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Disclaimer: This report was prepared by the authors for the Electric Reliability Council of Texas (ERCOT).  It 

is provided as is, and Astrapé Consulting and ERCOT disclaim any and all express or implied representations 

or warranties of any kind relating to the accuracy, reliability, completeness, or currency of the data, 

conclusions, forecasts or any other information in this report. Readers of this report should independently 

verify the accuracy, reliability, completeness, currency, and suitability for any particular purpose of any 

information in this report.  

Furthermore, this report is not intended, nor should it be read as either comprehensive or fully applicable 

to any specific opportunity in the ERCOT market, as all opportunities have idiosyncratic features that will 

be impacted by actual market conditions.  Readers of this report should seek independent expert advice 

regarding any information in this report and any conclusions that could be drawn from this report. The 

report itself in no way offers to serve as a substitute for such independent expert advice. 
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directors, officers, and employees, shall not be liable for any errors, omissions, defects, or 

misrepresentations in the information contained in this report, whether intentional or unintentional, or 
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EXECUTIVE SUMMARY 
Planning for electric system reliability requires quantifying the impact of unique attributes of all resource 

classes and their associated interactions. Non-dispatchable resources such as wind and solar are 

contingent on weather conditions and storage resources are affected by energy limitations. Conventional 

generators can be affected by correlated outage risk and fuel limitations. 

The reliability value of generators is not simply a function of their output during peak load or even peak 

net load conditions. Almost all electric systems are affected by temporal aspects related to energy 

limitations or the impact on performance of generator commitment patterns. These reliability issues are 

particularly important during the current period of rapid transition of the generation mix. Between 2016 

and 2024, over 35 gigawatts (GW) of solar PV and 7 GW of battery are projected to be installed in the 

ERCOT system. During the projected 2024 gross load peak, the combination of wind, solar, and batteries 

could potentially serve over 42 GW of the total need as depicted in Figure ES1. 

Figure ES1. Renewables Capacity Contribution at Gross Load Peak (2024) 

 

This 42 GW of contribution to the gross load peak is not representative of the reliability value of the wind, 

solar, and battery fleet however. Figure ES2 indicates that the reliability need in 2024 is no longer during 

the gross load peak hour.  
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Figure ES2. Net Load Peak Shift Due to Solar PV Investment 

 

 

Net load has shifted to late in the day due to the massive build-out in the solar PV fleet. Reserves are 

shortest during this period. With this in mind, how should the reliability value of each resource class be 

recognized? Reliability planning is a multi-faceted process requiring consideration of both total and 

incremental need. From this perspective, this study quantifies both the total contribution and marginal 

contribution of each resource class. The total contribution is quantified as an average Effective Load 

Carrying Capability (ELCC) and the marginal contribution as a marginal ELCC. 

ELCCs are calculated via simulations of the ERCOT system using Astrapé Consulting’s Strategic Energy and 

Risk Valuation Model (SERVM). Over 250 different portfolios were simulated with combinations of 

different resource penetration levels and technology attributes, and adjustments were made to load or 

capacity to keep reliability at the industry standard of 1 day in 10 years of Loss of Load Expectation (0.1 

LOLE). The ratio of the resource adjustment required to meet 0.1 LOLE to the capacity of the variable 

energy portfolio determines the portfolio ELCC. This process is illustrated in Figure ES3. 
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Figure ES3. ELCC Methodology 

 

After calculating these portfolio ELCCs, we performed calculations to interpolate to any alternate portfolio. 

This process produced portfolio ELCC surfaces as shown in Figure ES4.  

Figure ES4. Portfolio ELCC Surface (Wind, Solar, at 6 GW 2-Hour Storage) 
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Differential equations then provide the individual contributions by technology. The curve by technology 

identifies their marginal ELCCs as can be seen for the winter in Figure ES5. 

Figure ES5. Winter Marginal ELCCs 

 

In addition to distinguishing reliability value by technology, the location of resources and the specific 

configuration of each resources affect reliability value. The following variables were also tested as part of 

this study: 

• Wind Locations: 

o Wind Panhandle (Wind-P) 

o Wind Coastal (Wind-C) 

o Wind Other (Wind-O) 

• Solar Locations: 

o Solar West 

o Solar Non-West 

• Storage Durations: 

o 2-hour 

o 4-hour 

o 8-hour 

Once portfolio value and location or configuration values are calculated, a comprehensive analysis of the 

reliability value of future systems can be performed. To provide portfolio reliability information to 

stakeholders, ERCOT will integrate the results of this analysis into its resource adequacy assessment 

reports.  
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For the current Capacity, Demand, and Reserves (CDR) report, the values provided in Table ES1 are 

assigned to wind and solar using their “Peak Average Capacity Contributions ” which is what ERCOT 

expects to be available on average during peak demand hours.1  

Table ES1. Assigned CDR Peak Average Capacity Contribution2 

Technology 
Summer Value  

(%) 

Winter Value  

(%) 

Solar 81 11 

Wind-Coastal 57 46 

Wind-Panhandle 30 34 

Wind-Other 20 19 

Storage 0 0 

 

The capacity credit assigned to energy-limited resources in the CDR is based on output during the average 

of the top 20 gross load hours for multiple historical seasons (ten for wind; three for solar). While this 

method reasonable characterizes expected renewable energy production during gross peak load hours, it 

doesn’t recognize that the net load may have shifted due to the renewable output. It thereby overstates 

the reliability contribution of these resources. Calculating the anticipated reserve margins with the Peak 

Average Capacity Contributions has correspondingly led to reserve margins which do not provide insight 

into the relative reliability value of the various portfolios.  

Since ELCC analysis is designed to normalize for reliability contribution across all resource classes, 

reliability planning should produce similar reliability metrics for two different portfolios that result in the 

same reserve margin. For instance, a portfolio with all conventional capacity that provides a 15% reserve 

margin should demonstrate the same LOLE as a portfolio with heavy renewable and storage penetration 

that also has a   % reserve margin. A visual of a system’s reserve margin as solar penetration increases is 

shown in Figure ES6. Average ELCC accreditation will keep a static reserve margin since all portfolios that 

keep the system at 0.1 LOLE are deemed to have the same capacity. Marginal accreditation will result in a 

declining reserve margin since resources only get credit for their contribution to the net load peak hours.  

 
1 https://www.ercot.com/files/docs/2021/08/18/June_1__2021_Nodal_Protocols.pdf 
2 https://www.ercot.com/files/docs/2022/05/16/CapacityDemandandReservesReport_May2022.xlsx 
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Figure ES6. Marginal Versus Average ELCC and Their Effect on the Planning Reserve Margin 

 

Every class of non-dispatchable and energy-limited resource exhibits declining reliability value with 

penetration. This effect is driven by the shift in net load for non-dispatchable resources and the expansion 

of hours needed for energy limited resources. However, interactions among resource classes can be 

synergistic, delaying the decline in the ELCC of particular resources. For 2024 projected portfolios, 

incremental solar PV will provide significantly lower reliability value per installed MW than the average 

ELCC provided by these resources, while short duration batteries (2-hour) will supply more value on the 

margin than they do on average as seen in Table ES2. This information should factor into decisions for 

further expansion. 

Table ES2. 2024 Marginal and Average ELCCs 

Technology 
Installed  
Capacity  

(MW) 

Marginal 
ELCC  
(%) 

Average 
ELCC 
(%) 

Wind-C 5,900 21.80% 27.80% 

Wind-O 29,233 14.90% 24.35% 

Wind-P 4,903 21.80% 27.65% 

Solar Non-West 20,856 3.50% 35.90% 

Solar West 14,095 8.70% 42.15% 

Storage 2-hour 7,620 79.94% 73.97% 
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ELCCs have not typically been quantified for thermal resources since they are dispatchable and 

theoretically do not have energy constraints. A common assumption is that the Equivalent Forced Outage 

Rate Demand (EFORd) is a reasonable proxy for the impact that these generators will have on the need for 

reserves. The only reduction in the reliability contribution of these resources would be due to unplanned 

outages. Accrediting capacity for thermal resources is typically done by quantifying the difference in 

nameplate or Installed Capacity (ICAP) and Unforced Capacity (UCAP).  UCAP is generally calculated as a 

function of both its ICAP and its EFORd. The goal of this thermal ELCC analysis was to determine the impact 

of unit outages on the ability of traditional, EFOR-based units to serve load and to translate this impact 

into an ELCC equivalent for these resources. It is important to note that these ELCC scenarios did not take 

into consideration the potential impact to outages resulting from new plant weatherization standards 

enacted by the Texas Public Utility Commission. 

The analysis performed was an initial examination of the impacts of outages on the ability of thermal 

resources to carry load. The results show that the ELCC of thermal resources is influenced by more than 

just the EFOR. The 1-EFORd accreditation on the right overstates the reliability of the thermal resources 

found by the ELCC simulations in the ELCC columns in Table ES3. The thermal ELCC results reflect a range 

of assumptions, mainly battery and renewable penetrations, cold weather outages, and fuel unavailability 

assumptions. Ultimately, more research into the expected cold-weather performance and fuel adequacy 

concerns will be necessary to determine which specific assumptions should drive both accreditation and 

resource adequacy assessments.  

