IEEE 2800-2022 Adoption

A Preliminary Detailed Gap Assessment of ERCOT's Nodal Protocols and Nodal Operating Guides relate to IEEE 2800-2022

ERCOT Inverter-Based Resources Task Force (IBRTF)

Jens Boemer, Deepak Ramasubramanian, EPRI Julia Matevosyan, ESIG

July 8, 2022

Classification: Public

WWW.epri.com © 2022 Electric Power Research Institute, Inc. All rights reserved.

Acknowledgements and Disclaimers

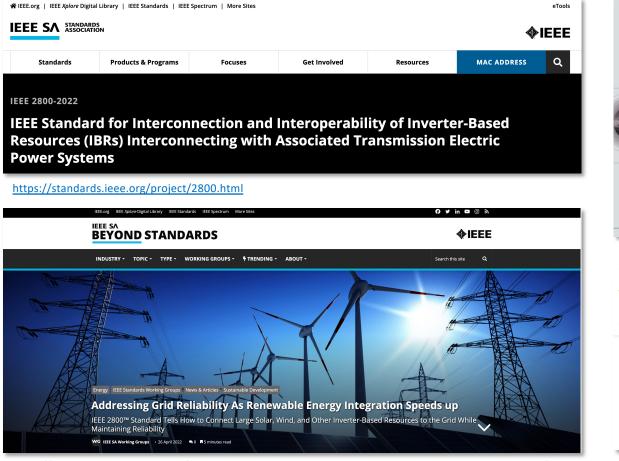
- The views presented in this presentation are the personal views of the individuals presenting it and shall not be considered the official position of the IEEE Standards Association or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE, in accordance with IEEE Standards Association Standards Board Bylaws 5.2.1.6.
- The content on IEEE-2800-2022 presented here is adapted and reprinted with permission from IEEE. Copyright IEEE 2022. All
 rights reserved. Some content presented here is based on an unapproved proposed IEEE Standard (e.g., IEEE P2800.2). As such,
 the document are subject to change, any draft requirements and figures shown in this presentation may change.
- All comments provided reflect only the view of the EPRI technical experts performing the review and do not necessarily reflect the opinions of those supporting and working with EPRI to conduct collaborative research and development.
- EPRI conducts research and development relating to the generation, delivery, and use of electricity for the benefit of the public. EPRI does not provide recommendations or regulatory advice related to the contents of this presentation.
- Part of this work was supported in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office and Wind Energy Technologies Office.
- Part of this work is supported by the U.S. Department of Energy, Solar Energy Technologies Office under Award Number DE-EE0009019 Adaptive Protection and Validated MODels to Enable Deployment of High Penetrations of Solar PV (PV-MOD).
- The views expressed in the presentation do not necessarily represent the views of the **DOE or the U.S. Government**.

This assessment is ongoing. We explicitly encourage stakeholders to provide feedback!

2 - This is an ongoing assessment: please provide feedback at bearboard-com

Introduction & Refresher

Meetings to Date with IEEE 2800-2022 Scope


Date	Scope	Presentation
Mar 18, 2022 - IBRTF Meeting by Webex Only	General Overview	Posted
Apr 08, 2022 - IBRTF Meeting by Webex Only	Voltage Ride-Through, Reactive Power, and Voltage Support	Posted
May 23, 2022 - IBRTF Meeting by Webex Only	Primary Frequency Response, Fast Frequency Response, Frequency Ride-Through, RoCoF Ride- Through, etc.	Posted
June 10, 2022	No update on IEEE 2800	
July 8, 2022 – IBRTF Meeting by Webex Only	Modeling Requirements Conformity Assessment: OEM equipment readiness, self-certification, etc.	Posted
TBD	Requirements in Scope of Transmission Service Prov Other Requirements of IEEE 2800 by Mutual Agreer	

Recap on discussion from May 23, 2022

- Capability vs. utilization (configuration of performance)
- Make fast frequency response capability a mandatory requirement?
- Coordination of protection inside the IBR plant as important as the capability of the IBR units

Resources and Media

https://beyondstandards.ieee.org/addressing-grid-reliability-as-renewable-energy-integration-speeds-up/

GRID CODES FOR RENEWABLE POWERED SYSTEMS "Grid Codes for Renewable Powered Systems" report by the International Renewable Energy Agency, published April 2022; pages 87-88:

"[IEEE 2800] will be [a] regional grid cod[e] for North America, with the main area of applicability being the United States, but [is] designed to go beyond this scope. [It] can clearly be recommended as [an] optio[n] for internationally standardised technical requirements for generators."

https://www.irena.org/publications/2022/Apr/Grid-codes-forrenewable-powered-systems

IEEE P2800: Enhancing the Dynamic Performance of High-IBR Grids with Capability and Performance Standards for Large-Scale Solar, Wind, and Energy Storage Plants

https://www.esig.energy/ieee-p2800-enhancing-the-dynamic-performance-of-high-ibr-grids/

Webinar Recording Available: https://engagestandards.ieee.org/IEEE-2800-Update-Registration-LP.html

IEEE 2800-2022 Industry Webinars

Date	Event
Monday, May 2, 2022	 Joint <u>IEEE</u>–<u>ESIG</u>–<u>PSERC</u>–<u>CURENT</u> Webinar for Subject Matter Experts & Academia Speakers: Jens C. Boemer (WG Chair) (slide deck) (recording)
Tuesday, May 3, 2022	Joint <u>NERC</u> – <u>NATF</u> – <u>NAGF</u> – <u>EPRI</u> Webinar for Transmission Owners/Planners/Operators/Engineers • Speakers: Manish Patel (WG Vice-Chair) (<u>slide deck</u>) (<u>recording</u>)
Tuesday, May 31, 2022	Joint <u>SEIA</u> – <u>ACP</u> (formerly AWEA) Webinar for OEMs & Developers Speakers: Mahesh Morjaria (WG Vice-Chair) (slide deck) (recording)

https://sagroups.ieee.org/2800/resources/

Related EPRI Webinars

Session	Date	Access Level	Торіс
1	4/12/2022	Member Only	IEEE 2800-2022 part 1
2	4/27/2022	Member Only	IEEE 2800-2022 part 2
3	5/17/2022	Member Only	IEEE 2800-2022 part 3
4	5/26/2022	Public	Project Overview and Status Update on Model Development, Improvement, and Validation https://www.epri.com/research/programs/027570/events/7036D11A-3C86-4D64-8FA2-0B45988FFF63

PV-MOD Project Website at https://www.epri.com/pvmod

6 - This is an ongoing assessment: please provide feedback at iboemer@epri.com

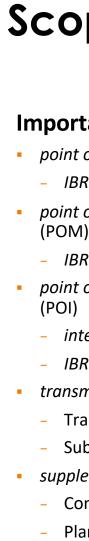
Recent News: FERC NOPR RM22-14 on Improvements to Generator Interconnection Procedures and Agreements

- Press release available <u>here</u>.
- Key areas of reforms:
 - Implement a first-ready, first-served cluster study process
 - Improve interconnection queue processing speed
 - Incorporate technological advancements into the interconnection process
 - Update modeling and performance requirements for system reliability
- Comments are due 130 days (~4 months) from publication in Federal Register : ~October 24, 2022

