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Chapter 1. Executive summary 

The Electric Reliability Council of Texas, Inc. (ERCOT) commissioned the Bureau of Economic Geology at the University 
of Texas at Austin to complete the West Texas Oil and Gas Related Electric Load Growth Forecast for the Texas portion 
of the Permian Basin. Due to the inherent different time cycles of operations in oil and gas activities within tight oil 
plays compared to electric transmission infrastructure, it is crucial for ERCOT and its stakeholders to understand the 
long-term production outlook and operation activities footprint for an adequate transmission network in the area. 

ERCOT requests two objectives for this study:  

• First, establish a sustainable process in developing the load outlook of oil and gas activities in Permian. This 
study delivers a set of expected load forecasts and provides a repeatable process in facilitating ERCOT to update 
future load forecasts following the same methodology.  

• Second, develop a knowledge base of the relation between electric load and oil/gas activities. This study 
includes a comprehensive discussion on the relation and methodology in establishing the load estimate from 
each identified activity from the upstream and midstream operations.  

Findings contained in this study and report estimated load covering the period of the year 2012 to the year 2035, 
including the expected load forecast starting the year 2021 for the next 15 years, in the study area, which spans 18 
counties in the Texas portion of the Permian Basin. This study offers three scenarios of load forecasts for the forecasted 
period, 2021 through 2035, to reflect the range of possibilities of market conditions and decarbonization trends.  The 
yellow bounded area in Figure 1-1 describes the scope of the current study, mainly the counties in the state of Texas 
and the Far West weather zone of ERCOT.  

Based on current operation practice, for the 18 counties included in West Texas, the total required electric load is 
around 3400 megawatts for 2020, including loads from upstream productions, saltwater disposal, midstream gathering, 
transportation, and processing. There are three scenarios considered: market condition (mainly oil prices) and 
electrification level in midstream in the study area. The forecasted load varies greatly based on the assumptions of 
these two factors above.  
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Figure 1-1 Counties included in the Permian Basin 

To provide a robust view for the future, the load forecasts are presented in scenarios, based on key drivers relates to 
market condition, and operation trend in the field.  

The first factor of market condition mainly is defined by the market price of oil. Market condition drives production 
through various levels of drilling activities projected in the future. The second factor focuses on the trend related to 
operators’ efforts to switch gas-fired compressors to grid-powered for the gas gathering and transportation segments, 
in the producing region. This decision of switching from gas-fired to electric for compressors is driven mainly for 
lowering the emission rating for the operators or producers for decarbonization. However, it would increase the 
reliability requirement of grid power for natural gas systems to ensure deliverability.  
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Table 1 demonstrates the combintations of two key assumpitons defining the forecast scenario. There are three price 
scenarios, low price ($35/bbl), base price ($70/bbl), and high price ($90/bbl). Then, there are four different levels of 
electrification assumption, represented by the average annual growth rate from the year 2021 within each chart. 
“Status quo” case – maintain the current 10 percent electrification with 0 percent growth. This is used in the low 
scenario definition. A 1.2 percent annual growth from 2021 to 2035 will reach around 30 percent of compressors' 
electrification used in the base scenario. A 3 percent annual growth from 2021 to 2035 will reach around 58 percent 
of the electrification of compressors, and this is used in the high scenario. A 5.5 percent annual growth from 2021 to 
2035 will reach around 97 percent of the electrification of the compressor and is used as an upper bound in this analysis 
to indicate the full electrification case. 

Table 1 Definition of Scenarios 

O
il 
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 (

$
/B

B
L)

   Electrification level by the year 2035 for gas midstream (Percent) 

  
0% Growth 

10% Elec 
1.2% Growth 

30% Elec 
3% Growth 

58% Elec 
5.5% Growth 

97% Elec 

$35 x   x 

$75  x  x 

$90   x x 
 

Figure 1-2 shows a load forecast panel for the study area from 2012 through 2035, by varying market price and 
electrification levels. Each chart of the panel presents one single price scenario, with four different level of 
electrification assumptions.  

 

Figure 1-2 Projected load estimate by market price and electrification level 

It is worth noting that the impact of electrification increases as underlying production increases, from the low price to 
high price scenarios. Taking the example of the year 2035 estimates, the range of outcomes is around 4400 MW of 
impact from 10 percent electrification assumption to 97 percent conversion in the low-price scenario. The range of 
outcome in high priced scenario grow to over 5600 MW of impact in the high-priced scenario, when comparing the 
estimated 2035 load under 97% electrification level versus 10% electrification level.  

Among all possible scenairo combinations, three distinct combinations of these two factors are selected and defined as 
the study's base, high and low scenarios in Table 2.  

For the base scenario with a long-term oil price of $70/bbl, and reaching 30% conversion in electrification for midstream 
by 2035,  the total oil production is expected to continue rising through 2025 before stabilizing in the major production 
areas, like Delaware and Midland Basins. The total load requirement will increase by 58%, reaching 5682 MW in 2035,  
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at a 3.5% compound annual growth rate for the forecasted period. The electrification of midstream will convert up to 
30% of the current midstream load requirement to the grid.  

The high scenario with a long-term oil price of $90/bbl and a more progressive electrification trend leading to 58% of 
the current midstream load by 2035, the total production will continue growing with a sustained drilling rate supported 
by high oil price in Delaware and Midland Basins. The total requirement of load will grow at a robust 6.6% compound 
annual growth rate for the forecasted period and reach almost 9000 MW by the year 2035, reaching 2.6 times the year 
2020 level. This scenario combines with the most optimistic market condition and accelerates decarbonization efforts 
from the industry in operations to provide an upper bound for the future load.  

Table 2 Aggregated load projection by scenario 

Year / Megawatt 
Low: $35 + 10% 
elec.  

Base: $70 + 30% 
elec.  

High: $90 + 58% 
elec. $70 + 97% elec.  

2025 3801 4922 6156 6382 

2030 3739 5291 7623 7933 

2035 3750 5682 8951 9618 

 

With the low scenario with a long-term oil price of $35/bbl and a stagnant electrification level of 10%, the total oil 
production stays flat during the forecasted period. The reduced drilling efforts offset the decline of existing wells in the 
area. In the forecasted period, the total load requirement is reaching its peak at 3800 and then will stagnate through 
2035. This scenario combines the most pessimistic and conservative assumptions to provide a lower bound for the 
future load. Furthermore, the key message of the low scenario is that the oil and gas associated load is steady even in 
the most pessimistic market condition, and a drastic decrease of the load requirement from this region is unlikely.  

This research project was complex and touched on a wide range of technical, market, and engineering topics in the 
analysis. The information and assumptions are obtained from various sources, including industry interviews, public 
information, third-party data, expert inputs, academic research literature, and internal proprietary research across 
many disciplines (geology, economics, hydrology, engineering, etc.). There are some key assumptions included in the 
study.  

• Electric submersible pumps, natural gas lift, and rod pumps are assumed to be the main choices for artificial 
lifts in the future, without major efficiency improvements or technological innovations. Pump efficiency is 
assumed to be constant through the forecast period. The pump efficiency could improve in the future, which 
would reduce the amount of load required. Although gas lift is efficient and does not rely on grid power, its 
usage will be limited when the water cut increases for future wells in Delaware and Midland Basins, and electric 
submersible pumps (ESP) or rod pumps will be used in its place in those circumstances.  

• Water transportation is assumed to be done via pipeline or trucks in this study. Based on historical asset 
locations, the saltwater disposal facilities are assumed to be located an average of three miles away from the 
production wells. This assumption could change as water disposal sites are also determined by the location of 
the available reservoir for produced water. The depth of the water disposal wells has been increasing over time 
since 2012. The expectation is that the depth of the water disposal facilities will continue to increase as the 
operators are forced to use deeper reservoirs for disposal in the future. The water transportation load is not 
included explicitly in this study, although it is assumed to be a minor component if assuming a large diameter 
(20 inches) for around three miles.  

• Compressors are assumed to be using only 10% of grid power for their load currently. They are expected to be 
converting to grid power as operators continue their efforts in decarbonization in the basin. This operation 
trend presents a major load additional to future load estimates, depending on the electrification level of the 
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midstream operation.   

• This study does not include the electric load of hydraulic fracking and drilling of the wells, because those 
activities rely mainly on on-site generators instead of the grid.  

• This study does not include additional load impacts associated with new enhanced oil recovery (EOR) projects 
using CO2 or emerging technologies like low carbon-based hydrogen (likely to increase the load to the grid) and 
distributed energy projects (likely to reduce the load to the grid).  

• Production outlook is based on a conservative assumption that all capital required for drilling is from producers’ 
internal revenue, without additional external loans,  restricting the future drilling upside.  

• This study only covers the average load estimates of each activity and does not consider peak hour demand 
versus non-peak.  

• This study only covers the direct loads from upstream and midstream oil and gas activities and does not include 
residential and commercial loads in Permian that may be driven and related to the oil and gas activities.  

Roadmap of the report 

The rest of the report is organized in the following way: 

Chapter 2 describes the historical oil and gas activities in the Permian Basin and the scope of this study. Chapter 3 
explains the overall research approach for the project and data sources.  

Chapters 4 and 5 explain each activity included in this study for load estimate. It details the oil and gas activities 
requiring electric power and establishes the knowledge and methodology in linking the activity to load requirement. 
These chapters also estimate the historical load by activity and county as a reference. These two chapters set the 
foundations of the load estimates and documented the methods and assumptions for modeling the forecasted 
scenarios.  

Chapter 6 summarizes the production outlook based on the Tight Oil Resource Assessment Consortium (TORA) at the 
Bureau as the main source of the inputs for this project. This chapter explains the overall workflow of the production 
outlook and key assumptions based on a multidisciplinary body of research. Chapter 7 presents the load outlook by 
scenario for West Texas in the study area and discusses the definition of drivers for scenario development and the 
implications of the outlooks. Furthermore, this chapter also maps all load estimates (historical to future) to one-by-one 
mile blocks in the study area as a heat map of load occurrence. It explains the methodology and assumptions in mapping 
the load for the forecasted period.  