Table ES3. Thermal ELCC Results 

Battery, 
Solar, and 

Wind 
Penetration 

Thermal Cold Weather Fuel 
Winter 

ELCC  
(%) 

Summer 
ELCC     
(%) 

Winter 
UCAP/ 

Winter CDR 
Rating     

(%) 

Summer 
UCAP/ 

Summer CDR 
Rating  

(%) 

0 2024 Base None 89.6% 89.8% 94.6% 93.9% 

0 2024 Base Include Fuel 87.5% 89.8% 94.9% 93.9% 

0 2024 2011 None 87.5% 89.8% 94.9% 93.9% 

0 2024 2011 Include Fuel 83.5% 89.5% 95.0% 94.0% 

0 2024 2011 and 2021 None 78.0% 89.6% 95.1% 94.0% 

0 2024 2011 and 2021 Include Fuel 67.7% 89.6% 95.1% 94.0% 

2024 2024 Base None 89.9% 90.8% 96.1% 94.4% 

2024 2024 Base Include Fuel 87.9% 90.7% 96.3% 94.4% 

2024 2024 2011 None 87.9% 90.7% 96.3% 94.4% 

2024 2024 2011 Include Fuel 83.4% 90.7% 96.6% 94.4% 

2024 2024 2011 and 2021 None 78.9% 90.8% 96.9% 94.4% 

2024 2024 2011 and 2021 Include Fuel 69.3% 90.8% 97.1% 94.4% 

 

 



14 
 

KEY MODEL INPUTS AND PARAMETERS 

A. MODELING FRAME ORK 

This study was performed using the Strategic Energy & Risk Valuation Model (SERVM). Like other reliability 

models, SERVM probabilistically evaluates the reliability implications of any given portfolio.  It does so by 

simulating generation availability, load profiles, load uncertainty, inter-regional transmission availability, 

and other factors. SERVM ultimately generates standard reliability metrics such as loss-of-load expectation 

(LOLE), loss-of-load hours (LOLH), and expected unserved energy (EUE).  Unlike other reliability modeling 

packages, however, SERVM simulates economic outcomes, including hourly generation dispatch, ancillary 

services, and price formation under both normal conditions and emergency operating procedures.   

The multi-area economic and reliability simulations in SERVM include an hourly chronological economic 

dispatch that is subject to inter-regional transmission constraints. Each generation unit is modeled 

individually, characterized by its economic and physical characteristics. Planned outages are scheduled in 

off-peak seasons, consistent with standard practices, while unplanned outages and derates occur 

probabilistically using historical distributions of time between failures and time to repair. Load, hydro, 

wind, and solar conditions are modeled based on profiles consistent with individual historical weather 

years. Dispatch limitations and limitations on annual energy output are imposed on certain types of 

resources such as demand response, hydro generation, and seasonally mothballed units. 

The model implements a week-ahead and then multi-hour-ahead unit commitment algorithm considering 

the outlook for weather and planned generation outages. In the operating day, the model runs an hourly 

economic dispatch of baseload, intermediate, and peaking resources, including an optimization of 

transmission-constrained inter-regional power flows to minimize total costs. During most hours, hourly 

prices reflect marginal production costs, with higher prices being realized when import constraints are 

binding. During emergency and other peaking conditions, SERVM simulates scarcity prices that exceed 

generators’ marginal production costs.  

To examine a full range of potential reliability outcomes, we implement a Monte Carlo analysis over a large 

number of scenarios with varying demand and supply conditions. Because reliability events occur only 

when system conditions reflect unusually high loads or limited supply, these simulations must capture 

wide distributions of possible weather, load growth, and generation performance scenarios. This study 

incorporates 42 weather years, 5 levels of economic load forecast,3 and 20 draws of generating unit 

performance for a total of 4,200 iterations for each simulated case. Each individual iteration simulates 

8,760 hours for the study year of 2024.   

 
3 The five discrete levels of load forecast error we model are equal to  %  +/− %  and +/− % above and below the 
ERCOT load forecast. 
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To properly capture the magnitude and impact of reliability conditions during extreme events, a critical 

aspect of this modeling effort is the correct economic and operational characterization of emergency 

procedures. For this reason, SERVM simulates a range of emergency procedures, accounting for energy 

and call-hour limitations, dispatch prices, operating reserve depletion, dispatch of economic and 

emergency demand-response resources, and administrative scarcity pricing.4 

B. STUDY YEAR 

The ELCC study analyzed the expected conditions and resources in 2024. 

C. STUDY TOPOLOGY 

For this study, the ERCOT region is assumed to have full deliverability of all generation within ERCOT. 

Neighboring electric systems - Entergy, SPP, and Mexico – were also modeled, as shown in Figure 1.  

Figure 1. Study Topology 

 

 
4 Similar to other reliability modeling exercises, our study is focused on resource adequacy as defined by having 
sufficient resources to meet peak summer load.  As such, we have not attempted to model other types of outage or 
reliability issues such as transmission and distribution outages, common mode failures related to winter weather 
extremes, or any potential issues related to gas pipeline constraints or delivery problems. 
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D. COMPONENTS OF SUPPLY AND DEMAND 

Load and resource accounting for the 2024 system is based on ERCOT’s conventions in the May 2022 

Capacity, Demand and Reserves (CDR) Report, as summarized in Table 1.5 The fleet summary developed 

by ERCOT staff for the CDR Report was the most recent data available when this study was developed.6 

Any units coming online before June 2024 were included in the study and assumed to come online in 

January of the year, and any units coming only after June 2024 were excluded in the study to maintain a 

homogeneous resource mix for the study year. Firm peak load is reduced for incremental rooftop 

photovoltaic (PV) forecast, non-controllable load resources (LRs), 10-minute and 30-minute emergency 

response service (ERS), and Transmission/ Distribution Service Providers (TDSP) energy efficiency and load 

management. Products with call limits, ERS and TDSP load management programs, were excluded from 

the base case simulations. All wind, solar, and storage capacity was removed from the base case used for 

the ELCC surface development, and perfect combustion turbine capacity – capacity with no outages or 

ramping limitations – was added until the LOLE Capacity was 0.1 for the summer and winter seasons.    

Table 1. Supply and Demand Summary for 2024 Study Year 

 ERCOT System 

Peak Load (MW) 80,554 

Load Reduction (MW) 2,823 

LRs serving RRS (MW) 1,591 

10-Minute ERS (MW) 35 

30-Minute ERS (MW) 890 

TDSP Curtailment Programs (MW) 307 

Supply  
 

Conventional Generation (MW) 67,560 

Hydro (MW) 475 

Wind (MW)* 40,035 

Solar (MW)* 34,951 

Storage (MW)* 7,620 

PUNs (MW) 4,262 

Capacity of DC Ties (MW) 1,220 

Note: Energy Efficiency Programs are already removed from the modeled peak 
load and are not represented in the modeled load reduction programs (ERCOT 
Aggregate = 3,681 MW in 2024 Study Year) 
*Nameplate Capacity of Unit Category 

On the demand side, this study started with ERCOT’s zonal hourly load shapes under many possible 

weather patterns and peak load forecast for 2024.  Astrapé simulated 42 weather years, from 1980 

 
5 https://www.ercot.com/gridinfo/resource 
6 In general, the May 2022 CDR is the authoritative source, the following assumptions were used for including 
certain resource types: (1) switchable units – include as internal resources, with the units that are committed off-
system excluded from our model. (2) unit additions/retirements – include or exclude starting in the CDR-specified 
year. (3) inactive planned – excluded from model 
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through 2021 (with corresponding wind and solar conditions from the same years).  When calculating 

expected values, an equal probability for each year’s weather was assumed.7   

E.  DEMAND SHAPES AND  EATHER UNCERTAINTY MODELING 

We represented weather uncertainty in the projected ERCOT 2024 peak load by modeling 42 load forecasts 

based on 42 historical weather patterns from 1980-2021.8 Figure 2 shows the variability in summer and 

winter peak load across the 42 weather years simulated for this study. The most severe summer peak is 

6.2% above the normal weather summer peak while the most severe winter peak is 26.9%% above the 

normal weather winter peak.  

Figure 2. Seasonal Peak Load Variance by Weather Year 

 

F. NON- EATHER DEMAND FORECAST UNCERTAINTY AND FOR ARD PERIOD  

The load forecast errors were updated to reflect a 2-year ahead look that reflects that load may grow 

faster or slower than expected. As shown in the right chart of Figure 3, we assume that non-weather load 

forecast error (LFE) is normally distributed with a standard deviation of 0.43% on a 1-year forward basis, 

 
7 Applying equal probabilities is reasonable given that so many years can be taken to be fairly representative of the 
underlying distribution, assuming there is not a trend in the average weather or in the variability of weather.  
8 Large Flexible Loads, as currently defined by ERCOT, are not accounted for in the SERVM modelling.  
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increasing by 0.66% with each additional forward year.9 The distribution included no bias or asymmetry in 

non-weather LFEs. The left-hand chart of Figure 3 shows the five discrete levels of LFE we modeled, equal 

to 0%, +/− %, and +/-4% above and below the forecast.  The largest errors are the least likely, consistent 

with a normal distribution.   