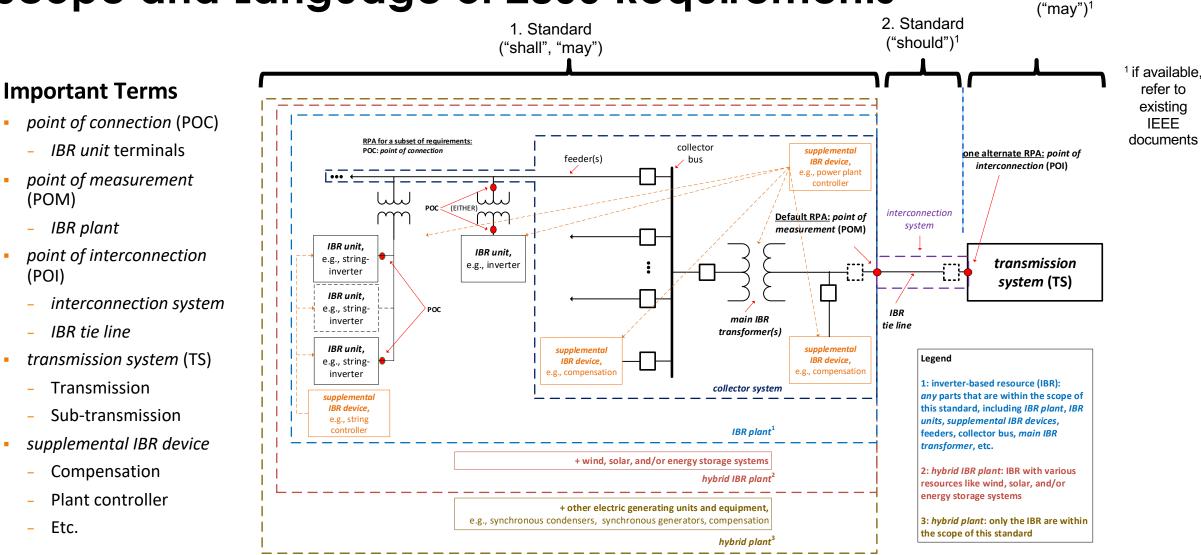
Common Ground: IEEE 2800-2022

- Harmonizes technical minimum capability for Large Solar, Wind, and Storage Plants at the time of interconnection, including those connected via VSC-HVDC like offshore wind
 - Could create a "level playing field" for IBR developers, if adopted
- A consensus-based, voluntary IEEE performance standard
 - Developed by over 175 working group participants from transmission owners, OEMs, developers, and consultants
 - Successfully passed the industry peer review by 466
 IEEE SA balloters (>94% approval, >90% response rate)
- Approved in January 2022, **publication in April/May 2022**

STANDARDS ASSOCIATION		
Interope Resourc	ndard for Interconnection erability of Inverter-Based es (IBRs) Interconnecting ed Transmission Electric ystems	
IEEE Power a	nd Energy Society	STA
	ent & Power Generation Committee, Electric Machin ower System Relaying & Control Committee	ery
IEEE Std 2800 TM -2	022	


Available from IEEE at https://standards.ieee.org/project/2800.html and via IEEExplore: https://ieeexplore.ieee.org/document/9762253/

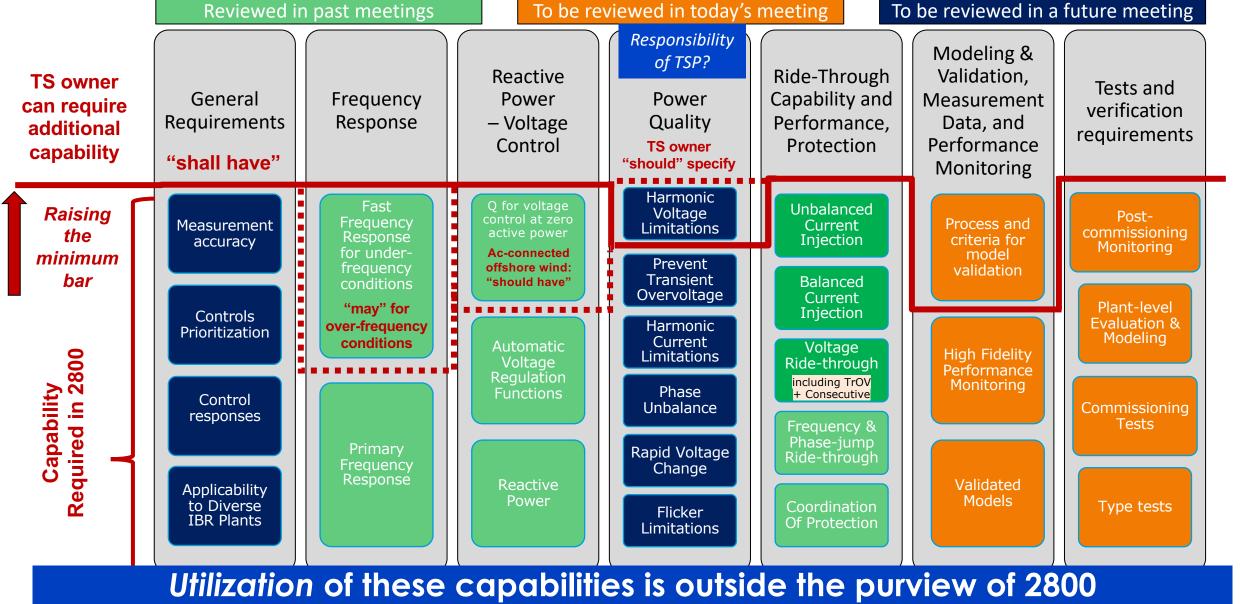
EPC


More Info at https://sagroups.ieee.org/2800/

9 - This is an ongoing assessment: please provide feedback at iboemer@epri.com

Scope and Language of 2800 Requirements

Etc.



ERCOT > IEEE 2800: adopt and exceed 2800 with POI as RPA?

3. Informative Appendix

IEEE 2800-2022 Technical Minimum Capability Requirements

Detailed Gap Assessment

Objective and Approach

Objective

Inform strategic decision on IEEE 2800 adoption method:

- General reference ('wholesale adoption')
- Detailed reference ('piecemeal adoption per reference')
- Full specification ('piecemeal adoption own language')

Approach

Answer the following questions for where ERCOT and IEEE 2800 both specify requirements:

- i. Where IEEE 2800 are <u>more specific</u> or <u>more stringent</u> than ERCOT requirements ("<"), e.g.,
 - longer ride-through capability, or
 - detailed functional specification versus non-prescriptive specification as for dynamic voltage support / short circuit current injection during fault
- ii. Where ERCOT requirements and P2800 already align in stringency and level of specificity ("~")
- iii. Where ERCOT requirements exceed IEEE 2800 either in stringency or specificity (">")
- iv. Analysis not yet completed or clarifying questions

Comparison Basis and Remarks

ERCOT

 ERCOT Nodal Protocols (NPs) – applicable Sections available at <u>https://www.ercot.com/mktrules/nprotocols/current</u> and published on or prior to February 11, 2022.

