

Odessa Disturbance 2 Update

IBRTF Meeting

August 12th, 2022

Odessa Disturbance 2: Event Summary

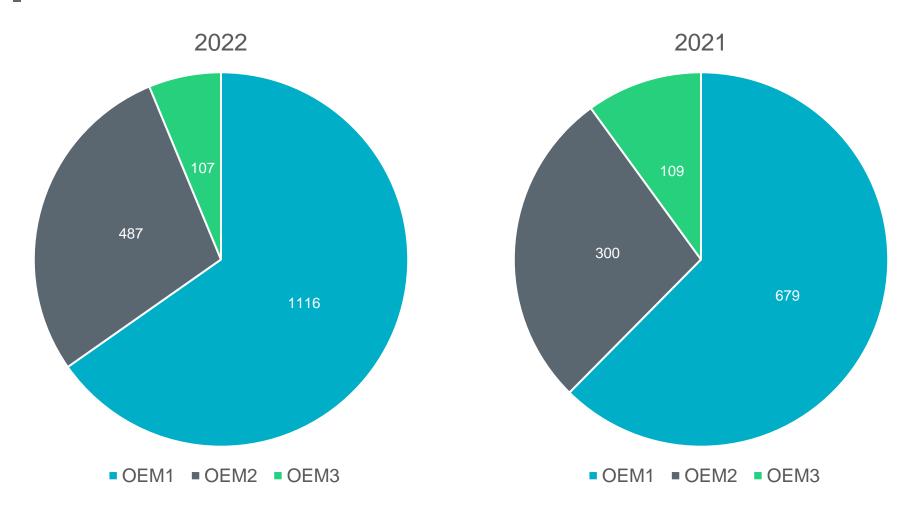
- Event initiated by lightning arrestor fault on 345 kV level in Odessa area
- Fault occurred on June 4th at 12:59:25 PM
- Estimated loss of 2,560 MW of thermal and IRR generation
 - > 1,709 MW of IRR generation loss from 14 solar facilities
 - > 851 MW of thermal generation loss
- System Frequency declined to 59.700 Hz and recovered to 60 Hz in 1 min 20 sec
- 1,227 MW of RRS deployed
- 1,116 MW of Load Resources deployed
- Categorized as NERC Cat 3a event (gen loss > 2000 MW)

Real Time PMU Voltage

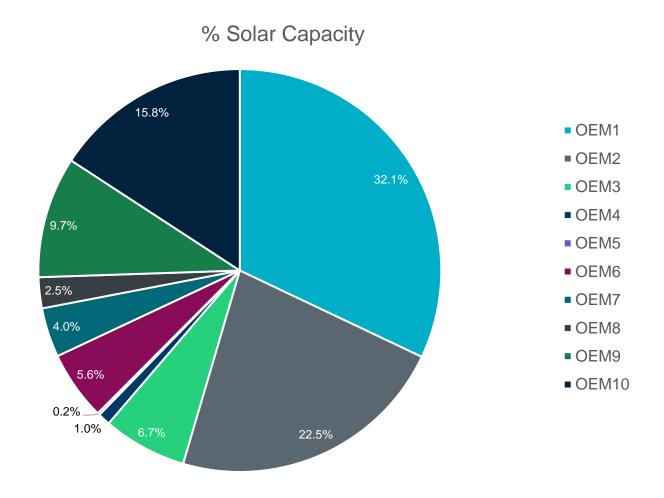
- Lowest recorded voltage of 0.714pu from PMU in Odessa area on 345 kV line
- Highest recorded voltage of 1.102pu from PMU in Del Rio area on 138 kV line
- Attempted reclose ~10 seconds later
- Faults cleared in ~3 cycles
- Within VRT "No Tripping" zone in NOG 2.9.1

Real Time PMU Frequency

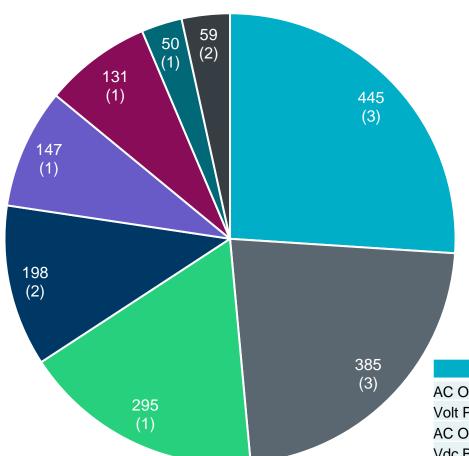
- Most PMUs lowest freq. of 59.7 Hz after LOG
- Single PMU near Laredo had lowest freq. of 59.62 Hz
- Couple other PMUs in South dipped below 59.7 Hz
- Local transient freq. seen as low 58.83 Hz and high as 60.26 Hz in Far West
- Protection settings should not be set on transient freq.