Chapter 8  concludes the research with key findings and notes on additional future extensions.  
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Chapter 2. Overview of the Permian Basin 

This chapter introduces the historical development of the Permian Basin and its historical oil and gas activities in the 
area.  

2.1. Overview of the Permian Basin  

The Permian Basin covers more than 86,000 square miles (220,000 km2) (Ball, 1995). It extends across approximately 
250 miles (400 km) wide and 300 miles (480 km) long, covering all or parts of 52 counties in West Texas and southeast 
New Mexico.  

The Permian Basin is a large sedimentary basin with the name to indicate that it has one of the world's thickest deposits 
of rocks from the Permian geologic period. The Permian Basin developed in the open marine area known as the Tobosa 
Basin in the middle Carboniferous period, approximately 325 million–320 million years ago (Galley, 1958). 

The Permian Basin of West Texas and Southeast New Mexico has produced hydrocarbons for about 100 years. It has 
supplied more than 35.6 billion barrels of oil and about 125 trillion cubic feet of natural gas as of January 2020. 
Implementing hydraulic fracturing, horizontal drilling, and completion technology advancements during the past 
decade has reversed the production decline in the Permian Basin, and the basin has exceeded its previous production 
peak, set in the early 1970s. 40% of the global demand is supported in the form of imports (either through pipe or LNG), 
as a total of 2000 BCM by 2030.  The Permian Basin is one of the fastest-growing basins in the United States and 
worldwide. It has gained renewed momentum since the shale revolution in the early 2010s. Figure 2-1 and Figure 2-2 
show how the U.S. proven reserve of liquid and gas since 1979. Starting from 2009, the U. S. oil reserves have doubled, 
and the gas proved reserve has also increased by 80%. In 2019, Permian Basin production accounted for more than 35% 
of total U.S. crude oil production and more than 13% of total U.S. natural gas production. The basin comprises several 
subbasins and platforms: three main sub-divisions include the Delaware Basin, Central Basin Platform, and the Midland 
Basin (EIA, 2020). The Delaware Basin straddles the Texas and New Mexico state line, producing significant volumes on 
the New Mexico side.  

           
Figure 2-1 U.S. crude oil and lease condensate proved reserves 

0

5

10

15

20

25

30

35

40

45

50

1979 1984 1989 1994 1999 2004 2009 2014 2019

billion barrels

U.S. crude oil and lease condensate proved reserves



Page | 8  
 

 

Figure 2-2 U.S. natural gas proved reserves 

As of 2018, the Energy Information Agency (EIA) estimates that the remaining proven reserves in the Permian Basin 
exceed 11 billion barrels of oil and 46 trillion cubic feet of natural gas. The Permian Basin has become one of the largest 
hydrocarbon-producing basins in the United States and the world (EIA, 2019, Figure 2-3 and Figure 2-4), about 25% of 
the total U.S. proved reserve and 10% of the total natural gas proved reserve. It is crucial to U.S. oil and gas production.  

By the year 2020, there were over 50,000 wells active in the study area of the Permian Basin, producing on average 4.4 
million bbl per day of crude oil and 16.9 bcf per day of natural gas. The EIA noted that the Permian accounts for about 
30% of U.S. oil production and 14% natural gas production in early 2021. The production numbers have reached even 
higher levels after 2020. As of March 2022, with the high oil price, the Permian oil production broke 5 million barrels 
per day, and natural gas almost 23 bcfd. 

 

Figure 2-3 U.S. crude oil proved reserve by basin 
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Figure 2-4 U.S. natural gas proved reserves by basin 

2.2. The geographic scope of the study 

Figure 2-5 shows the geographic location of the Permian Basin with its subbasins groups: the Midland Basin, the 
Delaware Basin, the Central Basin Platform, and other fringe subbasin groups.   
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Figure 2-5 The Permian Basin geographic location 

2.3. Oil and gas activity in the Permian Basin 

Figure 2-6 shows the reported historical production of oil, gas, and condensates out of the Permian Basin within the 
state of Texas1 since 2012. There are three types of production—oil in blue, gas in orange, and condensates in gray. Oil 
takes the major portion of the production out of the Permian, but gas production has increased its share of total 
production along with some additional condensates. It is important to note that the increasing gas production trend 
out of the Permian has to do with the geological characteristic of the basin. Because most of the gas is produced along 

 

1 This includes all counties in West Texas.  
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with oil, it is called associated gas. Figure 2-7 shows the same reported historical production (oil, gas, and condensates 
combined) out of the Permian by subbasin groups, which clearly shows where most of the production is coming from, 
the Midland and Delaware Basins, representing about 40% of geographic location accounts for 95% of the production.  

 

Figure 2-6 Production of the Permian Basin (Texas) since 2011 

 

Figure 2-7 Permian production volume by subbasin since 2011 

Since this study focuses on the electricity estimates related to oil and gas activities, it is also important to track and 
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note the level of activities based on measures rather than productivity. Figure 2-8 shows the well activities in the 
Permian Basin since 2012. There are over 50,000 accumulated well completions reported since 2012. Well 
completions are a good indicator of activity level, but it is not equivalent to the number of wells active in the basin. 
Active wells include new wells being completed every year while existing wells are completed and added to 
continuing production. When we look at the production from each year, we count all wells that produced 
hydrocarbon. For example, in 2019, there were over 30,000 wells active. 

 

Figure 2-8 Well activities in the Permian Basin (Texas) since 2012 

2.4.  Historical activity level 

Modeling load requirement necessitates measuring oil and gas activities in different ways. Following are the types of 
oil and gas activities data used in this study.  
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Operators in Texas report multiple aspects of their operation to the Rail Road Commission of Texas, which includes well 
logs and oil and gas production, the data source of historical production, and drilling activities.  

There are two aspects of measuring well activity level; one is on looking at the number of wells, and the other is 
production level. Figure 2-9 plots the number of wells by their type from 2012 to 2021. H stands for horizontal wells, 
and V stands for vertical wells. There is a significant growth in the number of wells drilled in horizontal and vertical. 
With horizontal drilling and hydraulic fracturing innovation, horizontal wells had a sharp increase and surpassed the 
number of wells compared to vertical wells around 2018 in the study area.  

 

Figure 2-9 Number of wells by type from 2012 to 2021 

Instead of using aggregated production over a month, the load-requirement calculation uses the daily production rate 
to estimate the average load capacity. Therefore, it is the daily production of crude oil (liquid), gas (unprocessed gas), 
and produced water used for upstream load calculation. Based on historical upstream data, we observe 2-4 horizontal 
wells per well pad in the study area. The number of wells per pad could influence the operation cost per well by creating 
cost-sharing among wells, although there is a limit on the number of wells installed at each pad. The load of upstream 
activities is mainly determined by its flow rate, and the number of wells per pad would more impact the cost of man-
camps and the amount of needed equipment, which is relatively minor.  

Although it is relatively simple to understand that more wells imply higher activities level, multiple factors could be 
used in measuring the level of oil and gas activities, and the activity level changes based on technology and market 
conditions over time. Furthermore, production and drilling depth can bring additional information about activity levels 
besides the number of wells. Figure 2-10 illustrates this point by showing the crude oil production by well type in the 
same period as Figure 2-9 – vertical wells with comparable numbers but much lower productivity. In contrast, horizontal 
wells drive most crude and gas production out of the basin.  
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Figure 2-10 Crude productions by well type from 2012-2021  

 

Figure 2-11 West Texas Intermediate (WTI) oil price versus numbers of well drilled in the Texas portion of Permian 

Furthermore, besides productivity which is a function of subsurface formation and other technical decisions, the market 
price of the products also contributes to the behavior of drilling. Figure 2-11 plots the WTI oil price versus the number 
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of wells drilled in the Texas portion of the Permian over time from 1986 through 2021. The wells drilled have correlated 
closely with the oil price as it indicates the market condition and the expected profitability of the operation for the 
following months. For example, an average of 8,000 to 9000 wells were drilled per year from 2012-to 2014 while oil 
prices were above $80 per barrel, and the drilling activities dropped to close to 4,000 wells per year when the oil price 
dropped to about $40 per barrel in 2016.  The drilling activities responded to the oil price recovery back to above $60 
per barrel in 2018 again, followed by a similar impact of a slowdown in drilling in 2020 when the oil price dropped below 
USD 40 per barrel.  
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Chapter 3. Research structure and study outline 

This study combines the existing TORA research on the production outlook of the Permian Basin with additional 
modeling on load-requirement assessment. As a result, it delivers a locational-based electric load-requirement outlook 
for oil and gas activities on the Texas side of the Permian Basin under the ERCOT market area. There are two major 
objectives of this study:  

• Establish a sustainable process in developing the load outlook of oil and gas activities in the Permian.  

• Develop a knowledge base of the relation between electric load demand and oil and gas activities. 

3.1. Research methodology 

The research work is accomplished through two phases.  

Phase 1 develops a load impact model of upstream oil and gas activities in the Permian based on historical data and a 
quantitative knowledge base of electric load generated from oil and gas activities. The oil and gas operation activities 
are as follows:  

• Upstream operations include drilling and production activities over the life cycle of a well or pad.  

• Midstream operations include gathering pipeline systems that transport liquids and gas from wellpads to treatment 
plants and refineries and any transportation pipeline systems (including intrastate and interstate pipelines) starting 
from the outlet of treatment plants located in the Permian Basin (within Texas).  

• Water treatment and disposal are likely to become a critical issue in the future and generate increasing load 
demand for operations, requiring the separation of water and hydrocarbons. 