The [Nodal] Protocols outline the <u>procedures and processes used by ERCOT and Market Participants</u> for the orderly functioning of the ERCOT system and nodal market.

 Nodal Operating Guides (NOGs) – applicable Sections available at <u>https://www.ercot.com/mktrules/guides/noperating/current</u> and published on or prior to March 1, 2022

The <u>Nodal Operating Guides</u>, which <u>supplement the Protocols</u>, describe the working relationship between ERCOT and the entities within the ERCOT Region that interact with ERCOT on a minute-tominute basis to ensure the reliability and security of the ERCOT System.

 Planning Guide (PG) – applicable Sections available at <u>https://www.ercot.com/mktrules/guides/planning/current</u> and published on or prior to `January 1, 2022

The <u>Planning Guide</u>, which <u>supplements the ERCOT protocols</u>, provides ERCOT stakeholders and market participants with information and documentation concerning the ERCOT transmission planning process.

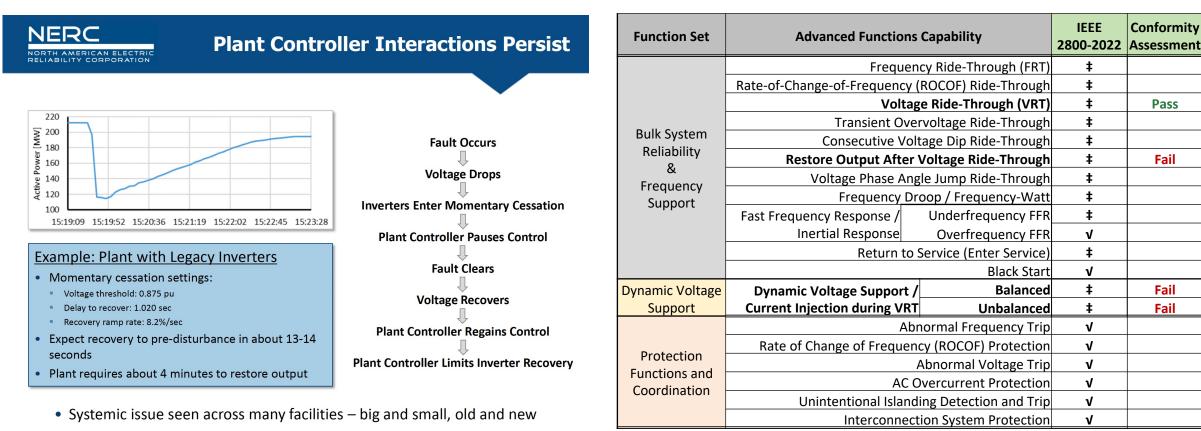
4. **Model Quality Guide (MQG)** – applicable Sections available at https://www.ercot.com/services/rq/integration and published on or prior to April 20, 2021

Assists REs/IEs submit stability models per Planning Guide Section 6.2, including the new Model Quality Testing requirements. Also <u>includes the UDM Model Guideline and PSCAD Model Guideline</u>.

IEEE 2800-2022

IEEE P2800 Draft 6.3 (December 2021)

Remarks on ERCOT documents:


- Both NPs and NOGs are <u>mandatory</u>.
- NPs are broad in scope and tend to high level.
- NOGs tend to be narrower in scope and provide guidance on more practical/ operational aspects.
- The language in NPs and NOGs should not be in conflict; <u>if it is in conflict, it should be pointed</u> <u>out as a finding</u>.
- Some requirements only apply to resources providing ancillary services (AS); this would be explicitly stated, or it is obvious from the Section of the NPs.
 - For example, where an entire section is on Responsive Reserve (RRS) qualification or performance.

Question: shall comparison be relative to current language or approved revisions (grey boxes)?

Recent NERC/WECC Event Analysis and Engineering

Example Findings

19

IEEE 2800-2022 requirements apply to the IBR plant*

> IBR units <u>and</u> IBR plant controller (= "supplemental IBR device")

IEEE 2800-2022 Conformity Assessment

 \ast with exception of 'current injection during VRT' which applies to IBR unit

Momentary cessation occurs above 10% pu voltage

> Plant controller slows restore output after fault beyond 1 s

RELIABILITY | RESILIENCE | SECURITY

ERCOT Status Update for Odessa Disturbance

Example Findings

Overview of Recent Action Items

- ERCOT recently had follow up conference calls with REs of 6 solar farms that tripped during Odessa Disturbance
 - Inverter overvoltage (2)
 - Inverter underfrequency (1)
 - Momentary cessation and slow recovery (1)
 - Feeder breaker overvoltage (1)
 - Feeder breaker underfrequency (1)
- Call with OEM rep for momentary cessation and delayed reactive injection
- Sent out emails to all plants with TMEIC inverters to verify loss of synchronism protection disabled

2

- > Two plants tripped in post-fault period
- Plant owners are currently reviewing mitigation with OEM