Figure 3. Non-Weather Load Forecast Error 

 

G. EXTERNAL REGION MODELING 

The neighbors - Entergy, SPP, and Mexico - were updated to reflect 2024 load forecasts and resources. 

External regions’ peak load and load shapes were independently developed based on publicly available 

peak load projections, historical hourly weather profiles, and historical hourly load data.  

H. GENERATION RESOURCES 

The economic, availability, ancillary service capability, and dispatch characteristics of all generation units 

in the ERCOT fleet are modeled  using unit ratings and online status consistent with ERCOT’s May      

CDR report.  

1. CONVENTIONAL GENERATION OUTAGES 

A major component of reliability analyses is modeling the availability of supply resources after considering 

maintenance and forced outages.  We model forced and maintenance outages of conventional generation 

units stochastically. Partial and full forced outages occur probabilistically based on distributions accounting 

for time-to-fail, time-to-repair, startup failure rates, and partial outage derate percentages.  Maintenance 

outages also occur stochastically, but SERVM accommodates maintenance outages with some flexibility to 

schedule maintenance during off-peak hours. Planned outages are differentiated from maintenance 

outages and are scheduled in advance of each hourly simulation. Consistent with market operations, the 

planned outages occur during low demand periods in the spring and fall, such that the highest coincident 

 
9 This assumed LFE is a standard assumption that we developed in lieu of any ERCOT-specific analysis, which would 
require either a longer history of load forecasts in ERCOT or a new analysis developed out of ERCOT’s peak load 
forecast, neither of which are currently available.  
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planned outages occur in the lowest load days. This outage modeling approach allows SERVM to recognize 

some system-wide scheduling flexibility while also capturing the potential for severe scarcity caused by a 

number of coincident unplanned outages.  

We develop distributions of outage parameters for time-to-fail, time-to-repair, partial outage derate 

percentages, startup probabilities, and startup time-to-repair from historical Generation Availability Data 

System (GADS) data for individual units in ERCOT’s fleet  supplemented by asset class average outage rates 

provided by ERCOT where unit-specific data were unavailable. Table 2. Equivalent Forced Outage Rates by 

Asset Class summarizes fleet-wide and asset-class outage rates, including both partial and forced outages. 

Table 2. Equivalent Forced Outage Rates by Asset Class 

Unit Type EFOR (%) 

Gas 10.1 

Biomass 4.9 

Coal 10.2 

Nuclear 0.3 

Storage 5.0 

Fleet Weighted Average 8.92 

Additional forced outage probabilities were modeled for temperatures below 20°F, as shown in Figure 4. 

Forced outages from 2018-2021 as a function of temperature were analyzed while excluding winter storm 

Uri. A trend was added to the graph below 20 degrees and extrapolated to 0 degrees (Goal Average series 

below).10  A linear probability was assigned with an hourly incremental forced outage probability of 1.07% 

at 0°F down to 0% at 20°F leading to an average of ~9,000 total MW being forced offline at 0°F. The impacts 

of the new weatherization requirements are not being considered in the temperature outage correlation 

modeling. 

 
10 The extrapolated value at 0°F was not as extreme as the 2011 outages (14.7 GW, inclusive of forced outages from 
PUNs units as well, forced offline when system temperatures were roughly 14°F). Modeling this way reflected 
improvement from both 2011 and 2021 but also reflected an increased risk from what has been modeled in 
previous studies.  https://www.ferc.gov/sites/default/files/2020-
05/ReportontheSouthwestColdWeatherEventfromFebruary2011Report.pdf 



20 
 

Figure 4. Cold Weather Forced Outage Modeling11 

 

2. PRIVATE USE NETWORKS 

We represent generation from Private Use Networks (PUNs) in ERCOT on a net generation basis, where 

the net output increases with the system portion of peak load consistent with historical data and as 

summarized in Figure 5. At any given load, the realized net PUN generation has a probabilistic quantity, 

with 10 different possible quantities of net generation within each of 10 different bands of system load.12 

Each of the 10 possible quantities has an equal 10% chance of materializing, although the figure reports 

only the lowest, median, and highest possible quantity. The probabilistic net PUN supply curve was 

developed based on aggregate hourly historical net output data within each range of peak load 

percentage. During scarcity conditions with load at or above 88% of normal peak load, PUN output 

produces at least 2,419 MW of net generation with an average of 3,002 MW.  

 
11 There were no temperature points between 3-4°F in the average temperature profile used in the SERVM 
simulations. 
12 Hourly net PUN output data by zone gathered from ERCOT.  
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Figure 5. PUN Net Generation 

 

3. INTERMITTENT WIND AND SOLAR 

We modeled a total quantity of intermittent wind and solar photovoltaic resources that reflects what 

ERCOT reported in the May 2022 CDR Report. An aggregate wind and solar profile were created that used 

the same profile breakdown as the base case and then were used for simulations along the surface. 

Technology specific profiles were created by aggregating the appropriate profiles from the base case to 

obtain one average profile for each technology.  

We developed our system-wide hourly wind profiles by aggregating 42 years of synthesized hourly wind 

shapes for each location of individual units across the system wind shapes over 1980 to 2021, as provided 

by ERCOT staff.13  Figure 6 plots the average wind output by season and time of day, showing the highest 

output overnight and in spring months with the lowest output in mid-day and in summer months.  The 

overall capacity factor for wind resources was 39.3%. 

 
13 ERCOT obtained the original wind profiles from UL (formerly AWS Truepower).   
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Figure 6. Average Wind Output by Month and Time of Day 

 

We similarly model hourly solar PV output based on hourly output profiles that are specific to each 

weather year, as aggregated from county-specific synthesized output profiles over years 1980 to 2021.14  

In aggregate, solar resources had a capacity factor of 26.0% across all years. 

STUDY APPROACH 

A. ELCC SURFACE 

This study focuses on calculating the ELCC of renewable and energy storage portfolios. The ELCC of a 

variable energy resource is the capacity value (expressed in MW) associated with the resource’s reliability 

contribution to the system. The ELCC can also be calculated as a percentage of the calculated capacity 

value relative to the nameplate capacity value of the resource.  The process used in this study consists of 

the following steps: 

1. The first step in the portfolio ELCC analysis was to calibrate the base case to a 0.1 LOLE target in 

both the summer and winter seasons. The study year chosen was 2024 and involved removing all 

 
14 Individual county and site-specific output profiles for 1980-2021 were provided by ERCOT, obtained through UL 
(formerly AWS Truepower). 
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the variable energy resources from ERCOT and adding perfect capacity – capacity with no outages 

or ramping limitations – until the summer and winter reliability risk is at 0.1 LOLE individually.  

2. Starting with the base case at 0.1 LOLE above, solar, wind, and storage capacity was then added 

up to 40, 50, and 12 GW respectively at different storage durations, which improved the LOLE. 

Perfect capacity was then removed until the reliability risk in the summer and winter reduces to 

0.1 LOLE. The MW value of perfect capacity removed was equal to the average ELCC of the added 

variable energy resource portfolio. Figure 7, below represents the ELCC calculation process. 

Figure 7. ELCC Methodology  

 

The ELCC scenarios analyzed can be summarized as a combination of the following capacity vectors: 

• Solar capacity (MW): 0 - 40 GW 

• Wind capacity (MW): 0 - 50 GW 

• Energy Storage (2-, 4-, and 8-hour) (MW): 0 - 12 GW 

For example, Table 3 represents the matrix of all portfolios modeled in SERVM for 2-hour battery 

penetration of 4 GW. 
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Table 3. Summer Portfolio Capacity Contribution; Storage 2-Hour 4 GW 

  

Similarly, ELCC matrices were built for no storage, 8 GW 2-hr storage, and 12 GW 2-hr storage in summer 

and winter. These small matrices were then interpolated at step-sizes of 500 MW each for the solar, wind, 

and storage dimensions to get 3-dimensional ELCC surfaces with monotonical decreasing first order 

derivatives. This interpolation was performed using a bivariate spline and performing triangular smoothing 

iteratively. Figure 8 represents one such dense surface for the summer with storage (2-hour, 4 GW).  

Figure 8. ELCC Surface (4 GW, 2-Hour Storage) 

 

Similar surfaces were constructed for different 2-hour storage penetrations between 0 – 12 GW at step-

sizes of 500 MW. Starting from these surfaces, ELCCs were calculated for the individual resource classes 

that make up the portfolio at different investment levels. The delta method by E3 is well known and can 

Solar/Wind 0 35000 40035 50000

0 3,687   7,187    7,589    8,934    

5000 7,148   12,200  12,704  13,800  

10000 10,272 15,765  16,319  16,923  

15000 11,115 17,868  18,472  19,647  

20000 11,927 18,579  19,122  20,433  

30000 12,244 19,775  20,422  21,769  

34951 12,393 20,270  21,004  22,379  

40000 12,472 20,508  21,256  22,647  
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be used to allocate portfolio ELCC to individual class resources.15 As shown in Figure 9,  the delta method 

relies on three measured ELCC values: 

Figure 9. Delta Method 

 

• Portfolio ELCC: total ELCC for a combination of intermittent and energy-limited resources 

• First-In ELCC: represents the marginal ELCC of each individual resource in a portfolio with no 

other intermittent or energy limited resources 

• Last-In ELCC: the marginal ELCC value of each individual resource when taken in the context of 

the full portfolio 

The steps of the delta method are as follows: 

1. Calculate Portfolio Interactive Effects: Calculated as the difference between the portfolio ELCC 

and the sum of the Last-In ELCCs for all individual resources as shown in Figure 10. 