Through historical data and industry interviews, key drivers that contribute to load requirements for oil and gas 
activities are defined numerically as the basis of the load model. The results from phase 1 are covered in Chapters 4 
and 5.    

Phase 2 of the project builds a sustainable process in developing the load outlook of oil and gas activities in the Permian. 
This phase includes two workstreams.  One is to develop a set of long-term load forecasts based on upstream oil and 
gas activities in the Permian. The other is to train and transfer the knowledge through project workshops and training 
to ERCOT technical teams.  Instead of one scenario, there are three scenarios developed in this study to provide more 
robust references of alternative market outlooks and operation assumptions.  

3.2. Technical interviews and data sources 

In the first phase of the study, there are several rounds of technical interviews and surveys to collect inputs and 
assumptions from industry and experts in the field, ranging from upstream operators and leaseholders, midstream 
pipeline companies, and regulatory entities like the Texas Commission of Environmental Quality. In addition, there are 
multiple interviews with researchers and scholars that are subject experts in technical areas, like EOR, air emission from 
compressors, and petroleum engineering modeling.  

Furthermore, the study has leveraged an extensive list of data sources to compile the necessary information for 
modeling purposes, covering many disciplines from the subsurface, engineering, and market data to environmental 
reporting.   
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Chapter 4. Assessment of the load requirement for upstream activities 

Chapter 4 explains each activity included in this study for the upstream sector and its impact on load requirement.  

Definition of upstream activities Figures 4-1 shows a cartoon schematic of all value chain activities covered in this study. 
It describes the activities from the wellhead to the end of midstream activities, where the hydrocarbon is processed 
and transported to market.  

The oil- and gas-industry activity can be divided into three major sectors: upstream (or exploration and production- 
E&P), midstream, and downstream. The upstream sector is all about searching for the potential location of underground 
resources, drilling exploratory wells, if successful, and then drilling and operating the wells that recover and bringing 
the crude oil or raw natural gas to the surface. Exploration involves obtaining a lease and permission to drill from the 
owners of onshore or offshore acreage thought to contain oil or gas and conducting necessary geological and 
geophysical surveys required to explore for (and hopefully find) economic accumulations of oil or gas.  

The next step is drilling an exploratory well, which is the only way to validate results from the surveys and is physically 
creating the boreholes in the ground that will eventually become an oil and gas well. The work is done by a rig contractor 
and service companies in the oilfield service sector. This study does not assess load requirements for exploration and 
drilling activities leading to production. For most exploration wells, operators usually will not rely on grid-connected 
power or will not invest additional capital costs to support ongoing production yet at this stage. 

Upstream defined in this study covers the production activities after exploration activities, and the goal is to maximize 
the recovery of hydrocarbons from subsurface reservoirs. There are different stages throughout the life cycle of a well:   

• Efficiently recovering the oil and gas in a producing field using primary and secondary recovery methods 

• Tertiary or EOR 

• Plug and abandonment, which marks the end of the productive life of a well. That event can occur anywhere from 
a few years after the well is drilled to five or six decades later. 

The upstream production activities include four fundamental operations: lifting, separating, treatment, and 
reinjection, and most of the wells drilled in the Permian are in the primary and secondary recovery stage.  
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Figure 4-1 Oil and gas activity schematic 

4.1. Lifting 

Lifting the crude and associated water and gas from the reservoir is done under reservoir pressure or by mechanical 
means (artificial lifts). Reservoir depth and pressure determine when it is necessary to use an artificial lifting mechanism. 
Crude oil is generally produced as a mixture of oil, water, and gas, which must be separated.  

Reservoir pressure is determined by gas and water pressure in contact with oil. Oil production generally reduces 
resource pressure over time, and gas and water can be injected to maintain reservoir pressure.  

Most wells' initial production can be supported by natural flow due to the high pressure of the reservoir at the beginning. 
After the initial explosive pressure, the pressure starts to dissipate. That is a serious issue for oil and gas production; as 
the pressure drops, so will the production flow if additional measures are not taken.  

Figure 4-2  plots the type curve per subbasin in the Permian: the x-axis is the number of months while the y-axis is the 
production rate. This provides an overview of the average life cycle production profile, called the type curve (or decline 
curve) of wells in the Permian. A decline follows a clear pattern of high initial production in flow rate. The artificial lift 
strategy is needed to maintain a higher flow for the wells. Artificial lifting by pumping or gas lift increases oil production 
with insufficient reservoir pressure. Ninety percent of wells need an artificial lift at some stage of their production life.  
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Figure 4-2 Type curves by subbasin in the Permian of oil production from 2012-2020 data 

Pumping is a pump located either on the surface or in the well (downhole), although the detailed design and 
mechanisms differ depending on the type of lift or pump.  

For example, gas lifting consists of injecting gas at one or more points in the production tubing. Pumping energy is 
based on turbulent flow for friction drop of 0.1 psi per 100 feet through a 3-inch production pipe, reservoir depth, crude 
density, and flow rate. The energy for the artificial lifts is supplied by electricity, either generated on-site from produced 
gas, imported natural gas, diesel fuel, or grid-based electricity. The energy source is a key factor in determining 
greenhouse gas (GHG) emissions of the well site operation.  

Production wells in unconventional reservoirs require a flexible artificial lifting strategy because of a wide range of 
production rates and a high decline rate of well productivities with depletion and time.  

There are several types of artificial lifts used in the Permian. Figure 4-3 shows a graphic demonstration of different 
methods of artificial lifts in the industry right now. The four major types observed in the Permian Basin are electric 
submersible pumps [ESP], rod pumps, plunger lifts, and gas lifts. Operators can switch and change artificial lift options 
throughout the production process with a specific objective depending on multiple factors.  

Table 3 describes a list of factors producers consider in selecting artificial lift options during production, with the four 
types in the Permian highlighted in gray. There are many factors to consider for the artificial list process. The conditions 
and selection could also change throughout the life cycle: Determining the best artificial lift option is a complex and 
dynamic process.  

Besides technical factors, the market conditions have also driven operators to reconsider their artificial lift strategies 
over time. The Permian Basin did not have a gas lift 30 years back, while ESP was used to maximize early production in 
the early years, before 2016, especially in a high oil price environment. ESP has a wide range of operations for depth 
and operating flow rate. ESP could help boost the initial production effectively. Since 2016, when the oil price dropped, 
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there was a  shift in focus from ESP to gas lift for two reasons: first, the high gas contents from the unconventional wells 
in the Permian limit the performance of ESP, and second, the operators are shifting their operating mentality from 
drilling to sell to maximizing the net present value.  

 

Figure 4-3 Artificial lift methods (Weatherford Artificial Lift Type Selection, Jul 2017) 

Although there has been a shift from ESP to gas lifts in recent years, there is no set of defined rules for when to switch 
between different artificial lifts. The executed strategy in the field depends on the wells' conditions and the existing 
knowledge and experience of artificial lifting methods by most operators.  
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Table 3 Factors to consider in artificial lift selection2 

Factors Hydraulic Piston Electrical 
Submersible Pu
mp 

Progressive 
Cavity 

Rod Pump Gas Lift Plunger Lift 

Operating Depth 
(ft TVD) 

7,500-17,000 1,000-15,000 2,000-6,000 100-16,000 5,000-15,000 8,000-19,000 

Typical 
Operating 
Volume 
(BARRELS PER 
DAY) 

50-4,000 200-30,000 5-4,500 5-5,000 200-30,000 50-500

Operating 
Temperature 
(°F) 

100-500 100-400 75-250 100-500 100-400 130-500

Corrosion 
Handling 

Good Good Fair Good to 
Excellent 

Good to 
Excellent 

Excellent 

Gas Handling Fair Poor to Fair Fair to Good Fair to Good Excellent Excellent 

Solids Handling Poor Poor to Fair Excellent Fair to Good Good Fair 

Fluid Gravity 
(°API) 

>8 >10 <35 >8 >15 GLR required 
300 SCF/bbl 

Build Angle <15°/100 <10°/100’ <15°/100 <15°/100 N/A N/A 

Servicing Hydraulic or 
Wireline 

Workover or 
Pulling Rig 

Workover or 
Pulling Rig 

Workover or 
Pulling Rig 

Wireline or 
Workover Rig 

Wellhead 
Catcher or 
Wireline 

Prime Mover Multicylinder or 
Electric 

Electric Motor Gas or Electric Gas or Electric Compressor Well’s Natural 
Energy 

Overall System 
Efficiency (%) 

45-55 35-60 40-70 45-60 10-30 N/A unless 
compressed gas 
added 

Most wells use artificial lifts throughout their lives in the Permian Basin with a brief period of natural flow at the 
beginning of the well's life cycle, if any at all. Based on technical interviews with major operators and literature review, 
there are three types of flow strategies, as the major types in Permian–gas lift, ESP, and rod pump. A plunger lift is 
another type of lift that is often used as a tandem to gas lift in the later part of the well life. It is included as part of the 
gas lift.  

The flow chart in Figure 4-4 describes the three major strategies used throughout the life of a well based on the industry 
interviews. From general observations among more than 270 operators on university land acreage in the Midland Basin, 

2 Source:  Energy efficient activation, February 2014, ipieca.

https://www.ipieca.org/resources/energy-efficiency-solutions/units-and-plants-practices/energy-efficient-activation-2014/
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small and large operators follow their peers of similar company size on artificial lift strategies. Smaller operators 
generally start wells using an ESP and convert to rod pumps once liquid fluid rates are below 350 to 400 bbl/d (Pradhan 
and others, 2017, 2018). After some early trials, larger operators generally use gas lifts before converting to rod pumps. 
However, companies that use gas lifts may also delay the conversion to rod pumps by using gas-assisted plunger lifts 
for several years.  