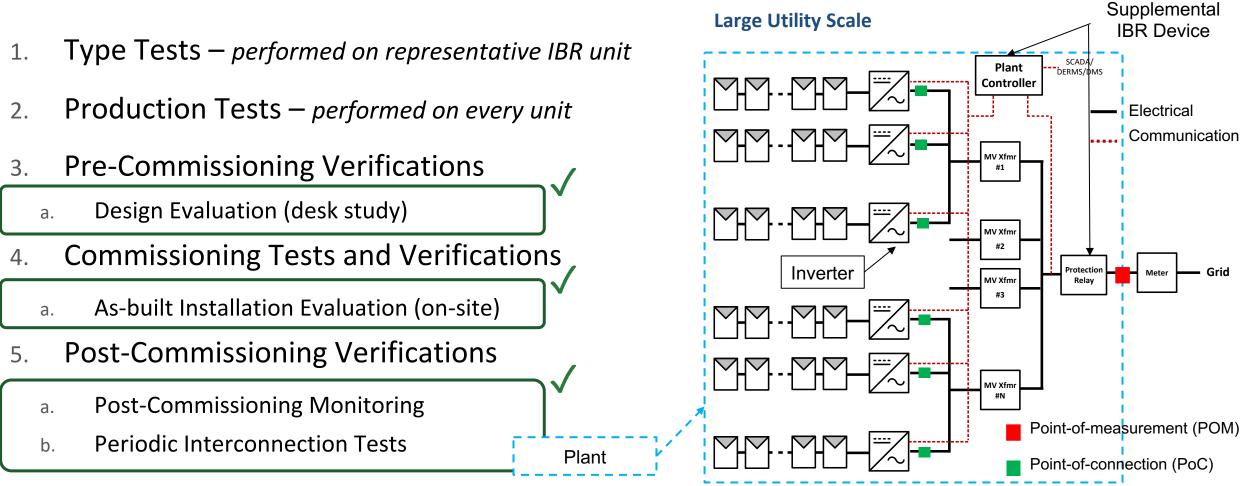
IEEE 2800-2022 Conformity Assessment

Function Set	Advanced Functions	Capability	IEEE 2800-2022	Conformity Assessment
	Frequer	‡		
	Rate-of-Change-of-Frequency	‡		
	Voltag	ge Ride-Through (VRT)	‡	Pass
Dull Custom	Transient Over	voltage Ride-Through	‡	Fail
Bulk System	Consecutive Vol	tage Dip Ride-Through	‡	
Reliability &	Restore Output After	Voltage Ride-Through	‡	
A Frequency	Voltage Phase Ang	gle Jump Ride-Through	‡	
Support	Frequency Dr	‡		
Support	Fast Frequency Response /	Underfrequency FFR	‡	
	Inertial Response	Overfrequency FFR	٧	
	Return to	+		
		٧		
Dynamic Voltage	Dynamic Voltage Support /	Balanced	‡	
Support	Current Injection during VRT	Unbalanced	+	
	Abnormal Frequency Trip		٧	
Ductosticu	Rate of Change of Frequen	٧		
Protection		Abnormal Voltage Trip	٧	
Functions and Coordination	AC C	Dvercurrent Protection	٧	
Coordination	Unintentional Island	ling Detection and Trip	٧	
	Interconnec	tion System Protection	٧	

IEEE 2800-2022 requirements apply to the IBR plant*

> IBR units and IBR plant controller (= "supplemental IBR device")

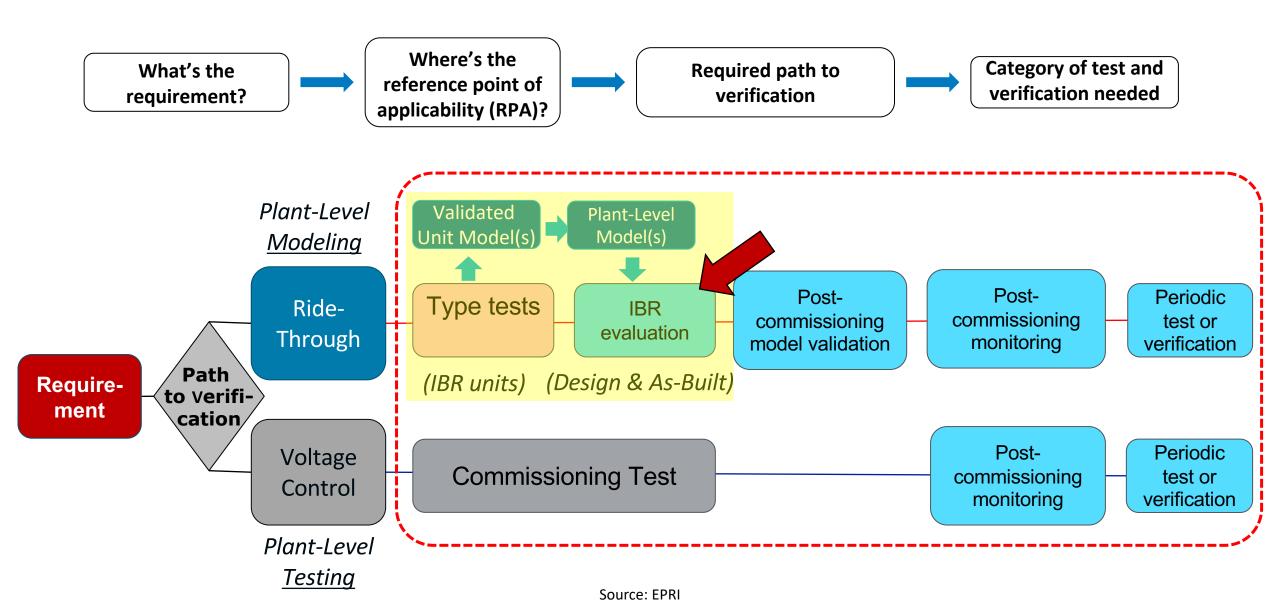
* with exception of 'current injection during VRT' which applies to IBR unit



Focus Today: Modeling Requirements, Plant-Level Verification

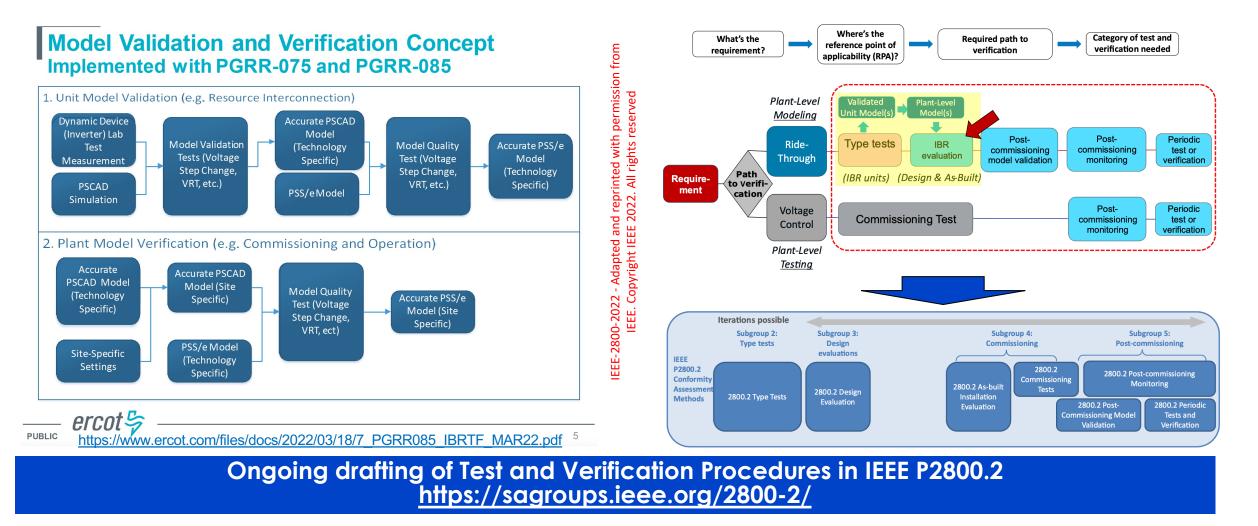
IEEE 2800-2022 Test and Verification Methods

IEEE 2800-2022 requires IBR <u>plant-level</u> conformity **>** more than just IBR unit conformity



Modified based on DER Plant-Level Performance Verification and Commissioning Guideline: First Edition. Technical Update. EPRI. Palo Alto, CA: December 2020. 3002019420

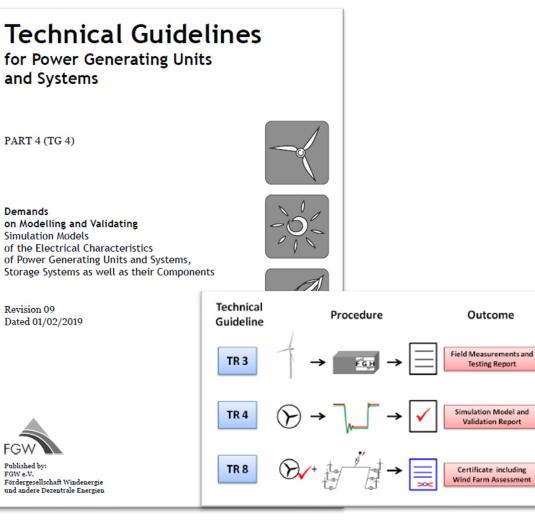
ERCOT > IEEE 2800: adopt and exceed 2800 with POI as RPA?