Figure 10. Portfolio Interactive Effects 

 

 
15 https://www.ethree.com/wp-content/uploads/2020/08/E3-Practical-Application-of-ELCC.pdf 
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2. Calculate Individual Interactive Effects: Calculated as the difference between the First-In ELCC 

and the Last-In ELCC for each individual resource as shown in Figure 11. 

Figure 11. Individual Interactive Effects 

 
3. Calculate Individual ELCC Adjustments: Calculated by scaling all individual interactive effects to 

match the portfolio interactive effects as shown in Figure 12. 

Figure 12. Individual ELCC Adjustments 

 
4. Calculate ELCC Accreditation: Add individual resource ELCC adjustments to Last-In ELCC for each 

individual resource to get final ELCC credit as seen in Figure 13. 

Figure 13. Final ELCC Accreditation 
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The delta method scales linearly between the first-in and last-in ELCC values as can be seen by the red 

dashed line in Figure 9. For high penetrations with a variety of different resource classes, this method can 

result in irregular accreditation for resource classes.  

To combat this issue in this work, a modification was made to the delta method which involves integrating 

between the first-in and last-in ELCC values and is thus called the “integration method”.  The integration 

method integrates along the curve of the portfolio ELCC, from the first-ins to the portfolio installed 

capacity. Thus, the integration method performs consecutive calculations along the portfolio ELCC as 

shown in Figure 14. 

Figure 14. Integration Method 

 

The integration method breaks the linear scaling between the first-in and last-in ELCC values more 

accurately to the actual portfolio ELCC curve by capturing the non-linear nature of the ELCC curve as the 

installed capacity rises for different resource classes. 

The flow chart for the integration method can be seen in Figure 15. The integration method relies on the 

development of the portfolio allocation dense surfaces. In equation (1), 𝑨 represents the reliability 

contribution associated with installed capacities of renewable resources which is looked up on the dense 

surfaces. 

𝑨 = 𝒇(𝑰𝑪𝟏, 𝑰𝑪𝟐, 𝑰𝑪𝟑)      ( 1 ) 

𝑨𝟏 = 𝑨 −  𝒇(𝟎, 𝑰𝑪𝟐, 𝑰𝑪𝟑)    ( 2 ) 

In equation (2), 𝑓(0, 𝐼𝐶2, 𝐼𝐶3) represents the capacity contribution/allocation considering only resource 

classes 2 & 3. Thus, subtracting this term from 𝑨 calculated in equation (1) we get the capacity 

contribution/allocation of resource class 1 individually. Similarly, we can calculate 𝑨𝟐 and 𝑨𝟑, by setting 

the other two resource classes to 0. The total individual allocation can then be summed up for all resource 

classes and a running total can be tracked as the portfolio installed capacity is incremented up to the target 
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value. Upon hitting the target value, the final allocation 𝑭𝑨𝒊 for the resource class i can be calculated as 

shown in equation (3).  

𝑭𝑨𝒊 = (
𝑨𝒊

𝑺𝒖𝒎
) ∗ 𝑨     ( 3 ) 

Here, 𝑺𝒖𝒎 is the sum of the individual allocations for all resource classes across all iterations. 𝑨 is the 

portfolio allocation at the final iteration and 𝑨𝒊 is the individual allocation for resource class i in the final 

iteration. 

Figure 15. Integration Method Steps 

 

B. THERMAL ELCC APPROACH 

The resource adequacy contribution of renewables and storage resources has been explored robustly over 

the recent decades through ELCC studies, but the accreditation of conventional thermal generators has 

not been explored as thoroughly. A common assumption is that the Equivalent Forced Outage Rate 

Demand (EFORd) is a reasonable proxy for the impact that these generators will have on the need for 

reserves. A system with homogeneous resources with EFORd of 10% would presumably need to carry 

reserves of 10% to compensate for that level of performance. However, that is only true if the system has 

perfect outage characteristics of 10% of the fleet offline in all hours of need. Random forced outages will 

lead to some hours having many more megawatts offline and some hours with less. Reserves of 10% would 

not protect reliability in hours with more outages. Generally reserve margin studies account for this, but 

the impact does not get assessed to the thermal fleet directly; it gets socialized by load on the demand 
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side. Other performance effects of conventional units including correlated outages due to weather (as 

described below), fuel unavailability, or common equipment failures are often not considered at all.16  

ELCCs have not typically been quantified for thermal resources since they are dispatchable and 

theoretically do not have energy constraints. The only reduction in the reliability contribution of these 

resources would be due to unplanned outages. Accrediting capacity for thermal resources is typically done 

by quantifying the difference in nameplate or Installed Capacity (ICAP) and Unforced Capacity (UCAP).  

UCAP is generally calculated as a function of both its ICAP and its EFORd as follows in equation (4). 

𝑼𝑪𝑨𝑷 = 𝑰𝑪𝑨𝑷 ∗ (𝟏 − 𝑬𝑭𝑶𝑹𝒅)     ( 4 ) 

However, the development of EFORd and its application in traditional resource adequacy modeling, even 

when applied as part of a UCAP formulation, is not sufficient to identify the true load carrying capability 

of such resources. While EFORd is an appropriate calculation for the determination of the expectations of 

a particular unit’s availability when considered on an independent basis  its application in traditional 

resource adequacy modeling does not take into consideration of the distribution of system outages or the 

potential correlations in outages across a generation fleet that may impact the overall ability of the fleet 

to serve load.   

A key component of reliability planning is accounting for generator performance uncertainty. Instinctively, 

a system with a 5% forced outage rate would need to carry about 5% more capacity to account for those 

outages. This would only work if a system always has exactly 5% of its generators on outages. However, in 

reality, the variability of ERCOT thermal unit outages means that some hours can have as little as 1,200 

MW on outage while others can have up to 5,900 MW while the average is roughly around 3,000 MW. An 

example of hourly outages from a simulation are provided in Figure 16. 

 
16 Common equipment failures refer to the possibility that multiple generators can go offline simultaneously due to 
environmental controls, transmission line outages, step-up transformer failures, etc.  



30 
 

Figure 16. Average Outages Versus Modeled Outages Example 

 

Outages correlated to severe weather events are also modeled. As cold temperatures become more 

extreme, the combination of increased demand on the resources and the effects of temperature on the 

equipment itself creates a higher overall risk of failure, as seen in 2011 and 2021 events. Astrapé 

incorporated the incremental hourly forced outage rates as a function of temperature when temperatures 

are below 20°F.  

In addition to outage correlations with temperature, additional outages during extreme cold weather 

events due to the availability of fuel are also likely. While there is significant uncertainty to the impact that 

natural gas availability might have on reliability, internal ERCOT analysis performed after Winter Storm Uri 

identified 5,000 MW of outages that occurred due to a lack of fuel. This assumption was used for 

incremental outages due to fuel constraints in the most extreme winter conditions. 

The goal of this analysis was to determine the impact of unit outages on the ability of traditional, EFOR-

based units to serve load and to translate this impact into an ELCC equivalent for these resources. To 

calculate this impact, Astrapé started with base cases that were calibrated to a winter and summer LOLE 

of 0.1 days/year. Astrapé examined the ELCCs of the thermal fleet under the various renewable and 

energy-limited penetrations, cold weather thermal outage assumptions, and fuel availability assumptions 

defined in Table 4.  It is important to note that these ELCC scenarios did not take into consideration the 

potential impact to outages resulting from new plant weatherization standards enacted by the Texas 

Public Utility Commission. 
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Table 4. Thermal ELCC Study Matrix 

ELCC 
Scenario 

Battery 
Penetration 

(GW) 

Solar 
Penetration 

(GW) 

Wind 
Penetration 

(GW) 

Thermal 
Penetration 

(GW) 

Cold Weather Outage 
Assumption 

Fuel 
Availability 
Assumption 

1 2024 
Portfolio 

2024 
Portfolio 

2024 
Portfolio 

0 

Exclude 2021 

Exclude 2021 

2 2024 
Portfolio 3 0 0 0 

4 2024 
Portfolio 

2024 
Portfolio 

2024 
Portfolio 

0 

Exclude 2011 and 2021 5 2024 
Portfolio 6 0 0 0 

7 2024 
Portfolio 

2024 
Portfolio 

2024 
Portfolio 

0 

Include 2011 and 2021 8 2024 
Portfolio 9 0 0 0 

10 2024 
Portfolio 

2024 
Portfolio 

2024 
Portfolio 

0 

Exclude 2021 

Include 2021 

11 2024 
Portfolio 12 0 0 0 

13 2024 
Portfolio 

2024 
Portfolio 

2024 
Portfolio 

0 

Exclude 2011 and 2021 14 2024 
Portfolio 15 0 0 0 

16 2024 
Portfolio 

2024 
Portfolio 

2024 
Portfolio 

0 

Include 2011 and 2021 17 2024 
Portfolio 18 0 0 0 

 

A visual representation of the forced outages as a function of temperature for each fuel and outage 

combination is shown in Figure 17.  
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Figure 17. Cold Weather Forced Outage and Fuel Availability Assumptions as a Function of 
Temperature 

 

RESULTS 

A. MODEL SETUP 

SERVM was calibrated seasonally to 0.1 LOLE for the summer and winter seasons separately. As the 

renewable portfolio penetration was increased, perfect capacity was removed from the system to 

calibrate it back to 0.1 seasonal LOLE.  