 
 

Figure 4-4 Artificial lift strategies throughout the life cycle of a well 

A multinomial-probability regression estimates the probability of each artificial lift type used throughout the lifetime 
of a well based on historical production test data reported to the Texas Railroad Commission. The independent variables 
include depth of wells, the daily flow rate of liquid, water percentage to liquid ratio, and gas to liquid ratio.  

Figure 4-5 is a probability graph based on the simulation regression from production data for all producing wells in the 
Texas part of the Permian.  

 

Figure 4-5 Probability of artificial lift type throughout the life cycle of a well  



Page | 23  
 

The artificial lift strategy is locational-based, depending on the water percentage in the mixture and GOR, per the inputs 
from the operators. Figure 4-6 shows the different levels of water cut and gas to the liquid (GTL) ratio by county in West 
Texas.   

 

Figure 4-6 Water cut and GTL ratio by county 

Due to the location difference, the probability of artificial lift strategy varies. Figure 4-7  illustrates the simulated results 
for Midland County and Culberson County, which have different water percentages (water cut) and GTL ratios.  

 

Figure 4-7 County-level artificial lift strategy comparison: Midland versus Culberson 
 

Once an artificial lift strategy for a given well at its production stage is defined, one can calculate the expected energy 
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requirement for the operation. All artificial lifts are expected to run continuously. Different artificial lift options have 
different energy requirements and preferred power sources–gas lift uses electricity generated from produced gas 
without any electricity. In contrast, other pumps mainly use electricity at different levels of efficiency. There are five 
steps to calculate the power requirement for artificial lift options which is demonstrated in Figure 4-8:  

1. Determine the fluid density (lb./bbl)  
2. Calculate the energy required to lift the fluid by unit depth (kilowatt-hour/bbl/1000 ft)  
3. Calculate the horsepower-hour to lift the fluid by unit depth considering well efficiency and pump efficiency (HP-

h/ bbl/1000 ft)  
4. Calculate the horsepower requirement to lift the total production fluids (oil and water) for a given production rate 

and well depth (HP)  
5. Calculate the cost of power (cent/ kilowatt hour) 

 

Figure 4-8 Artificial lift load-requirement calculation 

Through technical interviews, there are additional factors that operators have mentioned as part of the consideration 
process regarding artificial lift strategy in terms of balancing costs and performance. Besides the energy consumption 
that is calculated above, here are some additional factors: 

ESP and gas lifts have similar operating costs, assuming 2 cents per kilowatt for gas and 5-6 cents per kilowatt for power 
off the grid. Of course, some operators with smaller operators have less favorable rates, while larger operators may 

*Color code

  = input parameters

  = output parameters

1. Determine the fluid density (lb/bbl)

*Input parameter: Oil and Water API

Fluid Degree API [-] Specific Gravity [-] Density [kg/m3] Density [lb/bbl]

Oil 40 0.825 825 289

Water 10 1.000 1000 351

2. Calculate the energy required to lift the fluid by unit depth (kWh/bbl/1000 ft)

Fluid Density [lb/bbl] Depth [ft] Energy [kWh/bbl/1000 ft]

Oil 289 1000 0.109

Water 351 1000 0.132

3. Calculate the HP∙h required to lift the fluid by unit depth considering well efficiency and pump efficiency (HP∙h/bbl/1000 ft)

Pump efficiency = 0.58 Pump efficiency = 0.16 Pump efficiency = 0.15 Pump efficiency = 0.48

Fluid Energy [kWh/bbl] Well Efficiency

Rod Pump (HP∙h/bbl/1000 

ft)

Hydraulic Pump 

(HP∙h/bbl/1000 ft)

Gas Lift (HP∙h/bbl/1000 

ft) ESP (HP∙h/bbl/1000 ft)

Oil 0.109 0.75 0.34 1.22 1.30 0.41

Water 0.132 0.75 0.407 1.48 1.57 0.49

4. Calculate the HP required to lift the total production fluids (Oil + water) for a given production rate and well depth (HP)

*Input parameter: production rate and well depth

Fluid Production [bbl/d] Depth [ft] Rod Pump (HP) Gas Lift [HP] ESP [HP]

Oil 50 9500 7 26 8

Water 50 9500 8 31 10

Total 100.00 - 14.70 56.84 17.76

Water cut 50%

Grid power 100% 0% 100%

5. Calculate the Cost of Power 6 cent / KWh 2 cent/KWh 6 cent / KWh

Rod Pump [$/hr] ESP [$/hr]

0.66$                                            0.79$                                      
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have a negotiated lower electricity price from local utilities, like in Figure 4-9.  

ESP has a higher maintenance cost and higher probability of workover, as shown in Figure 4-10 (Oyewhole, 2016; 
Yogashiri and others, 2018). This is an important factor against ESP usage as workover implies higher costs and longer 
downtime. There is always the chance for additional uncertainties of production performance after a shutdown. Hence, 
this factor drives operators to gas lifts for that consideration.  

          

Figure 4-9 Operation cost and horsepower per unit volume comparison 

       

Figure 4-10 Well cost breakdown by artificial lift option 

4.2. Separation  

Figure 4-11. depicts the separation process as the next operation step in production at the well site after extracting the 
mixture of oil, gas, and water from the subsurface. Separating the crude from gas and water occurs in a separator tank 
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consisting of a horizontal separator with internal baffling to separate gas, hydrocarbon liquid, and water. Little energy 
is used. Produced gas goes to gas treatment, oil goes to a stabilizer, and water goes to water treatment. The gas from 
the separator (consisting of C1, C2, H2S, CO2, and small amounts of C3 and heavier) is compressed dehydrated and treated 
for H2S removal (may treat for CO2 removal, if needed). The resulting gas is sent out as a product or reinjected into a 
reservoir to maintain pressure. The C3 and C4 will be either sold or reinjected. 

 

Figure 4-11 Schematic of the separation process (source: Emerson: PID Control in 3 phase oil and gas separation, 2015) 

4.3. Heat treatment and stabilization 

Heat treatment eliminates low concentrations of water left in crude by applying heat directly to the emulsion fluid. 
Heat breaks down the water bond to oil, and the oil can move to the next process. The next step is stabilization, where 
electricity is supplied on-site or imported from the grid. Figure 4-12 is a picture of the stabilization unit.  

Crude oil from the separator may contain a small amount of light components (C1 to C4) that must be removed before 
the oil goes to the stock tank. For safety, electric heating supplies reboiler heat instead of direct firing. Crude from the 
separator is stabilized by removing light components C3 and C4 and any remaining C1 and C2s. The gas can be reinjected 
into the reservoir or sold as a product. Both reinjections of water and gas require energy. Water reinjection requires 
energy and is supplied by an electric motor, while most gas reinjection uses a gas-fired turbine without a grid connection. 
It is the same as what was mentioned for the gas lift option.  
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Figure 4-12 Stabilization unit (Source: Schlumberger) 

4.4. Load estimate of upstream activity at a well site 

Figure 4-13 summarizes load-requirement assumption by type of activities in upstream activity. In the current study, all 
enhanced oil recovery activity only includes water flooding for vertical wells in the Permian. Hence, it is a relatively 
small portion and not located in the fastest-growing subbasins. Instead, it is located mainly in the Central Basin Platform. 
For the vertical wells included in the study area, a generic water flooding process for EOR purposes is included to 
account for the additional electricity requirement.  

 

Figure 4-13 Load-requirement assumption by upstream activity 

No carbon dioxide EOR activity is included at this point. For the historical period, CO2 EOR is not yet a significant portion 
of the load requirement in the Permian. Still, there is further momentum for future CO2 EOR given the additional tax 
credit and market interests as a potential application for carbon capture and use. However, the current application of 
CO2 EOR is mainly targeted at vertical wells; the upside of the activity is also limited because most of the growth remains 
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to be with horizontal wells.  

Figure 4-14 aggregates load estimates of upstream activity over time from 2012 through 2020. The artificial lift 
activity takes most of the load requirement for the upstream activity. Figure 4-15 is a snapshot of the load 
requirement across counties for September 2019.  

 

Figure 4-14 Historical load by upstream activity and oil production 

 

Figure 4-15 Load by upstream activity by county for September 2019 
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Furthermore, during the interview, operators mentioned that the decision to link to the grid includes the following 
factors:  

Distance to the grid is the first important factor. If the sites are not too remote, all operators agree that a grid connection 
is preferred for their production operation. However, there is a long wait for grid connection in West Texas, with 
wellhead sites usually located in the field. Since the process itself may take a couple of years, the operators often find 
it difficult to accurately submit their estimates of load demand at the time of application, knowing that the actual grid 
connection would only be realized in a few years.  

Therefore, there is a tendency to stay optimistic about the load estimate as the risk of a low load is usually higher for 
the operators themselves. Some of the operators interviewed are willing to build their distribution line to the grid if 
that could lead to shorter waiting times if the distribution line is only a couple of miles: self-build distribution lines take 
1-2 weeks on the short side, compared to a couple of months or longer with local coop.  

The reliability of the grid is the second factor. Operators often mentioned concerns regarding the reliability of the grid 
connection, especially when it comes to upstream lifting activities. Oil and gas operators' continuous load requirements 
define a lower tolerance level than ERCOT’s system minimum threshold for blackout reporting. Therefore, brief 
fluctuation of power on the grid could cause interruptions on the operation side. Sometimes, a local service interruption 
or power outage event would stop the lifting process and cause additional restarting trouble. 

4.5. Saltwater disposal sites 

The next section discusses the activity involving the transportation and disposal of produced water. There are two 
interconnecting but separate water challenges faced by increasing Permian production. Large volumes of water are 
required for hydraulic fracturing upfront during well completion, and, second, limitations to disposal of produced water 
in these low-permeability unconventional-shale reservoirs. While hydraulic fracturing water demands are an issue, 
there is also increased concern about the large volumes of produced water.  