Clause 12 (Test and Verification) Framework

Use of Validated Models as a Centerpiece of Plant-Level Conformity Assessment

ERCOT



IEEE 2800 – Clause 12. Test and verification requirements

Learning from International Experience

Performance Verification Example: Germany

EPRI Comments

- Very detailed and specific to the German regulatory context:
 - requires a 3rd party assessment and certification
 - may not be transferable to the U.S.
- Could inform possible stakeholder responsibilities:
 - IBR developer:
 - should be responsible for the sufficient design of the *IBR plant*
 - should provide sufficient documentary evidence about IBR design to evaluate plant conformity with technical requirements
 - TS owner/TS operator:
 - could be responsible for sufficient design evaluation of the IBR plant that verify whether the *IBR plant* design is sufficient to conform with IEEE 2800
 - may delegate the execution of the design evaluation procedures
 - Third party:
 - may execute the *design evaluation* procedures

Review of IEEE 2800-2022

IEEE 2800-2022: Clause 3.1 (Definitions)

interconnection study: a study conducted during the interconnection process

NOTE 1—An *interconnection study* may be conducted by the *TS owner/TS operator*, the *IBR owner*, or a third party and may require coordination between parties, subject to regulatory context.

NOTE 2—An *interconnecting study* may include verification of requirements with this standard.

verification entity: A test or verification entity responsible for performing or observing type tests, inverter-based resources (IBR) evaluations, commissioning tests, post-commissioning test/verification, or overseeing production testing programs to verify conformance of the IBR to the standard. (Adapted from IEEE Std 1547TM -2018)

NOTE 1—Verification entities can be a *TS owner*, *TS operator*, *IBR operator*, *IBR owner*, *IBR developer*, *IBR unit* manufacturer or third party testing agency, depending on the test or verification performed.

NOTE 1—In the U.S., the verification entity for type tests may be a Nationally Recognized Testing Laboratory, another independent third party, or the *IBR unit* manufacturer.

IEEE 2800-2022: Clause 12.2 (Definitions of verification methods)

12.2.1 General

All IBR interconnection and interoperability requirements of this standard shall be verified by a combination of the following methods as specified in this clause: *type tests*, IBR evaluations, commissioning tests, and operational evaluation.

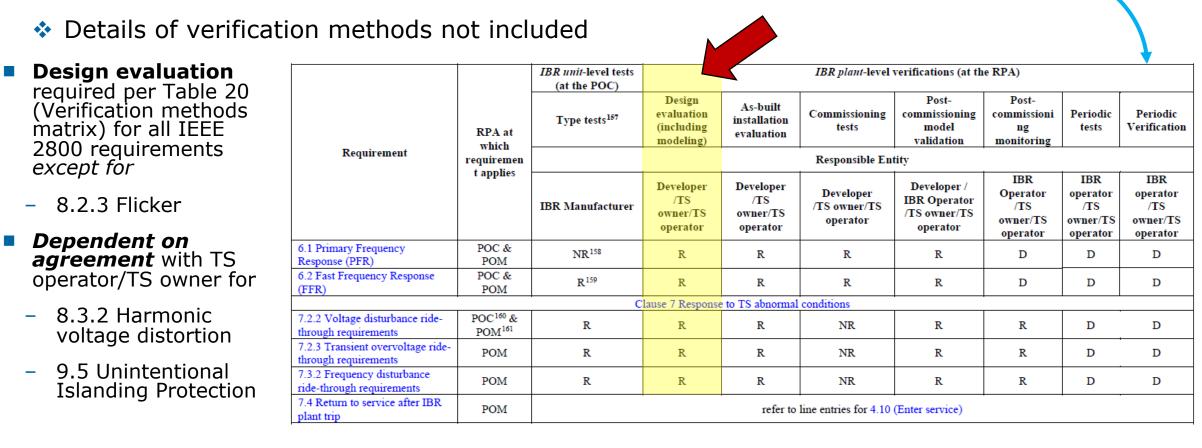
¹⁴⁵ Development of dedicated type test procedures complementing this standard is recommended. Existing type test procedures such as IEEE Std 1547.1-2020 [B49], IEC 61400-21-1 [B39], FGW TR3 [B26], FGW TR4 [B27], FGW TR8 [B28], IEC 62927 [B43], IEEE Std 115 [B48], IEC 60034-4-1 [B32], or IEC TS 60034-16-3 [B44] may or may not be appropriate to verify compliance with this standard. Certification of equipment, for example under UL 1741 SA, SB, or CRD PCS ([B111], [B112], [B110]) is outside the scope of this standard.

12.2.3 **Design** Evaluation [*not* 12.2.4 As-Built Installation Evaluation]

The design evaluation (desk study) is an engineering evaluation during the interconnection and plant commissioning process to verify that the *IBR plant*, as designed, or the *IBR unit(s)*, as applicable, meet the interconnection and interoperability requirements of this standard. [...]

IEEE 2800-2022: Clause 12.2 (Definitions of verification methods)

12.2.3 Design Evaluation (cont.)


[...] The *IBR plant* design evaluation may be performed by the *IBR owner*, *TS operator*, *TS owner*, third party consultants and/or jointly by these parties. The design evaluation often includes modeling and simulation of the *IBR plant*, its *IBR unit(s)*, and *supplemental IBR device(s)*, and the interactions with the TS. This evaluation does not include testing. However, reports derived from test results may be consulted in the design evaluation, and the model verification may be informed by the results from *type tests* if available. The design evaluation may also determine other verification steps that may be required such as commissioning testing or post-commissioning monitoring. – The details of interconnection review process vary among *TS owners/TS operators* and may be dependent on regional regulatory requirements.

In cases where a *supplemental IBR device* may be used to provide *IBR plant* or *IBR unit(s)* conformance with a subset of requirements of this standard, the design evaluation shall be specific to such requirement(s) along with any other *IBR plant* or *IBR unit* requirement(s) for which conformance to this standard may be impacted by that *supplemental IBR device*.