B. SUMMER MARGINAL ELCCS 

Figure 18 depicts the capacity contribution surface for the summer for a 6 GW penetration of 2-hour 

storage. Similar surfaces were constructed for 2-hour storage levels between 0-12 GW at step sizes of 500 

MW. The integration method (discussed in the previous section) was then applied to allocate capacity 

contributions to the individual resource classes and technology subclasses. 
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Figure 18. Summer Capacity Contribution Surface (2-Hour Storage, 6 GW) 

 

The first order derivatives (marginal ELCCs) for these surfaces with respect to solar and wind can be seen 

in Figure 19, Figure 20, Figure 21, and Figure 22. Figure 19 has solar penetration varying with wind 

penetration held constant at 25 GW for different capacities of 2-hour storage. The first 5-10 GW of solar 

penetration flattens the net load shape creating an antagonistic reliability value relationship with storage. 

As solar penetration rises above this level, solar marginal ELCCs are higher for higher storage penetration. 

Figure 20, shows how solar marginal ELCCs vary for different wind penetrations. Solar exhibits a consistent 

but small synergistic reliability value relationship with wind penetration. 
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Figure 19. Summer Solar Marginal ELCC (Varying Storage Penetration, Fixed Wind Penetration)  
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Figure 20. Summer Solar Marginal ELCC (Fixed Storage Penetration, Varying Wind Penetration)  

 

Figure 21 and Figure 22 show the wind marginal ELCCs for different solar and storage penetrations, one 

resource held constant while the other varies. Figure 21 shows wind marginal ELCCs with respect to wind 

penetration for different storage penetrations as solar penetration is held constant at 20 GW. Wind and 

2-hour storage have minimal interactive effects, with a modest antagonistic effect at low 2-hour storage 

penetrations. 
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Figure 21. Summer Wind Marginal ELCC (Varying Storage Penetration, Fixed Solar Penetration) 
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Figure 22. Summer Wind Marginal ELCC (Fixed Storage Penetration, Varying Solar Penetration) 

 

Figure 22 depicts summer wind marginal ELCCs as a function of wind penetration, with 2-hour storage 

penetration held constant at 6 GW for different solar penetration levels. The figure depicts the consistent 

synergy between wind and solar and echoes the result from Figure 20. Figure 23 and Figure 24 depict 2-

hour storage marginal ELCC as a function of storage penetration with different wind and solar penetration 

levels. In Figure 23 solar is held constant at 20 GW and shows that there are minimal interactive effects 

between 2-hour storage and wind penetration, with modest antagonistic effects as were seen in Figure 

21.  
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Figure 23. Summer 2-Hour Storage Marginal ELCC (Varying Wind Penetration, Fixed Solar Penetration) 
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Figure 24. Summer 2-Hour Storage Marginal ELCC (Fixed Wind Penetration, Varying Solar Penetration) 

 

Figure 24 shows the significant synergy between solar and 2-hour storage. As the solar penetration goes 

above 20 GW, the net load shape has a narrow peak as can be seen in Figure 25 which benefits short-

duration storage.  
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Figure 25. Net Load Shape with Increasing Solar Penetration 

 

Figure 26. Normalized Net Load Shape Comparison 
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Summer marginal ELCC curves of different duration storage resources are depicted in Figure 27. Increased 

storage duration makes the decline in marginal ELCC less significant. Eight-hour storage showed only a 

minimal decline in the marginal ELCCs up to 12 GW of penetration. For this analysis all storage on the 

system was assumed to be of a certain duration (2-hour, 4-hour, or 8-hour). 

Figure 27. Summer Storage Marginal ELCCs by Duration (Solar 20 GW and Wind 25 GW) 

 

C. SUMMER AVERAGE ELCCS 

Applying the integration method on a discrete portfolio produces average and marginal ELCC curves for 

the wind, solar, and batteries included in that portfolio. As this report has demonstrated, the reliability 

contribution of any variable energy technology is contingent on the underlying penetration of all variable 

energy technologies, so calculating the average ELCC is sensitive to the order in which resources are added. 

The integration method assumes no vintaging of resources, so all resources are added in proportion to 

their final penetration. The marginal ELCC is calculated for a block of storage, a block of solar, a block of 

wind, and the sum of all three blocks. The marginal ELCCs by technology are allocated to add up to the 

portfolio ELCC. This continues until the total portfolio has been analyzed. The specific portfolio analyzed, 

and technology step sizes are shown in Table 5. Similar analysis using the same step sizes was performed 

for 4 and 8-hour duration storage. 
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Table 5. Integration Method Parameters 

Resource Class 
Increments 

(MW) 
Total Penetration 

(MW) 

Storage 50 9,000 

Solar 200 36,000 

Wind 250 45,000 

Portfolio 500 90,000 

 

The solid curves in Figure 28 represent the average ELCC values as the penetration rises, while the dashed 

curves represent the marginal ELCCs. The average ELCCs show a declining trend as the penetrations rise, 

except for 2-hour storage and wind. In the case of storage this is due to the interactive effects that 2-hour 

storage shares with solar. The 2-hour storage average ELCCs first fall as the first 20 GW of solar capacity 

flattens the net-load shape.  After 20 GW, the solar penetration makes the net load shape produce a 

narrow peak, which benefits short-duration storage. In the case of wind, Solar investments shift the net 

load peak into the evening which provides the wind with added benefit. 

Figure 28. Summer Resource Level ELCCs (Solar, Wind, and 2-Hour Storage) 
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The integration method produces similar results when replacing 2-hour storage with longer duration 

storage as seen in Figure 29 and Figure 30. As the solar penetration rises to 20 GW, the net-load peak is 

shifted later into the day and longer duration storage is better able to serve this peak than the shorter 

duration storage. Hence, the decline in the marginal ELCCs in the 4-hour storage case is less pronounced 

than in the 2-hour storage case, and the 8-hour case sees an even smaller decline. Solar marginal ELCCs 

are initially numerically close to the average ELCCs, but as the rising solar penetration shifts the net load 

peak to the early hours of the day or the late evening, the solar marginal ELCC starts declining rapidly. 

Wind marginal ELCCs see a synergistic relationship as the solar pushes the net load peak later into the day, 

but for higher wind penetrations they decrease.  

Figure 29. Summer Resource Level ELCCs (Solar, Wind, and 4-Hour Storage) 
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Figure 30. Summer Resource Level ELCCs (Solar, Wind, and 8-Hour Storage) 

 

D.  INTER RESULTS 

Figure 31 depicts the winter capacity contribution surface for a 6 GW penetration of 2-hour storage. The 

variable energy portfolios analyzed have significantly lower reliability contributions in the winter as 

compared to the summer values at the same 2-hour storage penetration.  The lower reliability contribution 

is driven by the timing and shape of reliability events. Winter reliability events are concentrated in the 

early morning hours when solar PV produces little energy. Winter peaks can also be persistently high 

reducing the reliability value of short duration storage. The marginal ELCCs for solar, wind and 2-hour 

storage can be seen in Figure 32. 
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Figure 31. Winter Capacity Contribution Surface (2-Hour Storage, 6 GW)  

 

 

Figure 32. Winter vs Summer: Solar, Wind, and Storage (2-Hour) Marginal ELCCs 
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Wind marginal ELCCs in the winter see a small decline as wind penetration rises, as shown in Figure 32. 

The solar and storage (2-hour) marginal ELCCs in the winter see a quick decline as the penetration rises. 

The marginal ELCCs in the winter for solar are lower than in the summer due to fewer hours of sunlight 

and high loads during low solar output periods. The storage marginal ELCCs are also lower since the 

interactive effects between solar and storage are not as strong in the winter. Marginal ELCC curves for 

different storage durations in the winter are depicted in Figure 33. Storage marginal ELCCs in the winter 

depicted in Figure 33 decay faster and further than in the summer as depicted in Figure 27. 

Figure 33. Winter Storage Marginal ELCCs by Duration (Solar 20 GW and Wind 25 GW) 
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Figure 34. Winter Resource Level ELCCs Using the Integration Method (Solar, Wind, and 2-Hr Storage) 

 

Applying the integration method on winter capacity contribution surfaces like the one depicted in Figure 

31 result in the ELCC curves shown in Figure 34. The portfolio is incremented using the values in Table 5. 

In Figure 34 the solid curves represent the average ELCCs, and the dashed curves represent the marginal 

ELCCs. The solar and storage (2-hour) marginal ELCCs fall as the penetration rises as the net load peak is 

pushed later into the day. The winter wind ELCCs decline at a much slower rate as the wind penetration 

rises because the net load peak gets pushed to later in the day, which benefits the wind. 