Figure 4-16 demonstrates the amount of produced water from production relative to hydrocarbon production out of 
the Texas portion of the Permian Basin3, about 4-5 parts of water per one hydrocarbon.  

There are two separate possible routes for produced water in the Permian today: reinjected back to the well for 
enhanced oil recovery (EOR) purposes for conventional vertical wells or transferred to saltwater disposal to reinject 
into a different reservoir. The following Figure 4-17 describes the value chain of water activities. The activities that 
consume significant energy are marked with a red border here.  

Water out of the wells may need to be treated. Depending on the water quality and treatment requirement, energy 
consumption varies. Produced water is often brackish and contains residual oil, and it must be treated before disposal 
to remove salts and oil. Water that will be reinjected either produced water or water brought in, must be filtered to 
remove particulates and deaerated.  

 

 

3 BOE - A barrel of oil equivalent (42 gallons or 6000 cubic feet of natural gas) 
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Figure 4-16 Historical Permian (Texas) production by type 

 

Figure 4-17 Water value chain 

The major energy use in water treatment is for deaeration. Filtration and bacteria removal use filters to remove 
particulates, and energy for filtration is based on pumping for 150 psi, which adds a small amount of overall energy. 
There is an assumption of 5% water loss through vaporization for the deaeration process. Energy is provided through 
electric heating. Desalination is needed to meet the quality of water standards for reinjection or disposal. Water 
treatment was assumed to be done by reverse osmosis or vacuum evaporation. Energy is primarily based on 
pumping, requiring 0.009 KWH/per gallon of water.  

Besides the water used directly for EOR and recycling at the well pads, the rest of the water is hazardous if left on the 
ground. Per the Environmental Protection Agency (EPA) policy, produced water needs to be treated as 
nonenvironmentally damaging and reinjected through saltwater disposal wells (SWD) in a designated reservoir. 
Hence, the produced water is transported via pipeline or trucking in the Permian.  
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Saltwater disposal facilities (SWD) belong to EPA Class II injection wells, which are mandated to have multiple layers 
of projection in design to protect the environment. Figure 4-18 demonstrates that the facility includes the following 
activities: unload, filtration, separation, treatment, tank (water and oil) pumps, and disposal. Residual oil separated 
from saltwater is sold back to the market as skim oil. Saltwater can be recycled and used as water for fracking near 
well pads in certain situations.  

 

Figure 4-18 Saltwater disposal facility (source: Kleanwater) 

SWD facilities require continuous power and are usually connected to grid power. The methodology of calculating water 
pumped back into the wells is a function of well depth, flow rate, and pump efficiency. Figure 4-19 shows a map of all 
SWD wells dated 2012 or later in the study area.  
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Figure 4-19 SWD facilities in the ERCOT study area 

The current study has historical data on water injection volume by SWD facilities in the Permian, which could provide a 
more detailed calculation of historical power requirements per site. Figures 4-20 and 4-21 show the aggregated water 
injection volume and its power requirement for SWD facilities from 2012 to 2020. 

Most SWD facilities rely on local grid connections; hence, most SWD facilities' load is expected to be on electricity. 
Based on the county-level estimate, Reeves and Loving County, with the fastest-growing number of SWD facilities, also 
have the highest load as of  September 2019.   Figure 4-22 shows the estimated SWD load requirement by county. 
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Figure 4-20 Saltwater disposal injection 

 

Figure 4-21 Total est. load for SWD injection 
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Figure 4-22 Total estimated load for SWD injection by county 

There are two key assumptions based on historical observation and data for the future load forecast.  

First, the future SWD load is projected based on forecasted produced water production from producing wells, assuming 
that the produced water is largely transported to a nearby SWD facility by either truck or pipeline. The SWD facilities’ 
depth for future wells is like the historical average in the county and has similar pump efficiency and operation 
parameters.  

Second, the location of the future SWD load is projected to be about 3 miles around the producing wells, based on the 
historical average distance from a producing well to the closest two SWD facilities in the study area, shown in Figure 4-
23. Water is heavy to transport; therefore, producers have the economic incentive to ship the produced water to the 
closest facilities for disposal if possible. This chart shows the closest SWD facility to a producing well as NEAR_RANK = 
1, and the second closest SWD facility to a producing well is shown as NEAR_RANK = 2. 
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Figure 4-23 Distance from a producing well to an SWD by county 
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Chapter 5. Assessment of the load requirement for midstream activities  

5.1. Definition of midstream and overview of midstream facilities 

Besides produced water, which is covered as part of the disposal activities from the previous chapter, the rest of the 
produced oil and gas are transported, processed, refined, and treated for downstream markets. The infrastructure and 
processes involved between the well site to the market-ready commodity are considered midstream activities. 
Midstream activities serve an important role in the value chain, helping to transport raw products from the field, 
transforming these products into usable and marketable products, and connecting upstream production to 
downstream deliveries to end-users.  

This chapter discusses the midstream activities of transporting oil, gas, and liquids from wells via a gathering pipeline 
system to treatment and processing. The flow chart below in Figure 5-1 (same as Figure 4-1) demonstrates the parallel 
while interconnecting processes of transporting natural gas, liquids, and oil through midstream activities. 

 

Figure 5-1 Oil and gas activity schematic 

Due to the different processing requirements, the oil and gas from the field go through different and parallel midstream 
activities. When extracted from the field, there is a mixture of oil and gas (and liquids). Separate oil, gas, and natural 
gas liquids flow to the respective storage tanks after initial measurement and some removal of waste product. At this 
stage, the products are not yet up to standard for the market. Midstream activities take these raw products and 
transport them into a more centralized processing plant for natural gas or refineries for oil.  

Figure 5-2 plots the natural gas pipeline in the Permian Basin for the study area categorized by three diameter groupings 
here:  3-6 inch diameter pipelines, 6-12 inch diameter pipelines, and any pipelines greater than 12 inches. Most 
gathering system lines are smaller diameter pipelines under 12 inches, while main transportation lines are greater than 
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12 inches. Figure 5-2 summarizes the total mileage of natural gas, crude, and natural gas liquids (NGL) pipelines by 
diameters by county in the study area. Note that there are many more natural pipelines in terms of mileage than oil 
and NGL. There are facilities along the gathering pipelines to transport oil, gas, and NGL across distances from well sites 
to processing plants.  

 

Figure 5-2 Pipeline mileage by county and by pipeline class and commodity 

Figure 5-3 describes the gathering processes of oil, gas and NGL as three concurrent processes in the field.  

The oil leaving the field is called crude oil, as it must be further refined into various marketable products. It often goes 
through the oil gathering system that collects crude oil from well sites and transports cumulative volumes from wells 
into a refinery.  

Pump stations along the gathering line or pipeline are vital in moving crude oil or NGLs (and refined petroleum products) 
through the gathering and transportation pipeline system. Pump stations are facilities along a pipeline that contains 
pumps to maintain the desired pressure and flow of liquid product through the pipeline. In general, pump stations 
contain one or more electrically-driven pumping units. They are strategically located to boost internal pipeline pressure 
and flow within safe operating limits of the pretested pipeline. Pump stations then move the crude oil through the 
pipeline to the next station or its final market destination. Typically, pump stations are situated 40-60 miles apart; 
however, their exact location is determined by various factors, including engineering design, terrain, power availability, 
and delivery needs.  

The gathering system supported by pump stations transfers crude oil to oil refineries, large facilities that process crude 
oil into refined petroleum products. The refined petroleum products are then transferred through product terminals to 
the next stage of the transportation, either trucks or pipelines, to downstream users.  

The gathering system of natural gas is similar to crude oil. It is designed to take unprocessed natural gas from well sties 
to processing plants where natural gas is processed and ready for transport to downstream users. The natural gas 
produced and gathered from the wellsite via the gathering system is called wet gas as it includes extra water, wastes, 



Page | 38  
 

and more NGLs (light hydrocarbons) products.  

Compressor stations are set up along the gathering pipeline to provide power to transport the wet gas. Compressor 
stations are used for almost every natural gas value chain stage, including gathering, transport, processing, storage, 
and distribution. Based on 2018 data, the US has approximately 1,700 mainline natural gas pipeline compressor stations 
with 5,000-7,000 compressors and 15,000 plus smaller compressor machines in gas gathering systems.  

A gathering compressor station receives natural gas from area well sites via pipeline or another compressor station. 
The received gas is compressed and sent down the pipeline for processing at a natural gas plant or another compressor 
station. Sometimes, a compressor station also includes sulfur removal and NGL removal processes, but the volume of 
NGL collected here is often small.  

Natural gas liquids refer to the light hydrocarbons that are marketable products from the oil and gas stream. The 
gathering of NGL occurs in multiple stages of the gathering and processing activities: NGL can be gathered sometime 
after separation at the well site or from the compressor station with NGL removal (often, this is a small volume).  

Most NGL is extracted from the gas stream at the natural gas (processing) plants, which use cryogenic processes that 
drop condense NGLs. Natural gas plants typically have compression on-site, but it is not required. Residue gas (natural 
gas, mainly methane, with a substantial quantity of the NGLs removed) and NGLs leave the facility in separate pipelines.  

 

 

Figure 5-3 Gathering transportation system 

 

5.2. Gas gathering lines 

Figure 5-4 presents a map of natural gas pipelines in the ERCOT study area, including all categories and sizes of the 
pipeline. In this section, we first discuss the estimation of load for gas gathering lines.  

Like calculating load for transporting water, gathering pipeline load estimates follows similar engineering principles. It 
requires assumptions on flow rate, traveled distance, the distance of pipe, and gravity of fluid and gas. This section 
covers the methodology and findings in estimating the power requirement for gathering systems.  
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Figure 5-4 Gas pipeline in the ERCOT study area 

Due to the lack of field data on compressor stations and gathering system flows, an alternative methodology would 
estimate the total required energy for transporting natural gas from wellheads to processing plants without knowing 
the exact location of the gathering lines or their compressor stations. This methodology only uses the available data on 
gathering systems, including the total mileage of local gathering lines and intermediate gathering lines on the county 
level, along with knowledge of the total volume to be transported and the number of wells per county.  