IEEE 2800-2022: Clause 12.3.2 (Verification methods matrix)

IEEE 2800-2022 contains performance requirements for IBRs, and a <u>table of methods to</u> <u>verify each requirement</u>

IEEE 2800-2022: Clause 12.3.2 (Verification methods matrix)

The following evaluations depend on IBR [design and/or as-built] evaluations

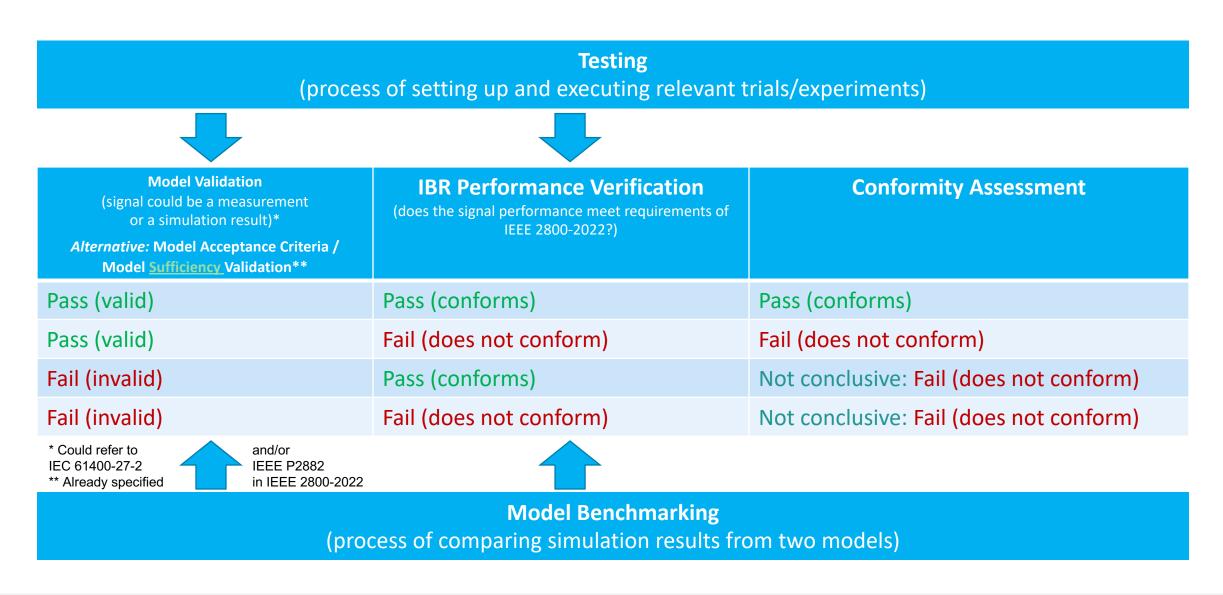
Requirement	RPA at which requirement applies	<i>IBR unit</i> -level tests (at the POC)		IBR plant-level verifications (at the RPA)						
			Design evaluation (including modeling for most require- ments)	As-built installation evaluation	Commissioning tests	Post- commissionin g model validation	Post- commission- ing monitoring	Periodic tests	Periodic verification	
					Responsible Ent	tity				
		<i>IBR unit</i> or supplemental IBR device manufacturer	IBR developer / TS owner / TS operator	IBR developer / TS owner / TS operator	IBR developer / TS owner / TS operator	IBR developer / IBR operator / TS owner / TS operator	IBR operator / TS owner / TS operator	IBR operator / TS owner / TS operator	IBR operator / TS owner / TS operator	
		Clause 4 General inte	erconnection tech	nical specification	s and performance	requirements			-	
4.7 Prioritization of IBR Responses	РОМ	R verify correct response	R check certification/ manual	R verify correct configuration of controls	D	NR	R verify correct performance	D	NR	
4.7 Prioritization of IBR Responses	РОМ	R verify correct response	R check certification/ manual	R verify correct configuration of controls	D	NR	R verify correct performance	D	NR	
			Cla	use 9 Protection						
9.2 Rate of Change of Frequency (ROCOF) Protection	POC and POM	D	R	R	D	R	R	D	D	

IEEE-2800-2022 - Adapted and reprinted with permission from IEEE. Copyright IEEE 2022. All rights reserved

IEEE 2800-2022: Appendix G (Recommendation for modeling data)

Annex G (informative) Recommendation for modeling data

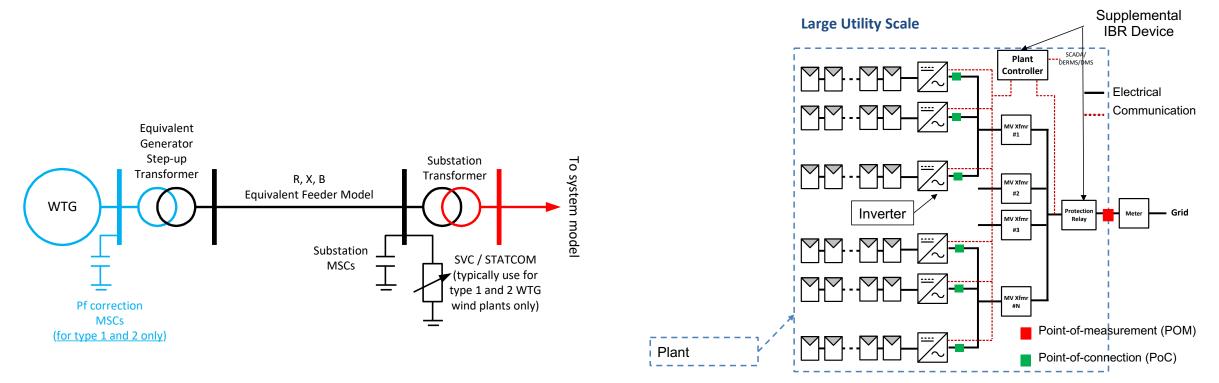
- G.1 General
- G.2 Steady-state modeling data requirements
- G.3 Stability analysis dynamic modeling data requirements
- G.4 EMT dynamic modeling data requirements
- G.5 Power quality, Flicker and RVC modeling data requirements
- G.6 Short circuit modeling data requirements



Evolving Thoughts On Modeling-Based Plant-Level Conformity Assessment

66 - This is an ongoing assessment: please provide feedback at iboemer@epri.com

Conformity Assessment



Type of Models

Lumped Plant Model using Equivalent <u>Plant</u> Model

Detailed Plant Model using <u>Equipment</u> Models

Both equipment models and plant models could be RMS, EMT, short-circuit, and frequency-domain models, subject to the specific requirement of IEEE 2800-2022 for which conformity is assessed.

IEEE 2800 – Clause 10. Modeling data

- Some specified requirements cannot be verified based on tests (type, commissioning etc.)
- Verification of such requirements is **done using models** and simulations
- IBR owner is **required** to provide **verified models** to TS owner/operator such as, power flow, stability dynamic model, short-circuit, EMT, harmonics etc.
- Development of **verified models** is outside the scope of this standard; however, some guidance is provided.
- IEEE-2800-2022 Adapted and reprinted with permission from IEEE. Copyright IEEE 2022. All rights reserved **Annex G** provides recommended practice for modeling data
 - i.e., details in each type of model

IEEE 2800 – Annex G. Recommendation for modeling data

- G.1 General
- 800-2022 Adapted and reprinted with permission from IEEE. Copyright IEEE 2022. All rights reserved G.2 Steady-state modeling data requirements
 - One-line electrical drawing of the entire *collector system*
 - Line parameters for transmission line between the POM and POI
 - Information on the substation transformer at POM _
 - *IBR unit* original equipment manufacturer (OEM) data
 - IBR unit transformer data _
 - For *energy storage systems*, the total energy capacity (MVAh), _ the maximum allowable charge/discharge rate, and the maximum/minimum absolute value of state of charge
 - G.3 Stability analysis dynamic modeling data requirements
 - G.4 EMT dynamic modeling data requirements
 - G.5 Power quality, Flicker and RVC modeling data requirements
 - G.6 Short circuit modeling data requirements