The integration method was applied with different storage duration levels and the results are depicted in 

Figure 35 and Figure 36. This analysis was performed on hypothetical storage portfolios where all the 

storage was set to 4-hour and 8-hour durations. The rate of decay for storage marginal ELCCs reduces as 

the duration increases as can be seen on comparing Figure 34, Figure 35, and Figure 36. 
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Figure 35. Winter Resource Level ELCCs Using the Integration Method (Solar, Wind, and 4-Hr Storage) 

 

Figure 36. Winter Resource Level ELCCs Using the Integration Method (Solar, Wind, and 8-Hr Storage) 
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D. TECHNOLOGY AND LOCATION SPECIFIC RESULTS 

The resource class ELCC results mentioned in the previous sections were also decomposed into technology 

or location specific ELCCs. Renewable profiles for each zone were created by calculating a weighted 

average of all the county level profiles for the zone being analyzed. Table 6 represents the technology 

specific first-in and last-in ELCC at the 2024 penetration levels. First-in ELCCs represent the reliability value 

of the first tranche of the technology being analyzed assuming all other variable energy resources are held 

constant. The Last-in ELCC represents the reliability value of the last tranche respectively. 

The portfolio average ELCCs reflect different trends than the trend observed in Table 6. While marginal 

wind ELCCs remain relatively static in the average ELCC build-up calculation, this locational specific analysis 

shows a marked decline in ELCCs. The wind ELCC remains relatively static across penetrations in an average 

ELCC calculation because of offsetting effects. Holding all external variables constant (as was done in Table 

6), wind ELCC would decline because of correlated output. Keeping wind constant but increasing solar 

increases wind's value. Since the average ELCC captures the synergy between wind and solar as well as the 

declining reliability value of wind, the net effect is a relatively static ELCC. 

Table 6. Technology/Location Specific First-In and Last-In ELCCs 

 Technology 
Summer ELCC 

(%) 
Winter ELCC 

(%) 
2024 Penetration 

(MW) 

First In 

Wind-C 33.8% 55.1%  

Wind-O 33.8% 23.4%  

Wind-P 33.5% 20.7%  

Solar Non-West 68.3% 24.6%  

Solar West 75.6% 20.7%  

Solar Tracking 72.3% 23.5%  

Solar DGPV 43.2% 17.2%  

Last In 

Wind-C 21.8% 49.1% 5,900 

Wind-O 14.9% 12.6% 29,233 

Wind-P 21.8% 13.9% 4,903 

Solar Non-West 3.5% 0.0% 20,856 

Solar West 8.7% 0.0% 14,095 

Solar Tracking 6.1% 0.0%  

Solar DGPV 2.3% 0.0%  

 

The technology specific summer allocation was then decomposed from the resource classes as shown in 

Table 7 and Table 8. 
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Table 7. Summer Resource Class Capacity Contribution 

Technology 

Installed 
Capacity 

(MW) 
[A] 

Summer 
Allocation 

(MW) 
[B] 

Wind 40,036 6,705 

Solar 34,951 11,597 

Storage-2Hr 7,620 5,637 

 

Table 8. Summer Technology/Location Specific Capacity Contribution 

Technology 

Installed 
Capacity 

(MW) 
[C] 

First-In 
ELCCs 

(%) 
[D] 

Last-In 
ELCCs 

(%) 
[E] 

Average First & 
Last-In ELCCs 

(%) 
[F]=([D]+[E])/2 

Standalone 
Average ELCC 

(MW) 
[G]=[C]*[F] 

Summer 
Allocation 

(MW) 
[H]17 

Summer 
Allocation  

(%) 
[I]=([H]/[C]) 

Wind-C 5,900 33.8% 21.80% 27.80% 1,640 1,087 18.43% 

Wind-O 29,233 33.8% 14.90% 24.35% 7,118 4,719 16.14% 

Wind-P 4,903 33.5% 21.80% 27.65% 1,356 899 18.33% 

Solar Non-West 20,856 68.30% 3.50% 35.90% 7,487 6,466 31.00% 

Solar West 14,095 75.60% 8.70% 42.15% 5,941 5,131 36.40% 

 

Solar West gets a higher capacity contribution/ELCC due to it being able to provide capacity during the last 

hours of daylight which coincide with the net-load peak. Wind-C (coastal) and Wind-P (panhandle) perform 

better than Wind-O (other) due to the geographic spread of wind speeds in the summer months. 

Similar results can be seen for the winter season in Table 9 and Table 10. Wind-C gets most of the capacity 

contribution due to the higher wind speeds along the coasts in the winter. Solar Non-West and Solar West 

last-in ELCCs are at 0% due to the diminished value of solar in the winter months. 

Table 9. Winter Resource Class Capacity Contribution 

Technology 

Installed 
Capacity 

(MW) 
[A] 

Winter 
Allocation 

(MW) 
[B] 

Wind 40,036 7,641 

Solar 34,951 2,579 

Storage-2Hr 7,620 3,264 

 
17 [𝐻] =  

[𝐺]𝑤𝑖𝑛𝑑 𝑜𝑟 𝑠𝑜𝑙𝑎𝑟 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠

∑[𝐺]𝑎𝑙𝑙 𝑤𝑖𝑛𝑑 𝑜𝑟 𝑠𝑜𝑙𝑎𝑟 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∗ [𝐵] 
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Table 10. Winter Technology/Location Specific Capacity Contribution 

Technology 

Installed 
Capacity 

(MW) 
[C] 

First-In 
ELCCs 

(%) 
[D] 

Last-In 
ELCCs 

(%) 
[E] 

Average First & 
Last-In ELCCs 

(%) 
[F]=([D]+[E])/2 

Standalone 
Average ELCC 

(MW) 
[G]=[C]*[F] 

Winter 
Allocation 

(MW) 
[H] 

Winter 
Allocation  

(%) 
[I]=([H]/[C]) 

Wind-C 5,900 55.10% 49.10% 51.55% 3,074 2,557 43.35% 

Wind-O 29,233 23.40% 12.60% 10.00% 5,262 4,378 14.98% 

Wind-P 4,903 20.70% 13.90% 8.80% 848 706 14.39% 

Solar Non-West 20,856 24.60% 0.00% 12.30% 2,565 1,644 7.88% 

Solar West 14,095 20.70% 0.00% 10.35% 1,459 935 6.63% 

 

The results in Table 8 and Table 10 are summarized as seasonal capacity contributions (MW) in Figure 37 

for solar technologies. The solar standalone and portfolio capacity contributions both decrease going from 

summer to winter.  

Figure 37. Solar Technology Specific Seasonal Capacity Contribution 
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Figure 38. Wind Technology Specific Seasonal Capacity Contribution 

 

Figure 38 summarizes the seasonal capacity contributions (MW) of wind technologies. Wind technologies 

have an overall higher contribution in the winter as compared to the summer. 

E. THERMAL ELCCS 

The thermal ELCC results when no renewable or battery storage are present in the system are presented 

in Table 11. The analysis performed was an initial examination of the impacts of outages on the ability of 

thermal resources to carry load. The results show that the ELCC of thermal resources is influenced by more 

than just the EFOR. The 1-EFORd accreditation on the right overstates the reliability of the thermal 

resources found by the ELCC simulations in the left of the table. Depending on the cold weather 

assumption, the winter UCAP could overstate the actual reliability contribution of these resources 

compared to the ELCC result by anywhere from 5% to 17%. As noted earlier, the potential impacts of new 

weatherization standards are not accounted for in these results. 
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Table 11. Thermal ELCC Results – Effect of Cold Weather Assumptions with No Renewable or Storage 
Penetration 

Battery, 
Solar, and 

Wind 
Penetration 

Thermal Cold Weather Fuel 
Winter 

ELCC  
(%) 

Summer 
ELCC     
(%) 

Winter 
UCAP/ 

Winter CDR 
Rating     

(%) 

Summer 
UCAP/ 

Summer CDR 
Rating  

(%) 

0 2024 Base None 89.6% 89.8% 94.6% 93.9% 

0 2024 2011 None 87.5% 89.8% 94.9% 93.9% 

0 2024 2011 and 2021 None 78.0% 89.6% 95.1% 94.0% 

 

When fuel availability restrictions are taken into account, the winter ELCC decreases even further, as 

shown in Table 12. For example, the last row of the table shows that by layering in fuel outages on top of 

the 2011 and 2021 cold weather assumptions, the ELCC of the thermal fleet can decrease another 10.3% 

down to 67.6%.  