Figure 5-5 demonstrates the flow of natural gas through the gathering system from wellheads via flowlines gathering 
lines to the gas processing plant. There are compressor stations between each transportation step to maintain gas 
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pressure and flow speed. The compressor stations are where the energy is consumed to compress gas through pumps 
powered by turbines or electricity grid connections.  

There are two key assumptions about the grouping of the wells on gathering lines that would impact the power 
requirements: the number of vertical wells per gathering group and the number of groups per intermediate gathering 
point. For vertical wells, this study uses ten vertical wells per group and one well pad for horizontal wells per group. 
There are about 2-4 wells per well pad in the Permian based on historical data.  

 

 

Figure 5-5 Natural gas gathering system structure 

With the knowledge of mileage by pipeline class (by diameter) per county, a hierarchical system gathering system is 
used to demonstrate and estimate flow rate per pipeline and load requirement. Gathering lines are grouped further at 
an intermediate point, usually with additional compression in the field before reaching the processing plant. The 
average number of groupings is assumed to be somewhere between 2-4 gathering lines per group of intermediate lines 
in the field. This assumption is based on two sources of reference: 

1. IHS Markit Study published in 2020 
2. Based on the TCEQ database of 2020 reporting, there are 260 compressor stations reported in the study area. 

Assuming these are larger compressor stations required to report emissions, it is plausible that this would be 
a good approximation of the intermediate compressor stations in the area.  

Based on the data on well pads and grouping in this current study, on average, 2.4 lines are grouped into one 
intermediate line across counties, while each county has a different grouping number (rounded to an integer). The next 
step is to calculate the number of local gathering points and intermediate gathering points based on the grouping 
assumptions and existing wells by type. Combined with the average production rate per well by type (vertical versus 
horizontal), we can calculate the flow rate of each gathering line and the mileage per gathering line type.  

With the assumptions of gas production rate per well and grouping structure of the gathering system, the next step is 
to estimate the approximate flow rate per gathering line from well to intermediate gathering point and from 
intermediate gathering points to gas processing plants. The gathering line from wells to the intermediate point is 
assumed to have a 3-6 inches diameter, while the intermediate pipeline is 6-12 inches.  

Given the diameter class of the pipeline, the energy requirements to transport gas are calculated based on the relation 
between the flow rate (volume) and the distance traveled along the pipeline. The power requirement via different 
diameter pipelines and traveled distance is calculated based on the interpolation of the energy requirement matrix. 
See the matrix details in Appendix.  

The methodology flowchart with key assumptions is listed in Figure 5-6. Figure 5-7 demonstrates that the power 
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requirement curve for an 8-inch pipeline is a function of flow rate (volume in mcf per day) versus traveled distance. The 
further the distance, the higher the required power, while the relationship is not linear.  

 

Figure 5-6 Gathering line load-requirement assumptions 

 

Figure 5-7 Power requirement of gas pipeline by distance and flow rate 

In 2019, the average local gathering line by county was 0.4 miles, and the average intermediate gathering line was 6.1 
miles. Figures 5-8 and 5-9 summarize the number of wells and gathering system mileage for the year 2019 and the 
power requirement estimation by county for the year 2019. Assume that the mileage of gathering and intermediate 
gathering systems increases as the well numbers increase. In 2019, there is above 1,080 MW in total for gas midstream 
covering over 33,000 wells and almost 10 Bcfd gas.  
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Figure 5-8 Number of wells and gathering line mileage by county 

 

Figure 5-9 Gathering system total  power requirement estimate 

Note that the power requirement discussed here is the total estimated power required for the operations. Depending 
on the type of activity and product, the power supply source differs. Hence, not all the power requirements would be 
from electricity from the grid. Currently, most compressors (about 90% per input from operators and midstream 
companies) are not powered by the grid. That would seem to be a relief from the concern of uncertainties in our 
estimation. However, gathering and processing activities represent a major source of emissions for the gas value chain, 
about 15% of natural gas system methane emissions based on the Greenhouse Gas Reporting Program by the EPA. 
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Starting in 2016, the EPA started requiring major emission sources with annual emissions greater than 25,000 metric 
tons of direct GHG equivalence to report annual emissions to the EPA.  

Therefore, the choice of electricity supply for compressor stations is in transition, supported by the technical interview 
from TCEQ, upstream operators, and midstream pipeline companies. Although there is no sufficient field data to 
estimate the exact level of electrification for compression in the field, it is important to track and monitor compressor 
station conversion to electricity. There could be a rapid increase of a significant grid load for gathering systems and 
compressor stations due to the efforts in environmental, society, and governance commitment by operators in the 
Permian.  

Figure 5-10 shows the average distance across each county included in this study. This provides a reference of the 
possible load impact on gathering relative to the well location. On average, across all counties in this study, the distance 
to the closest substation is around six miles (NEAR_RANK =1) while the second closest (NEAR_RANK=2) is eight miles, 
and this is translated as there is a six to eight miles radius of load impact occurring around the producing well.  

 

Figure 5-10 Distance from a producing well to a nearby station 

5.3. Oil and NGL gathering lines 

Figure 5-11 shows the map of oil pipelines in the Permian Basin and oil refineries. Oil gathering system estimation is 
like gas. It shares the same grouping assumptions of gathering systems in oil versus gas in the current study. Appendix 
A represents the power requirement matrix for the oil pipeline.  

The electricity required to transport oil is much less than gas because it requires less compression. Figure 5-12 
summarizes the county's total MW requirement for oil gathering systems in 2019. Pump stations require continuous 
power and rely mainly on grid power. Booster pump stations are the equivalent to the gas compressor station, and 
booster pump stations increase the oil pressure received through one pipeline to the next station or refinery. There is 
usually a 375-400 to 1 ratio of wells to pump stations in literature. That would require around 100 pump stations in the 
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Permian, and in the TCEQ database, there are only 55 stations accounted for in total.  

 

Figure 5-11 Oil pipeline and refineries in Permian Basin ERCOT study area 

Similarly, the distance from a producing well to the closest pumping station is also calculated in Figure 5-13, where 1 
indicates the closest pumping station (NEAR_RANK = 1) and 2 indicates the second closest pumping station 
(NEAR_RANK =2).  Based on the available data, we could see that the pump stations are generally located at least two 
times further from the compressor stations. It makes sense because the energy required to pump and transport oil is 
only a fraction of what is required for natural gas. Again, this average distance serves as the basis of the load impact 
radius of gathering oil from the producing well.  
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Figure 5-12 Power requirement for oil gathering system and average oil gathering line mileage by county 
 

 
Figure 5-13 Average distance from a producing well to a nearby pumping station4 

 

4 There are only 14 counties containing data of pumping stations used for the study.  
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5.4. Gas processing and treatment 

The natural gas used by consumers is composed almost entirely of methane. However, although still composed 
primarily of methane, natural gas found at the wellhead is by no means as pure. Raw natural gas comes from three 
types of wells: oil, gas, and condensate wells. Natural gas that comes from oil wells is typically termed associated gas, 
and most of the natural gas from the Permian Basin is associated gas. However, even in wells primarily producing gas, 
referred to as gas wells, the raw natural gas still contains a semi-liquid hydrocarbon condensate. The light hydrocarbons 
(besides oil) left in wet gas streams commonly exist in mixtures of principally ethane, propane, butane, and others. In 
addition, raw natural gas contains water vapor, hydrogen sulfide (H2S), carbon dioxide, helium, nitrogen, and other 
compounds. 

Major transportation pipelines usually impose restrictions on the makeup of the natural gas allowed into the pipeline. 
That means that before the natural gas can be transported, it must be purified. The ethane, propane, butane, and 
pentanes must be removed from natural gas. Natural gas processing consists of separating all of the various 
hydrocarbons and fluids from pure natural gas to produce what is known as pipeline-quality dry natural gas, and Figure 
5-14 demonstrates the schematic of a gas processing plant.  

 

Figure 5-14 Gas treatment plant (Source: Midstream Gas: Gas Processing and NGL Markets. ihrdc.com) 

Figure 5-15 shows the processing capacities by county in the study area. Not all counties have processing plants— local 
gas can be processed in the county if there is an existing processing plant, or it can be transported across the county 
for processing when there are no or insufficient local processing capacities.  

Regarding the power requirements for processing plants, the Williston Basin Study 2012 estimates around 15 MW per 
100 mmcfd of raw gas for facilities built between 2015 and 2019. The Oncor IHS Study (2020) uses a matrix to calculate 
throughput versus the power requirement of gas processing plants.  The processes required at a  processing plant will 
differ greatly depending on the quality and mixture of raw natural gas from different basins, and so will its energy and 
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electric load. For two reasons, the current study takes an average load factor of 7.2 MW per 100 mmcfd. First, consider 
that some of the on-site processes use gas-fired generators. Second, some portion of up to 10% of raw natural gas is 
lost through the transportation and processing process for fuel use and other losses. Figure 5-16 shows the county level 
load requirement for processing in 2019.  

 

Figure 5-15 Gas processing plant capacity by county 

 

Figure 5-16 County-level load estimate for gas processing and oil refinery 

There are about 18.2 bcf per day of processing capacities in the Permian with small amounts of announced capacity 
expansion. As natural gas production increases in the Permian, NGL production also increases. It is worth noting a trend 
in oil and gas production in the Permian, which is that the gas has been increasing faster than oil in recent years. The 
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reasons come from two factors: first, there is less flaring. In recent years, the flaring of produced gas had become almost 
a crisis in the Permian Basin as pipeline backlogs had forced producers to either shut-in wells or flared the produced 
natural gas. New natural gas pipelines combined with oil well shut-ins alleviated the flaring in 2020, with estimated 
flaring around 0.15 bcf per day compared to about 0.5 bcf per day in 2019 or earlier. This drop in flaring also means 
more NGL is extracted out of the gas stream. The second reason is new wells with higher gas-to-oil ratios, including 
nearly drilled wells and the restarting of previously drilled wells.  