Ë

ERCOT

	ercot 🦻		
ERCOT Dynamic Mod	del Submittal Guideline Version 1.3		FREDI PAGE
		ERCOT Dynamic Model Redwithd Galdeline	ERCOT Public
		Executive Summary	
			3 7 8 9 11 11 11 11 13

http://www.ercot.com/services/rq/re

IEEE 2800 – Annex G. Recommendation for modeling data

- G.1 General
- G.2 Steady-state modeling data requirements

G.3 Stability analysis dynamic modeling data requirements

- OEM provided low/high voltage and low/high frequency ride-through capabilities of the *IBR units*
- OEM provided parameters for the latest available generic models
- If requested by *TS owner* or *TS operator*, OEM userwritten model, parameters and documentation.
- IBR developer provide data for SVC or STATCOM if available in the plant
- G.4 EMT dynamic modeling data requirements
- G.5 Power quality, Flicker and RVC modeling data requirements
- G.6 Short circuit modeling data requirements

ERCOT ~ IEEE 2800: Already fairly aligned?

ERCOT

Requirement	Applicable Equipment	Required Tests ⁽¹⁾	When to Update	Responsi ble Entity	Language
Model Quality Test for PSS/e Model	All Resources and Dynamic Transmission Elements (system strength test is only required for inverter- based devices)	Flat start, small and large voltage disturbance, small frequency disturbance, and system strength tests	A new or updated model	Equipment owner (RE, IE or TSP)	PG 6.2(5)(c)
Model Quality Test for PSCAD Model	Inverter-based Resources (IBRs) and Dynamic Transmission Elements	All above tests plus phase angle jump test	A new or updated model	Equipment owner (RE, IE or TSP)	PG 6.2(5)(c)
Unit Model Validation for PSCAD Model ⁽²⁾	Inverter-based Resources (IBRs)	Step change in voltage, large voltage disturbance, system strength, phase angle jump, and subsynchronous tests	A new PSCAD model provided after 3/1/21. (Validation tests should not need updating for model parameter updates on an existing model.)	Resource owner (RE or IE)	PG 6.2(5)(d)
Model Parameter Verification ("Verification Report")	All Resources and Dynamic Transmission Elements	Provide evidence that tunable model parameters match what is implemented in the field. Evidence can take the form of screenshots, nameplate photographs, signed manufacturer commissioning reports, etc.	 Required within 30 days of COD (i.e., Part 3 approval), 12 to 24 months after COD or 12-24 months after March 1, 2021 for existing resources, A minimum of every 10 years. Within 30 days of a change at the plant 	Equipment owner (RE, IE or TSP)	PG 5.5, PG 6.2(5)(b)

Summary of Dynamic Model Requirements

(2) Benchmark the PSCAD model against actual hardware measurer same report can be submitted for different projects whenever that the same inverter is used

PUBLIC

https://www.ercot.com/files/docs/2022/03/18/7 PGRR085 IBRTF MAR22.pdf

IEEE 2800 – Annex G. Recommendation for modeling data

- G.1 General
- G.2 Steady-state modeling data requirements
- G.3 Stability analysis dynamic modeling data requirements

G.4 EMT dynamic modeling data requirements

- The *TS operator/TS owner* may either require EMT models _ for all newly interconnecting inverter-based resources or may require these models on a case-by-case basis.
- Includes a list of situations where these models should be required
- Detailed EMT modeling requirements may be developed by TS operator/TS owner to help ensure consistent EMT models are provided
- Includes recommendations for model features related to accuracy, usability, and efficiency
- G.5 Power quality, Flicker and RVC modeling data requirements
- G.6 Short circuit modeling data requirements

ERCOT ~ IEEE 2800: Already fairly aligned?

from

permission

with

reprinted

Adapted

:E-2800-2022 -IEEE. Co

⊞

rights reserved

Copyright IEEE 2022.

ERCOT Dynamic Model Submittal Guideline

- For operational units, provides evidence that the model incorporates site-specific settings based on field evidence, screenshots, delivery reports, testing reports, etc.
- User-Defined Models (UDM) are allowed provided that "they are not unacceptable"
- The PSCAD model should include all plant equipment and controllers including switched shunts or dynamic reactive devices and the plant level controller
- Model Quality Test for PSS/E Model
- User-Defined Models (UDM) models often provide a more accurate response?
 - The cause of this problem is perhaps rooted in the fact that generic models are lower fidelity models and necessitate great care in choosing appropriate parameters? The expertise necessary to convert from a UDM model to a generic model usually requires involvement of the manufacturer and is sometimes not within the expertise of 3rd party consultants advertising MOD 26/27 services

EPRI Comments

- Overall, ERCOT's dynamic model submittal guideline leads the industry.
- To achieve a certain minimum model quality, an evolving list of questions that should be answered by OEMs regarding the accuracy and sufficiency of their UDMs is recommended.
 - One example are the PSCAD Model Requirements Rev. 11 available <u>here</u>.
- Plant equipment represented in the PSCAD model should include relay models and other protection equipment within the plant.
- A model quality test should also include a phase jump test.
- Not all user UDMs provide a more accurate response than generic models; it all depends on the specific model and its configuration (see next slide and EPRI white paper).
 - If not structured sufficiently and configured appropriately, a UDM may provide in inaccurate response also.

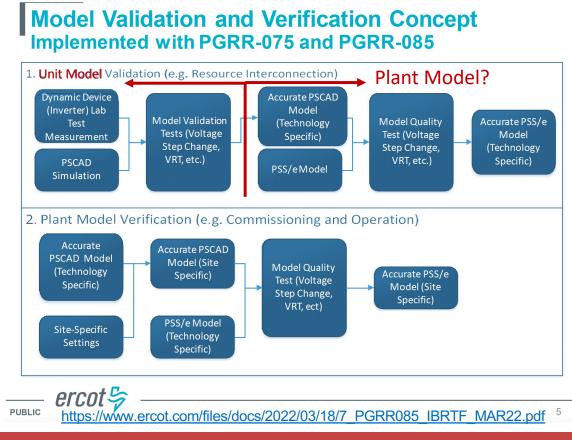
Opportunities for Improvements / Clarifications to ERCOT's Dynamic Model Submittal Guideline

Model limitation versus simulation domain limitation

- Present models in planning base cases (both positive sequence and EMT) have been unable to capture causes of inverter tripping
- Limitation of a model should not be confused with limitation of the simulation domain itself
- Future models (such as REGC_C and others) help bring about added capability that can be leveraged