Table 12. Thermal ELCC Results – Effect of Fuel Availability with No Renewable or Storage Penetration 

Battery, 
Solar, and 

Wind 
Penetration 

Thermal Cold Weather Fuel 
Winter 

ELCC  
(%) 

Summer 
ELCC     
(%) 

Winter 
UCAP/ 

Winter CDR 
Rating     

(%) 

Summer 
UCAP/ 

Summer CDR 
Rating  

(%) 

0 2024 Base None 89.6% 89.8% 94.6% 93.9% 

0 2024 Base Include Fuel 87.5% 89.8% 94.9% 93.9% 

0 2024 2011 None 87.5% 89.8% 94.9% 93.9% 

0 2024 2011 Include Fuel 83.5% 89.5% 95.0% 94.0% 

0 2024 2011 and 2021 None 78.0% 89.6% 95.1% 94.0% 

0 2024 2011 and 2021 Include Fuel 67.7% 89.6% 95.1% 94.0% 

 

As shown in Table 13, the winter thermal ELCCs increase with the addition of the 2024 wind, solar, and 

battery penetrations. For example, looking at the 2011 and 2021 cold weather outages with no additional 

fuel outages, the winter ELCCs raise from 78.0% to 78.9%.  
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Table 13. Thermal ELCC Results – Effect of 2024 Battery and Renewable Penetration on Thermal ELCC 
Results 

Battery, 
Solar, and 

Wind 
Penetration 

Thermal Cold Weather Fuel 
Winter 

ELCC  
(%) 

Summer 
ELCC     
(%) 

Winter 
UCAP/ 

Winter CDR 
Rating     

(%) 

Summer 
UCAP/ 

Summer CDR 
Rating  

(%) 

0 2024 Base None 89.6% 89.8% 94.6% 93.9% 

0 2024 Base Include Fuel 87.5% 89.8% 94.9% 93.9% 

0 2024 2011 None 87.5% 89.8% 94.9% 93.9% 

0 2024 2011 Include Fuel 83.5% 89.5% 95.0% 94.0% 

0 2024 2011 and 2021 None 78.0% 89.6% 95.1% 94.0% 

0 2024 2011 and 2021 Include Fuel 67.7% 89.6% 95.1% 94.0% 

2024 2024 Base None 89.9% 90.8% 96.1% 94.4% 

2024 2024 Base Include Fuel 87.9% 90.7% 96.3% 94.4% 

2024 2024 2011 None 87.9% 90.7% 96.3% 94.4% 

2024 2024 2011 Include Fuel 83.4% 90.7% 96.6% 94.4% 

2024 2024 2011 and 2021 None 78.9% 90.8% 96.9% 94.4% 

2024 2024 2011 and 2021 Include Fuel 69.3% 90.8% 97.1% 94.4% 

 

A simple UCAP capacity accreditation does not accurately reflect the true reliability contribution of these 

resources.  

The thermal ELCC results reflect a range of assumptions. Ultimately, more research into the expected cold-

weather performance and fuel adequacy concerns will be necessary to determine which specific 

assumptions should drive both accreditation and resource adequacy assessments.  
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CONCLUSIONS AND NEXT STEPS 

ELCC calculations are an important step in reliability planning. ELCCs provide insight into not only the 

reliability value of marginal technology decisions, but also the combined contributions of large variable 

energy resources to reliability. As ERCOT is in the midst of a significant transition to a portfolio with nearly 

80 GW of variable energy resources, a robust picture of the reliability path during the transition is just as 

critical, if not more critical, than understanding the reliability characteristics of the system when the 

resource mix becomes more stable. 

The ERCOT system with both summer and winter reliability risks require a sophisticated approach to 

monitoring the reliability value of all technology classes including wind, solar, energy storage, and 

conventional resources. ELCCs provide that framework and allow for equitable treatment of the reliability 

contributions of all resource classes. The impact of any type of dispatch constraint, limitation on the 

availability of energy, and correlations of output can be measured in total and on the margin with the ELCC 

method.  

While the steps of implementing the ELCC method in ERCOT have not been finalized, it will likely entail 

both informational and accreditation elements. Incorporating ELCCs into informational processes such as 

the Capacity, Demand, and Reserves report will signal to the market the average and incremental value of 

each resource class and inform stakeholders on expected reliability conditions in the short term. Using 

marginal or average ELCCs in combination with various performance measurement mechanisms will affect 

resource accreditation and ensure that proper incentives are provided to generation resources to be 

available in critical reliability periods.  
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APPENDIX 

A. GENERATION RESOURCES 

1. HYDROELECTRIC 

We include 557.4 MW of hydroelectric resources  consistent with ERCOT’s May      CDR report. We 

characterize hydro resources using eight years of hourly data over 2012-2019 provided by ERCOT, and 42 

years of monthly data over 1980-2021 from Form EIA-923.18  For each month, SERVM uses four parameters 

for modeling hydro resources, as summarized in Figure A1: (1) monthly total energy output, (2) monthly 

maximum output, (3) daily maximum output, and (4) daily minimum output, as estimated from historical 

data.  

When developing hydro output profiles, SERVM will first schedule output up to the monthly maximum 

output into the peak hours but will schedule some output across all hours based on historically observed 

output during off-peak periods up to the total monthly output. During emergencies, SERVM can schedule 

up to 49.25 MW in drought conditions and 116.15 MW for all other months.  

Figure A1. Historical Hydro Energy Relationships 

 

 

 
18 https://www.eia.gov/electricity/data/eia923/ 
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2. FUEL PRICES  

We used the natural gas future quotes for the 2024 study year.19 The average fuel prices used in the study 

are presented in Table A1. 

Table A1. ERCOT Fuel Forecasts 

Coal Fuel 
Price 

($/MMBtu) 

Gas Fuel 
Price 

($/MMBtu) 

Diesel Fuel 
Price 

($/MMBtu) 
2.52 3.38 11.14 

B. ANCILLARY SERVICE MODELING 

Ancillary services are necessary to maintain the reliability of the ERCOT System. Ancillary services are 

procured to ensure sufficient resource capacity is online or able to be brought online in a timely manner 

to balance the variability that cannot be covered by the 5-minute energy market. The four types of 

Ancillary Services in ERCOT currently are: regulation up service, regulation down service, responsive 

reserve service, and non-spinning reserve service. ERCOT typically maintains a minimum of 3,000 - 4,000 

MW of online upward reserves in order to protect reliability in the event of a disturbance or to provide 

the necessary flexibility to follow potentially volatile net load patterns. A heatmap of the monthly and 

hourly online upward reserve minimums is shown in Figure A2. 

Figure A2. Upward Reserve Requirements 

 

 
19 https://www.cmegroup.com/markets/energy/natural-gas/natural-gas.quotes.html 
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SERVM maintains these online upward reserves when adequate resources are available. When resource 

availability declines during simulations, emergency operating procedures are activated in SERVM to deploy 

reserves and call emergency resources such as demand response. Emergency operating procedures are 

discussed in more detail in Section C.  

C. SCARCITY PRICING AND DEMAND RESPONSE MODELING 

Several types of demand response participate directly or indirectly in ERCOT’s market  including 

Emergency Response Service (ERS), Load Resources, and Price Responsive Demand. These various 

resource types differ from each other in whether they are triggered by price-based or emergency actions, 

and restrictions on availability and call hours. Table A2 summarizes the resources, explaining how we 

modeled their characteristics and their assumed marginal costs when utilized, and how they were 

accounted for in the reserve margin. 
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Table A2. Summary of Demand Resource Characteristics and Modeling Approach 

Resource 
Type 

Quantity 
(MW) 

Modeling Approach 
Marginal 

Curtailment 
Cost 

Adjustments 
to ERCOT 

Load Shape 

Reserve Margin 
Accounting 

TDSP Programs 

Energy 
Efficiency 

3,681 Not explicitly modeled. n/a None Load reduction 

Load 
Management 

307 Emergency trigger at EEA Level 1 $2,543 None Load reduction 

Emergency Response Service (ERS)20 

30-Minute ERS 890 Emergency trigger at EEA Level 1 $1,721 None Load reduction 

10-Minute ERS 35 Emergency trigger at EEA Level 2 $2,543 None Load reduction 

Load Resources (LRs) 

Non-
Controllable 

LRs 

1,591 

Economically dispatch for Responsive 
Reserve Service (most hours) or energy 

(few peak hours). Emergency 
deployment at EEA Level 2 

$2,543 None Load reduction 

Controllable 
LRs 

 
Currently no controllable LRs modeled 

in ERCOT 
n/a n/a n/a 

Voluntary Self-Curtailments 

4 CP 
Reductions 

1,700 
Load shapes grossed up for projected 
response and corresponding response 

modeled on the resource side 
n/a None 

None; excluded from 
reported peak load 

Price 
Responsive 

Demand 

Variable 
Load shapes explicitly grossed up for 
expected response. Economic self-

curtailment modeled on resource side 

$5,000 - 
$5,000/MWh 

None 
None; excluded from 
reported peak load 

Sources and Notes: 
 Developed based on analyses of recent DR participation in each program and input and data from ERCOT staff.  

 

1. EMERGENCY RESPONSE SERVICE  

Emergency response service (ERS) includes two types of products, 10-minute and 30-minute (weather 

sensitive and non-weather sensitive) ERS, with the quantity of each product available changing by time of 

day and season as shown in Table A3.  The quantity of each product by time of day and season is 

proportional to the quantities most recently procured over the four seasons of year 2021 and 2022, with 

the 2024 summer peak quantity assumptions provided by ERCOT.21 Demand resources enrolled under ERS 

 
20 New rules allow ERCOT to deploy ERS prior to an EEA Level declaration.  
21 For total ERS procurement quantities by product type and season, see 
https://sa.ercot.com/misapp/GetReports.do?reportTypeId=11465&reportTitle=ERS%20Procurement%20Results&s
howHTMLView=&mimicKey 
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are dispatchable by ERCOT during emergencies but cannot be called outside their contracted hours and 

cannot be called for more than twenty-four hours total per season.  