All producing wells are mapped to the closest two processing plants in the study area for the historic period. This 
approximates the distance from a well to its processing plant. The future processing infrastructure follows a similar 
pattern: processing plants are built to optimize their intake from producing wells. New plants would be added close to 
the new drilling area. Figure 5-17 shows the average distance from a well to its processing plants, where 1 indicates the 
closest processing plant, and 2 indicates the second closest processing plant.  

                               
 Figure 5-17 Average distance from producing well to a nearby processing plant 

 

5.5. Oil refinery 

Oil is transported to a refinery for further processing. Refineries represent about 4% of total energy consumed in the 
United States and about 15% of all industrial consumption. However, the majority of the oil from the Permian is 
transferred out of the basin for refining, and there is only one existing refinery in the Texas portion of the Permian Basin: 
Alon USA Big Spring Refinery in Howard County, located with a 73,000 bbl/D nameplate capacity, est. 30 MW with an 
average 67,000 barrels per day throughput. Furthermore, it is worth noting that there are two announced new 
refineries in the study area:  

MMEX Resource in Pecos County, with three proposed phases. According to its official project website, phase 1 includes 
10,000 barrels per day of a small and modular unit with about 4 MW electricity requirement and 6 MW for CO2 capture. 
The second phase includes blue H2 60 ton/d via steam methane reformation (21,600 tons per annum) with 13,000 
mcf/d dry natural gas with an expected 25.5 MW power requirement It also will have integrated solar power on-site 
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for up to 10 MW. Phase 3 includes green H2 (not related to oil and gas) and will have 188 MW of power required for 
electrolysis up to 50 tons per day. It is unclear if additional renewable capacity is on-site for the last phase. Assuming 
the project includes its on-site renewable capacity for phase three and part of phase two, there will be a 25.5 MW 
power requirement from the grid from phases 1 and 2.  

Meridian Energy 60,000 barrels per day in Winkler County with an estimated 30 MW power requirement. There is no 
specific announcement of on-site power capacity.  

5.6. Major transmission pipeline 

The products (oil, gas, and NGL) often need to travel a great distance to their point of use or the next stage of the value 
chain.  

Natural gas transmission pipelines here focus on transmission lines carrying processed natural gas from the producing 
area, often at the tail end of a processing plant, transporting gas long distances at high pressures (often 200-1500 psi) 
to the downstream market. Interstate pipelines that cross the state border are regulated by the Federal Energy 
Regulatory Commission, and intrastate pipelines are regulated by the state. There are 17 major transmission pipelines 
out of the Permian Basin, and Figure 5-18 shows the historical pipeline receipts of these pipelines through the year 
2020 in the unit of mmcfd. There are almost 12 billion cubic feet per day of processed natural gas moved out of the 
Permian Basin in 2020. The current study would only focus on the electric load that would be occurred for transporting 
natural gas out of the basin via these transmission lines. In other words, those are the volumes that flow across the 
basin via these transmission lines.  

 

Figure 5-18 Gas pipeline receipts in the Permian Basin 

For a simple estimate of the load requirement from transmission lines, there are two assumptions: routes of the 
transmission pipelines would not change materially from the current, while expansions and additions in similar routes 
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of way are likely to change as the production grows. Second, based on the GPCM® North America gas pipeline 
competition model, which provides the producing region pipeline flow forecasts, Figure 5-19 shows that the forecasted 
outflow of the Permian Basin sliced by its destination markets remains steady from the year 2020 through 2035. In 
other words, the cross-county flow remains proportionally stable as the production grows.  

 

Figure 5-19 Gas flow share by destination from the Permian 

Similar to the load for the natural gas gathering system, it is important to realize that the load requirement for these 
major transmission lines could be significant. Still, the actual load connected to the grid is relatively small. The 
percentage of electrification of compressors impacts this part of the load requirement on the grid. 

The raw gas is made of natural gas (methane) and condensate. NGLs come from oil (associated) and gas (nonassociated), 
and NGL numbers are related. NGL’s power requirement for pipeline transportation is around 50% of oil transportation 
due to its lighter density (Higher API). NGL mileage is around 60% of the oil pipeline in this study. The major pipeline 
load-requirement oil and NGL pipelines are calculated as 50% of their load requirement of local gathering load based 
on two simple assumptions. First, a larger pipeline is more efficient in transporting than smaller pipelines for the same 
volume; second, the mileage of a larger pipeline is less than 50% of the local gathering line for oil and NGL.  
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Chapter 6. Permian oil and gas production outlook  

This section includes the basic methodology and structure of the TORA consortium at the Bureau, providing the 
foundation for oil and gas activities forecasts. 

6.1. Outlook analysis overview 

TORA’s integrated tight oil and gas play analysis and assessment workflow (Figure 6-1) rests on the foundation of a 
robust subsurface framework which includes stratigraphic analysis, petrophysical interpretations, facies descriptions, 
pore pressure analysis, and fluid properties estimates, integrated into a basin-scale geologic model. It includes well-
level decline curve analysis to estimate the production potential of existing wells and to inform the likely productivity 
and production history of future wells.  With completion and production data from existing wells and geologic 
assessment from the TORA geologic model, the productivity of existing wells is modeled, and fundamental controls on 
productivity are revealed using advanced data analytical approaches. The geological-based productivity model and the 
revealed controls are necessary to predict the production of future wells for all undrilled regions at the basin scale. 
With expected drilling and completion practices, and geologic attributes derived from the geologic model as input data, 
we then use the productivity model to predict the annual production profile, hence EUR (estimated ultimate recovery), 
of a representative future well in each square mile block of the basin per formation.  We then conduct well spacing 
analysis and estimate the remaining well inventory per block, per formation.  Assuming drilling and completion practices 
remain the same as the most recent three years, we assess Technically Recoverable oil and gas per block per formation.  
Our granular technical recovery resource (TRR) assessments are strongly linked to geology and reservoir data and reflect 
the current drilling and completion practices. TRR is based on a large inventory of wells, some of which may never be 
drilled due to lower-tier in-place volumes and reservoir porosity and a gas-oil ratio (GOR) that is too high.  The latter is 
more of an issue in the western Delaware Basin than in the Midland Basin. TORA’s expected drilling analysis and 
production outlook workflow considers economic / investment constraints and profitability and connects with 
subsurface models, reservoir engineering, and the TRR assessment, allowing us to assess the impacts of various energy 
prices on annual oil and gas production for each formation in any tight oil and gas basin.  While the upper right portion 
of the workflow is the focus of this chapter, the results are directly tied to the work done in the upper left and bottom 
portions of the workflow diagram. 

Figure 6-2 shows the TORA-focused area. TORA focuses on the formations and intervals that account for the majority 
of unconventional production (horizontal wells and fracking). Looking at the current top landing zones by 12-month 
cumulative oil, for the Delaware Basin, TORA production outlooks and forecasts will cover almost 70% of those volumes, 
and for Midland, TORA can account for well over 80% of first-year production.  
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Figure 6-1 TORA’s integrated workflow. The red rectangle highlights the production outlook workflow. 
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Figure 6-2 TORA focus areas 
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Figure 6-3 Stratigraphic schema from the Permian Basin.  

  



Page | 75  
 

The Permian Basin presents a particular challenge in that there are so many formations to evaluate and for horizontal 
drilling, two major subbasins across Texas and New Mexico.  Another complication is that associated gas is produced 
from most of the horizontal wells targeting tight, low-permeability reservoirs, with GOR highly variable for wells located 
in different parts of these vast subbasins. With over 30,000 wells now drilled in the Delaware subbasin (DB) and Midland 
subbasin (MB), there is an enormous amount of data to consider each time one of these outlooks is constructed, given 
that we must keep track of each producing well and its attendant decline each year is on production. On average, the 
first-year oil production accounts for some 30 percent of the ultimate EUR per well. Without new drilling, total 
production would rapidly decline. There is also the complication of “DUCs,” wells that have been drilled but not yet 
completed.  Wells may be drilled in year ‘x’ but not completed until several years later when more cash is available to 
the producer and/or prices are higher. In this case, production may be added in year ‘y,’ which is tied to a well drilled 
several years earlier.  This is exactly what we see today in the Permian Basin, with oil prices over $90/bbl. 

The study described herein focuses on the Third Bone Spring Sand, Wolfcamp A and B formations of the DB, and the 
Wolfcamp A and B formations of the MB, shown in Figure 6-2. Figure 6-3 shows the stratigraphic schema for the Permian 
Basin with highlighted formations.  

The goal of TORA’s outlook model is to project how many wells will be drilled and where they will be drilled in the 
future, depending on commodity prices, costs, and technology assumptions. Knowing the number and locations of 
future wells, one can calculate the total annual incremental production. Figure 6-4 shows the historical annual 
production increments, with different colors marking production from wells drilled in different years.   

 

Figure 6-4 Oil and natural gas production history from selected formations of the Permian Delaware Basin (BSS3, WCA, 
WCB1&2) with marked incremental annual production additions. BSS3: the Third Bone Spring Sand. WCA: Wolfcamp A. 

WCB1&2: Wolfcamp B1 and B2. 

