slow ramp rate post disturbance.	Still investigating.

*Data used from 2021 Odessa event

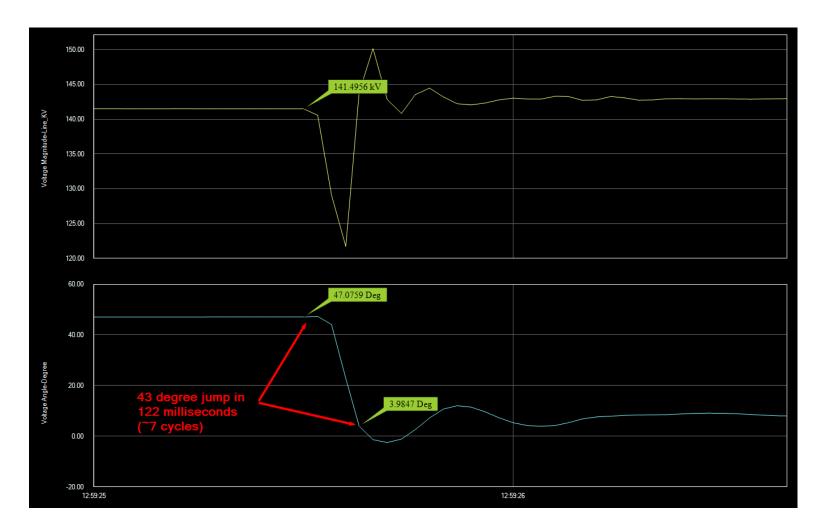
** PLL Loss of Synch for 2021 Odessa and Volt Phase Jump for 2022 Odessa

ercot

TMEIC Facilities (Jan. 23 and Odessa Event Comparison)

Facility ID	MW Loss During Odessa	Odessa Root Cause	Corrective Actions	MW Reduction Jan. 23* (During Fault)	Odessa Low/High Voltage**	Jan. 23 Low/High Voltage	Odessa Phase Jump***	Jan. 23 Phase Jump
Plant C	56 MW	Volt Phase Jump	Increase VPJ threshold to 35°; increase OVRT settings; reduce k-factor	3 MW	0.8120 pu (345) 1.0661 pu****	0.878 pu 1.0675 pu	32.2°	12.5°
Plant E/U	295 MW	Inverter AC overvoltage tripping	Increase VPJ threshold to 35°; increase OVRT settings; reduce k-factor	2 MW	0.9014 pu (138) 1.0543 pu	1.0014 pu 1.0518 pu	28°	7.7°
Plant I/J	196 MW	Volt Phase Jump	Increase VPJ threshold to 35°; increase OVRT settings; reduce k-factor	0 MW	0.7814 pu (345) 1.0116 pu	0.9623 pu 1.0566 pu	32.2°	10.8
Plant R	261 MW	Inverter AC overcurrent tripping	Increase VPJ threshold to 35°; increase OVRT settings; reduce k-factor	0 MW	0.8819 pu (138) 1.0881 pu	0.9605 pu 1.0830 pu	43.1°	13.1°
Plant T	176 MW	Inverter AC overcurrent tripping	Increase VPJ threshold to 35°; increase OVRT settings; reduce k-factor	1 MW	0.8818 pu (138) 1.0881 pu	0.9641 pu 1.0674 pu	42°	7.5°

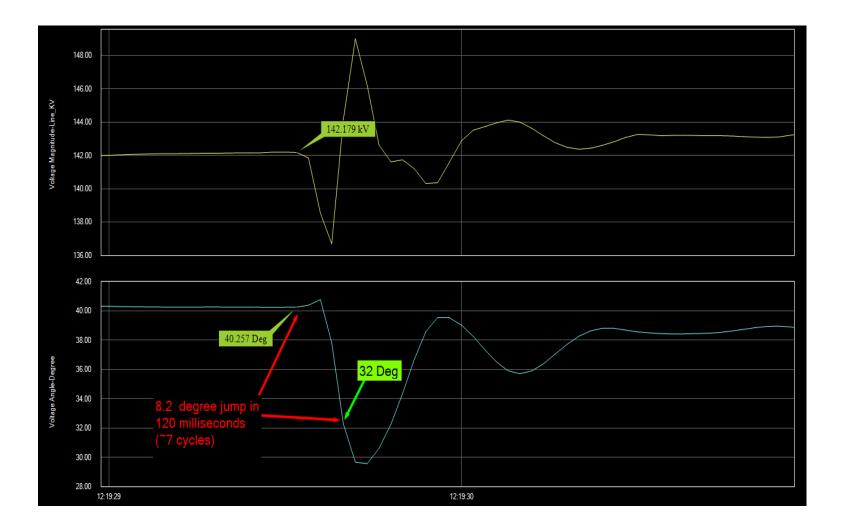
*All facilities in table above returned to pre-disturbance output within 0.5 seconds of fault clearing