Cause of observed behavior	Simulation domain limitation	Most of today's model incorrectly parameterized	Most of today's model do not represent		Cause of observed behavior	Simulation domain limitation	Most of today's model incorrectly parameterized	Most of today's model do not represent			
Unbalanced conditions	✓				Unbalanced conditions		✓				
Sub-cycle ac over voltage	~				Sub-cycle ac over voltage		✓		1		
Sub-cycle ac over current	✓				Sub-cycle ac over current		~		-		
Momentary cessation		✓			Momentary cessation		~		-		
Error in frequency measurement		~		Future model can represent as capability exists in simulation domain			Error in frequency measurement		~		Future model can
PLL loss of synchronism		✓			PLL loss of synchronism		✓		as capability		
Collector network level under frequency		~			Collector network level under frequency		~		exists in simulation		
Phase jump			✓		Phase jump			✓	- domain		
dc reverse current			 ✓ 		dc reverse current			✓	-		
dc low voltage			 ✓ 		dc low voltage			✓	1		
Plant controller interactions			~		Plant controller interactions			~	1		

(a) Positive sequence simulation domain


(b) EMT simulation domain

Differentiating between Applicability of Simulation Domains and Inverter Mathematical Models in these Domains. EPRI. Palo Alto, CA: 2022.3002025063. [Online] https://www.epri.com/research/products/00000003002025063

Use of Validated Models as a Centerpiece of Plant-Level Conformity Assessment

ERCOT

Observations

During Resource Interconnection

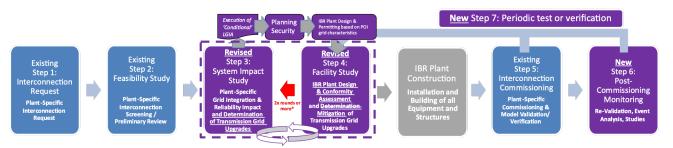
- Sophisticated, technology specific unit model validation
 - e.g., based on type tests measurements
- Limited pre-commissioning plant model validation?
 - could plant-level design evaluation help here?
- > Limited pre-commissioning plant-level conformity assessment during resource interconnection process?

During Commissioning and Operation

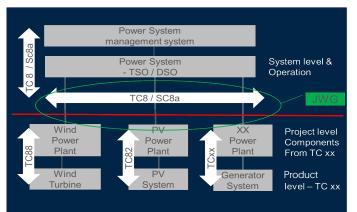
- Sophisticated, site specific plant model *verification*
 - considering site specific settings and performance during operation
- Leading post-commissioning plant-level conformity assessment during commissioning and operation

ERCOT < IEEE 2800: Improve pre-commissioning plant-level conformity assessment?

Related NERC and IEC activities?

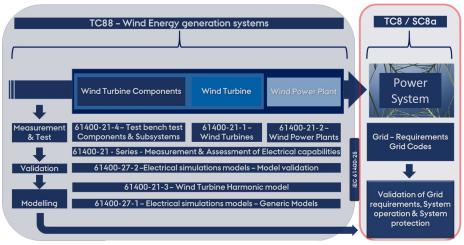

NERC IRPWG SubGroup Work Item #8: Improvement of Interconnection Process and Related Studies

Scope:


- Address challenges associated with the interconnection study process
- Use of models in feasibility study, system impact study, and facilities study
- Recommend adequate test and verification of IBR plant-level capability & performance

Logistics:

- No meetings for time being while leads are drafting document, irps_intstudy@nerc.com
- P2800.2 Liaisons: Alex Shattuck (<u>axsha@vestas.com</u>) and Jens Boemer (<u>jboemer@epri.com</u>)



IEC TS 63102:2021 Grid Code Compliance Assessment Methods For Grid Connection Of Wind And PV Power Plants

TC 8/SC 8A/JWG 4

- IEC TS 63102:2021
- P2800.2 Liaison: Jason MacDowell (jason.macdowell@g e.com)
- Other tech reports in progress

Source: Björn Andresen, Aarhus University, Denmark

Related IEEE Standard Association activities?

P2800.2: Recommended Practice for Test and Verification Procedures for Inverter-based Resources (IBRs) Interconnecting with Bulk Power Systems

- Type: recommended practice, individual project
- Sponsor(s): IEEE/PES/EDPG+EMC+PSRC+AMPS
- Tentative timeline: June 2023 (initial ballot), Dec 2023 (RevCom approval) – WG kick-off on January 18, 2022
- Scope: recommends leading practices for test and verification procedures that should be used to confirm plantlevel conformance of IBRs interconnecting with BPSs under IEEE Std 2800.
 - complements the IEEE 2800 test and verification framework with specifications for the equipment, conditions, tests, modeling methods, and other verification procedures
 - may specify design and as-built evaluations procedures for verification of plant-level capabilities and performance
 - may also specify verification procedures for IBR plant-level generic models applied for different time frames including S/C models, RMS models, and EMT models

P2882: Guide for Validation of Software Models of Renewable and Conventional Generators for Power System Studies

- Type: guide, individual project
- Sponsor(s): IEEE/PES/AMPS+EMC+EDPG
- Tentative timeline: Dec 2021 (initial ballot), Dec 2022 (RevCom approval) – work is starting in 2022
- Scope: guidelines for the validation of software models for renewable and conventional generators used for power system studies.
 - … 'validation' is a procedure and set of acceptance criteria
 … to confirm that the models perform well numerically and provide the intended response(s).
 - does not cover ... validation of generator software models against field measurements and other types of site or factory tests
- This activity seems to have different scope compared to P2800.2.

To get involved in IEEE P2800.2:

- Overall listserv "P2800-2" will be used to communicate meeting dates, agendas, etc.
- Each subgroup and PQ task force has a listserv sign up to get involved
 - Overall WG listserv: P2800-2
 - Subgroup 1 (overall document): STDS-P2800-2-SG1
 - Subgroup 2 (type tests): STDS-P2800-2-SG2
 - Subgroup 3 (design evaluation): STDS-P2800-2-SG3
 - Subgroup 4 (commissioning and as-built): STDS-P2800-2-SG4
 - Subgroup 5 (post-commissioning): STDS-P2800-2-SG5
 - Power quality task force: STDS-P2800-2-PQTF
- To join a listserv, send an email message to <u>listserv@listserv.ieee.org</u>
 - In first line of email body, write: SUBSCRIBE <list name> <Your Name>
 - For example, "SUBSCRIBE STDS-P2800-2-SG3 Jens Boemer"

https://sagroups.ieee.org/2800-2/

Jens Boemer

Technical Executive Grid Operations & Planning | DER Integration +1 (206) 471-1180 jboemer@epri.com

Deepak Ramasubramanian Technical Leader Grid Operations & Planning +1 (865) 218-8178 <u>dramasubramanian@epri.com</u>

Discussion

- Pre-commissioning plant-level conformity assessment practices are still evolving and could reflect a major change from status quo.
- IBR plant design evaluation and model quality check may include the dc part of the plant, especially in case of storage and hybrid plants.
- Engage in the broader consensus building by joining the respective IEEE P2800.2 Working Group and respective Subgroups outlined at <u>https://sagroups.ieee.org/2800-2/subgroups/</u>.

Together...Shaping the Future of Energy™

80 - This is an ongoing assessment: please provide feedback at jboemer@epri.com

© 2022 Electric Power Research Institute, Inc. All rights reserved.