Table A3. Assumed ERS Quantities Available in 2024 

 
Sources and Notes:  
 Total available ERS MW for 2024 June-Sept. TP4 provided by ERCOT staff. 
 ERS 10-min and 30-min MW for other contract periods scaled proportionally to the study year quantities based 

on availability in 2021-2022. 

2. LOAD RESOURCES PROVIDING REAL-TIME RESERVES  

Consistent with ERCOT’s published minimum Responsive Reserve Service (RRS) requirements  we modeled 

1,591 MW of non-controllable load resources (LRs) that actively participate in the RRS market.22  All 1,591 

MW were modeled as responsive to Energy Emergency Alert, Level 2.  

 
22 Currently, 1,400 MW is the maximum quantity of non-controllable LRs that are allowed to sell responsive reserve 
service (RRS) and is the clearing quantity in the vast majority of hours.  
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3. PRICE RESPONSIVE DEMAND AND 4-COINCIDENT PEAK 

2019 historical demand response was used to develop modeling inputs to replicate stochastic demand-

side response for price responsive and 4-coincident peak (4CP) demands. A comparison of historical and 

synthetic PRD calls is shown in Figure A3. The aggregate of these shapes was split by zone and used to 

gross up all 42 synthetic weather shapes.  

Figure A3. Comparison of Historical and Synthetic PRD Calls 

 

To model the price responsive demand (PRD) in SERVM, a curtailable unit was created that points to a 

price responsive demand curve. The demand curve has four pricing points based on the segments: $200, 

$400, $800, and $1,500. For each of the four pricing points, 50 data points were created using created 

synthetic formulas. Within SERVM, whenever price reached one of the specified threshold points, SERVM 

randomly picked a DR value from the list of 50 data points. The PRD unit was available in all months.  

Similarly, 4CP was modeled as a load responsive unit. A comparison of historical and synthetic 4CP calls is 

provided below in Figure A4. Historical hourly 4 CP was calculated as the sum of the 4CP Competitive and 

4CP NOIE programs.  
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Figure A4. Comparison of Historical and Synthetic 4CP Calls 

 

To model the 4CP program in SERVM, a curtailable unit was created in each region that pointed to a load 

responsive demand curve. The demand curve had four load points based on the segments 66,000 MW, 

67,000 MW, 72,000 MW, and 74,000 MW. For each of the four load points, 50 data points were created 

using segment formulas. Within SERVM, whenever load reached one of the specified threshold points, 

SERVM randomly picked a DR value for each unit from that list of 50 data points. The 4CP units were only 

available during the months of June to September.  

 

4. POWER BALANCE PENALTY CURVE 

The Power Balance Penalty Curve (PBPC) is an ECOT market mechanism that introduces administrative 

scarcity pricing during periods of supply scarcity. The PBPC is incorporated into the security constrained 

economic dispatch (SCED) software as a set of phantom generators at administratively specified price and 

quantity pairs, as summarized in the blue curve in Figure A5. Whenever PBPC is dispatched for energy, it 

reflects a scarcity of supply relative to demand in that time period that, if sustained for more than a 

moment, will materialize as a reduction in the quantity of regulating up capability. As the highest price, 

the PBPC will reach the system-wide offer cap (SWOC) which is set at the HCAP at the beginning of each 

calendar year, but which will drop to the LCAP if the PNM threshold is exceeded. 
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Figure A5. Power Balance Penalty Curve 

 

Within SERVM, PBPC is modeled similarly as a phantom supply that may influence the realized price, and 

that will cause a reduction in available regulating reserves whenever called. However, only the first 200 

MW of the curve at prices below the cap are modeled, and it is assumed that all price points on the PBPC 

will increase according to the schedule SWOC. It is also assumed that the prices in the PBPC are reflective 

of the marginal cost incurred by going short of each quantity of regulating reserves. Consistent with 

current market design, we assume that once the PNM threshold is exceeded, the maximum price in the 

PBPC will be set at the LCAP + $1/MWh or $2,001/MWh.23  Note that even after the maximum PBPC price 

is reduced, ERCOT market prices may still rise to a maximum value of VOLL equal to $5,000/MWh during 

scarcity conditions because of the ORDC as explained in the following section. 

 

 

 
23 https://www.ercot.com/files/docs/2021/12/14/037OBDRR_01_Power_Balance_Penalty_Updates_to_%20Align_ 
with_PUCT_Approved_High_System_Wide_Offer_Ca.docx 
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5. OPERATING RESERVES DEMAND CURVE  

The most important and influential administrative scarcity pricing mechanism in ERCOT is the ORDC that 

reflects the willingness to pay for spinning and non-spinning reserves in the real-time market.  Figure A6 

illustrates our approach to implementing ORDC in our modeling  which is similar to ERCOT’s 

implementation, with some simplifications.   

Figure A6. Operating Reserve Demand Curves 

 

The ORDC curves were calculated based on a loss of load probability (LOLP) at each quantity of reserves 

remaining on the system, multiplied by the value of lost load (VOLL) caused by running short of operating 

reserves.24  This curve reflects the incremental cost imposed by running short of reserves and is added to 

the marginal energy cost to estimate the total marginal system cost and price. 

 
24 Note that the lost load implied by this function and caused by operating reserve scarcity is additive to the lost load.  
This is because the LOLP considered in ERCOT’s ORDC curve is caused by sub-hourly changes to supply and demand 
that can cause short-term scarcity and outages that are driven only by small quantities of operating reserves but are 
not caused by an overall resource adequacy scarcity, which is the type of scarcity we model elsewhere in this study.  
For simplicity and clarity, we refer to these reserve-related load-shedding events as “reserve scarcity costs” to 
distinguish them from the load shedding events caused by total supply scarcity.  We do not independently review 
here ERCOT’s approach to calculating LOLP  but instead take this function as an accurate representation of the 
impacts of running short of operating reserves.   
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The x-axis of the curve reflects the quantity of operating reserves available at a given time, where: (a) the 

spin ORDC includes all resources providing regulation up or RRS, suppliers that are online but dispatched 

below their maximum capacity, hydrosynchronous resources, non-controllable load resources, and 10-

minute quickstart; and (b) the spin + non-spin ORDC include all resources contributing to the spin x-axis as 

well as any resources providing NSRS and all 30-minute quickstart units.  Table A4 provides a summary of 

the resources in the model that were always available to contribute to the ORDC x-axis unless they were 

dispatched for energy.  It should be noted that the realized ORDC x-axis during a given hour in the 

simulation can be higher (if other resources are committed but not outputting at their maximum 

capability) or lower (during peaking conditions when some of the below resources are dispatched for 

energy). 

Table A4. Resources Always Contributing to ORDC X-Axis Unless Dispatched for Energy 

Reserve Type MW 

Spin X-Axis  

     Hydrosynchronous Resources 245 

     Non-Controllable Load Resources 1,591 

Non-Spin X-Axis  

     30-Minute Quickstart 5,058 

Total Spin + Non-Spin 6,894 

 

As in ERCOT’s ORDC implementation, we calculated: (a) non-spin prices using the non-spin ORDC; (b) spin 

prices as the sum of the non-spin and spin ORDC; and (c) energy prices as the sum of the marginal energy 

production cost plus the non-spin and spin ORDC prices. However, as a simplification we did not scale the 

ORDC curves in proportion to VOLL minus marginal energy in each hour.25 Instead, we treated the ORDC 

curves as fixed with a maximum total price adder of VOLL minus $500. This caused prices to rise to the cap 

of $5,000/MWh in scarcity conditions, because $500 is the cap placed on marginal energy prices in the 

model.  Higher-cost demand-response resources were triggered in response to high ORDC prices and 

therefore prevented prices from going even higher but did not affect the “marginal energy component” 

of price-setting. We modeled the ORDC curves out to a maximum quantity of 8,000 MW where the reserve 

price adders were zero. 

These ORDC curves create an economic incentive for units to be available as spinning or non-spinning 

reserve  which influences suppliers’ unit commitment decisions. We therefore modeled unit commitment 

in two steps: (1) a week-ahead optimal unit commitment over the fleet, with the result determining which 

 
25 See ERCOT’s implementation in 
http://lmpmarketdesign.com/papers/Back_Cast_of_Interim_Solution_B_Improve_Real_Time_Scarcity_Pricing_Whi
tepaper.pdf 
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long-lead and combined cycle resources will be committed;26 and (2) an hourly economic dispatch that 

dispatches online baseload units, and can commit 10-minute and 30-minute quickstart units if needed to 

satisfy energy or ancillary service requirements.27 Note that 10-minute quickstart units can earn spin 

payments from an offline position while 30-minute quickstart units can earn non-spin payments from an 

offline position. The model did not allow these resources to self-commit unless doing so resulted in greater 

energy and spin payments (net of variable and commitment costs) than would be available from an offline 

position.  We used a similar logic to economically commit or de-commit units until the incentives provided 

by the ORDC were economically consistent with the quantity of resources turned on. 

 

 
26 Short-term resources are included in the week-ahead commitment algorithm, but their commitment schedule is 
not saved since it will be dynamically calculated in a shorter window.  But using short-lead resources in the week-
ahead commitment allows them to affect the commitment of long-lead resources. 
27 These week-ahead and day-ahead commitment algorithms minimize cost subject to meeting load as well as 
ERCOT’s administratively determined regulation up, spinning reserve targets, and non-spin targets. 