Solar Generation Loss

Facility	Inverter OEM	MW Loss 2021	MW Loss 2022	Recovery time 2022	Recovery MW 2022
Plant A	OEM3	28	N/A	N/A	N/A
Plant B	OEM1	150	133	8 min	Full
Plant C/D	OEM1	64	56	5 min	Full
Plant E*	OEM1	21	295	1 min	65%
Plant F	OEM3	48	47	6 min	90%
Plant G/H	OEM1	239	N/A	N/A	N/A
Plant I/J	OEM1	205	196	13 min	Full
Plant K/L	OEM2	153	131	2 min	Full
Plant M	OEM2	147	147	1 min	Full
Plant N/O	OEM3	23	50	30 min	Full
Plant P	OEM1	N/A	259	2 min	90%
Plant Q	OEM2	N/A	94	8 min	30%
Plant R	OEM1	N/A	176	6 min	74%
Plant S	OEM2	N/A	104	Offline till Next Day	0%
Plant T	OEM2	N/A	12	5 min	Full
Plant U	OEM3	9	10	5 min	Full


^{*}Plant E has additional unit from 2021

MW Loss per Inverter Type

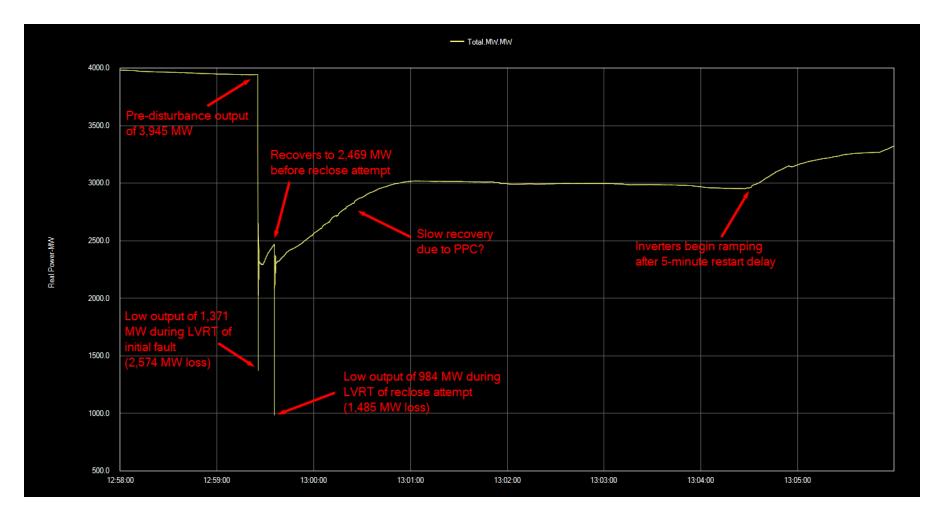

Total OEM Capacity

Root Causes for Solar Generation Loss 2022

MW Loss by Root Cause

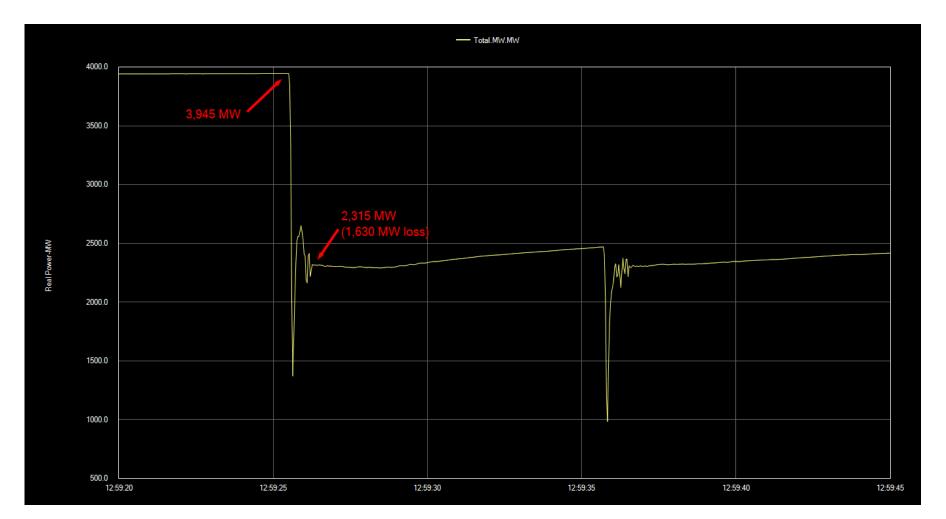
- AC Overcurrent
- Volt Phase Jump
- AC Overvoltage
- Vdc Bus Unbalance
- Slow Ramp After LVRT
- Momentary Cessation
- Grid Overfrequency
- Unknown/Misc