**Voltage magnitude from PMU data either at facility or POI

***Phase angle jump is positive sequence change in PMU phase angle data during fault (~100-200 ms)

****No PMU data at site. Data from nearby 345 kV station

Phase Angle Jump – PMU Data - Odessa



- PMU positive sequence voltage angle • in Far West Texas referenced to voltage angle in Central Texas
- Angle jump of ~43° in 122 ms • (~7cycles)
- IEEE 2800 refers to phase angle • changes within sub-cycle-to-cycle time frame of $\leq 25^{\circ}$
- Further work needed to determine • sub-cycle-to-cycle phase angle change for these events (PMU data not sufficient)

PUBLIC

ercot

Phase Angle Jump – PMU Data – Jan. 23 Event

 Phase Angle jump of ~8.2° in 120 ms (~7 cycles)

ercot 😓

Additional Units that Rode Through* Jan. 23 Event

Facility ID	OEM	Low Voltage During Fault	Pre-Disturbance Output	MW Reduction During Fault	Notes
Plant Q	PE	0.917 pu (138)	123 MW	45 MW	Lost 12 MW in 2022 Odessa due to inverter overcurrent tripping. No inverters tripped on 1/23 but reduced significant MWs during fault for voltage remaining above 0.9pu.
Plant S	PE	0.975 pu (138)	81 MW	81 MW	Lost 94 MW in 2022 Odessa due to all inverters tripping on Vdc bus unbalance. No inverters tripped on 1/23 but active power reduced to 0 MW during fault.
Plant V	PE	0.980 pu (345)	113 MW	29 MW	Lost 106 MW in 2022 Odessa due to all inverters tripping on Vdc bus unbalance. No inverters tripped on 1/23.
Plant AA	GE	0.874 pu (345)	84 MW	84 MW	Active power drops to 0 MW during fault.
Plant BB	Sungrow	0.675 pu (138)	55 MW	15 MW	Optimal active power ride though.
Plant CC	GE	0.962 pu (345)	204 MW	12 MW	Dropped to 0 MW during Odessa 2022 event (0.831 pu voltage); worked with OEM to improve inverter performance and reduce active power drop.
Plant DD	SMA/GE	0.870 pu (138)	18 MW	18 MW	Active power drops to 0 MW during fault.
Plant EE	PE	0.956 pu (138)	39 MW	6 MW	
Plant FF	Sungrow	0.954 pu (138)	125 MW	4 MW	
Plant GG	PE	0.937 pu (138)	100 MW	22 MW	
Plant HH	Sungrow	0.912 pu (345)	341 MW	26 MW	
Plant II	Schneider	0.880 pu (345)	115 MW	51 MW	
Total				393 MW	
	erco	*All reco	overed to pre-distur	bance output in < 1	second after fault clearing

Summary and Misc.

- Far less inverter tripping during Jan. 23 event compared to Odessa events
- Majority of inverter tripping due to overcurrent; most difficult to mitigate due to potential inverter damage and logic changes required by OEM
- Most MW loss post fault likely due to PPC/inverter interactions causing delayed recovery– investigations still ongoing
- Difficult to determine effectiveness of corrective actions implemented since Odessa events
- Additional discussion and corrective actions needed to minimize active power reduction during faults; REs need to be
 proactive in this analysis to improve response
- Wide range of reactive responses from facilities during fault; potential future IBRTF discussions needed
- ERCOT is using this event to validate submitted dynamic models; REs will be contacted when simulated performance does not match actual performance