Root Cause	# Affected Facilities	MW Loss	
AC Overcurrent	3	445	
Volt Phase Jump	3	385	
AC Overvoltage	1	295	
Vdc Bus Unbalance	2	198	
Slow Ramp After LVRT	1	147	
Momentary Cessation	1	131	
Grid Overfrequency	1	50	
Unknown/Misc	2	59	



Recent and Ongoing Work

- NERC Cat 3a Brief Report submitted to TRE on July 11
- Scheduling follow up conference calls with all 14 facilities included in brief report
- Calls will include ERCOT engineers and Compliance, TRE and NERC event analysis engineers, RE technical staff, and OEM representatives
- Discuss updates on investigations into root causes and potential corrective actions (also remaining work from Odessa 2021)
- Calls to be scheduled late August through September
- PUCT has received NERC Brief Report and expecting update once calls completed
- ERCOT, NERC, and TRE to collaborate on detailed NERC event analysis report to be published publicly

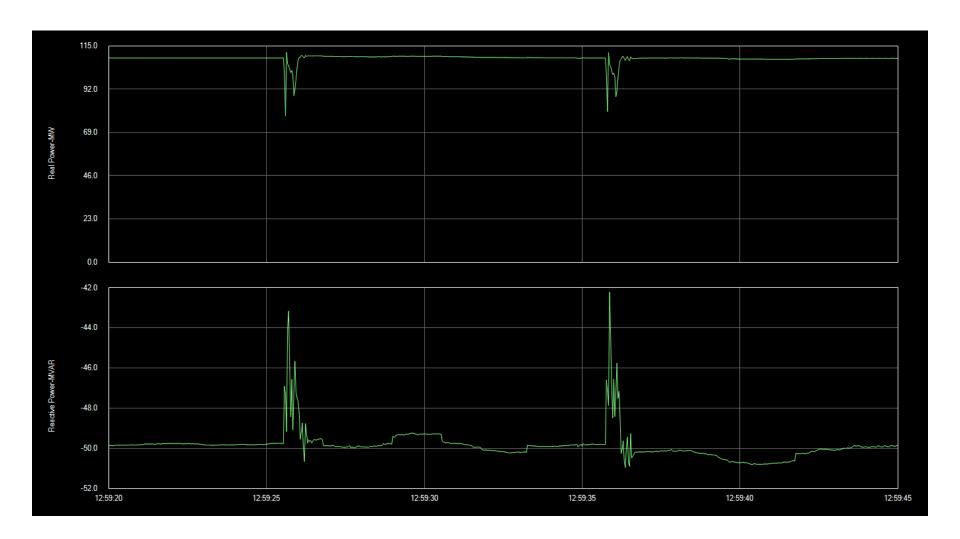


Aggregate MW Loss During LVRT (22 Resources with available PMU data)

Aggregate MW Loss During LVRT (PMU data only)

Notes on Previous Slides

- Reminder MW loss during LVRT not included in aggregate MW loss for Brief Report (1,709 MW loss)
- PMU data from 22 sites used in plots
- $\sum_{u=1}^{22} (MW_{pre-disturbance}^u MW_{low\ output}^u) = 3,330\ MW$
- MW loss from additional 6 sites not included in plots
 - DFR event files confirm 186 MW lost during LVRT for 3 sites (only 1 site included in total MW loss in Brief Report)
 - 3 remaining sites only had SCADA data
 - 1 site dropped from 56 to 0 MW (included in Brief Report)
 - Remaining two sites combined 229 MW output and possibly reduced during LVRT



Common Unit Response

Better Response?

Q Priority During LVRT

- Appears many units are set to provide reactive with zero active current during LVRT
- Some inverters have capability for Q priority while active current drops proportional to voltage
- ERCOT looking into reliability risks associated with solar reducing to zero active power during LVRT
- Why is active power to zero response so common?

Questions?