Each year’s production is equal to the sum of the legacy production, or the (declining) production from the wells drilled 

in the past, plus production from the new wells. Formally, the entire play production 𝑄𝑇 in a given year 𝑇 is the sum of 

annual increments over 𝑡 = {𝑡𝑠, . . , 𝑇}:  

𝑄𝑇 = ∑ 𝑄𝑡
𝑇𝑇

𝑡=𝑡𝑠
   

Where 𝑄𝑡
𝑇 represents the sum of production in year T from wells drilled in year t, representing the thickness of a 

production band in year T from wells drilled in year t (Fig. 2). In the following sections, we formulate an analytical 

approach to project play production profiles (annual production time series), 𝑸𝑡 , from wells expected to be drilled per 

future year. Combining these values with the expected production of existing wells (t<=2019) provided by TORA’s 
decline curve analysis, we are able to generate a production outlook at the play scale from both existing and future 
wells. To be specific, we provide the methodology for: 1) how to estimate the number of newly-drilled wells in a given 
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future year (𝑛𝑡), also referred to as “development pace” or “drilling pace,” and 2) how to estimate the distribution of 
expected drilling across geographical locations and translate the expected drilling into expected production profiles. 

6.2. Drilling pace 

We build a cash flow model to relate total capital spending on new wells in year t, 𝐾𝑡 , to the netplay cash flow at 
the end of the previous year t-1. We assume that producers are disciplined and only rely on the play's 
reinvestment of their own capital. For historical wells without capital spending data, we used the average costs 
and completion attributes (true vertical depth [TVD], lateral length drilled in feet [LL], hydraulic fluid used in 
gallon per foot drilled [HF], proppant used in gallon per foot drilled [Prop]) to estimate the capital cost of an 
individual well.  For undrilled future wells, we used the average costs of wells drilled in 2019 and expected 
completion attributes to estimate capital cost.  

6.3. Drilling locations 

We then build an ‘expected drilling decision model’ to distribute 𝑛𝑡 across the play based on the analysis of where 
historical wells have been drilled in terms of their first five-year productivity history (defined as the cumulative first five 
years’ produced oil per 1000 ft lateral length) and how the number of wells drilled and their locations within the play 
change with energy price.  This model attempts to capture the very complex drilling dynamics when producers decrease 
their drilling investments and move to locations with higher productivity if the prices drop, and increase their drilling 
and completions investment and expand their drilling and completions if prices increase. The model allows us to project 
the drilled locations and to model / estimate how quickly these locations will be developed (e.g., drilled and completed), 
given different energy price scenarios.  

6.4. TORA data output 

This section lists and describes the TORA data output used for electrical load analysis.  Notice that this outlook analysis 
is based on a TRR assessment study conducted in 2020, when 2020 production data itself was largely unavailable.  
Therefore, the production outlook is projected starting in the year 2020.   

a. Water-to-oil ratio, TVD, API gravity, and gas-to-oil ratio per one square mile block per selected 
reservoir/formation. 

b. Estimated annual production (gas, oil and water) volumes from existing wells that landed in the defined 
reservoir/formations. 

c. Estimated annual production (gas, oil and water) volume of the representative future well in each one square 
mile block of the selected reservoir / formations.  

d. Expected drilling and remaining well inventory per one square mile block per future year (2020-2035) under 
three price scenarios.  

e. Production (oil, gas and water) outlook from future wells per one square mile block under the three price 
scenarios.  
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Chapter 7. Develop electric outlook of West Texas 

This section aggregates all the historical load from 2012 through 2020, based on the estimation method from Chapters 
3 and 4, and develops forecasted load estimates from 2021 through 2035 based on the expected drilling and production 
outlooks from TORA. As discussed in Chapter 2, the number of wells and production level are two different indications 
and measures of activities in the Permian Basin. This chapter will also discuss the assumptions and rationale of 
constructing future scenarios based on the two aspects of activities.  

The organization of the chapter goes through the three major components of consideration in developing a forecasted 
load assessment, which are demonstrated in Figure 7-1.  

 

Figure 7-1 Components of load outlook 

The first and foremost component is forecasted production and activities in oil and gas fields in Permian. There are two 
main points to address here: the first is to establish the historical production and its relation to load, and the second is 
to have future oil and gas production as the foundation of future load forecast.  

The second component is operational and practice trends, which would impact the load requirement in the basin. This 
study focuses on the electrification level for the midstream sector in the basin. This sector presents a great potential 
for load requirements on the grid.  

The last component addresses the location of future load, and it is not a trivial question here. For historical load 
estimate, it is relatively straightforward to identify the location of the load, for most of the activities, like the upstream 
site, saltwater disposal sites, or locations of processing plants and refineries. For midstream activities, it is less obvious 
where exactly the load is occurring along with the pipeline network. The same challenges remain with additional 
uncertainties for future activities and load requirements since much of the infrastructure is not yet built to support 
incremental production and flow. Therefore, a general methodology to locate the future load is addressed here.  

 

7.1. Historical aggregated electric load from oil and gas activities 

This section discusses the historical aggregated oil and gas activities and compares them with the estimated historical 
total load from these activities. This helps to lay the foundation for the relationship between activities and load. 
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Figure 7-2 shows the number of wells by type in each county from 2012 through 2021, showing the different levels of 
activities across counties. There are fast-growing horizontal wells compared to vertical wells for those located in the 
heart of the Delaware Basin or Midland Basin. More vertical wells are drilled in the Central Basin Platform and other 
areas, like Andrews county.  

 

Figure 7-2 Number of wells by type from 2012-2021 

Since the assumptions of the load are mainly tied to the throughput volume of oil, gas, or produced water, the 
production volume is more important and indicative of the load. There is a reason for the sharp increase in horizontal 
wells. Figure 7-3 shows that horizontal wells produced about 3-5 times higher productivity by comparing total crude 
production (million bbl per day) for vertical and horizontal wells in the study area. Hence, horizontal wells’ activity and 
production drive the production of Permian going forward.  
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Figure 7-4 aggregates all products at the county level together in one chart, with gas converted into barrel equivalence 
unit to show the relative magnitude of the production volume out of Permian as a whole. Note that produced water is 
a significant part, especially in Reeves county, implying a higher load requirement for produced water facilities nearby.  

As discussed in Chapters 4 and 5, it is important to recognize that the load is not necessarily fulfilled via the electricity 
grid depending on the specific activities.  

Figure 7-3 Comparison of number of wells and production by well type 2012-2020 
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Figure 7-4 Historical productions of oil, gas, and water 2012-2021 by county 

For example, the use of ESP upstream mainly relies on grid power whenever and wherever possible. Hence, it is 
reasonable to assume that almost 100 percent of the ESP power requirement is reflected in the historical data report 
load. On the other hand, most compressor stations still use gas-fired turbines without a direct grid connection. 
Therefore, only 10 percent of the energy requirement for transporting natural gas through the gathering system is 
assumed to be connected to the grid. Here are the assumptions used, based on the analysis from previous chapters, 
and Figure 7-5 shows the total electric load estimates in the historical period:  

• Natural gas midstream, including gathering and major pipeline-10 percent 

• Oil midstream, including gathering and major pipeline-100 percent  

• NGL midstream including gathering and major pipeline-100 percent 

• Artificial lift: ESP and rod pump–100 percent; and gas lift 0 percent  

• Saltwater disposal wells (SWD)–100 percent  

• Processing–powered by the grid, but some processes use gas-fired turbines, like compressors, and uses 7.2 
MW per 100 mmcfd of raw natural gas for processing  

• Refining is powered mainly by grid power, but a small amount for the study area.  
 
The load is plotted based on the type of contributing activity, and it is clear that the upstream load is mainly driven by 
artificial lift and SWD, while the midstream load is driven by load from the natural gas system, in terms of its midstream 
transportation and processing activities.  
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Figure 7-5 Total load requirement from all wells 2012-2020 

7.2. Scenarios definition 

The historical estimated load from oil and gas has provided a basis for developing forecasted load requirements for 
similar activities in the future. We use the production outlook at the well level for oil, gas, and water from the TORA 
research consortium group at the Bureau, discussed in Chapter 6. The point of interest here is to identify the range of 
uncertainties of incremental load in the future by oil and gas activities in the Texas portion of the Permian. Therefore, 
it is important to identify the factors directly impacting the outcome. Here are two sets of direct factors to be considered: 

In this project, the production outlook considers  WTI oil prices of $35 (low), $70 (base), and $90 (high) per barrel based 
on historical data (Figure 7-6). Note that basis differential adjustments for the Permian region were applied when 
developing the production outlooks using these price scenarios. The projected long-term oil ranges from $35 to $90 
per barrel of oil, covering the historical oil prices from 2011 to 2020, indicated in the gray line of Figure 7-6.  For all 
three selected price scenarios, the NGL price is assumed to be fixed at $25/bbl in the long term. For the base and high 
oil price scenarios, the gas price is projected to be fixed at $2.5/MMbtu in the long term. For the low oil price scenario, 
the gas price is projected to be fixed at $3.0/MMbtu, considering that associated gas decreases when oil production 
decreases and decreased gas supply will potentially increase the gas price.  
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Figure 7-6 Definition of price scenarios - This study considers three energy price scenarios. At the time of this writing (Feb 
2022), WTI oil price has risen to over $90/bbl., historically at the high end of oil prices. 

Besides prices, there are other factors that impact the load requirements of oil and gas activities, like the Permian 
regulation on greenhouse gas emissions. With more stringent regulation on GHG emissions, there could be multitudes 
of impact on the electric load generated in the production field.  

Electrification of operation: currently, many upstream and midstream activities utilize gas-fired generators for power 
instead of grid connection. Producers or midstream operators may consider switching from gas-fired generators to grid 
connections to lower the emission rating. There are a couple of areas of potential impact based on the current study:  

Midstream natural gas gathering and transportation currently use over 90 percent of gas-fired generators, with about 
1000 MW estimated for the entire study area of potential load. Based on inputs from technical interviews, there is an 
emerging trend of conversion to grid connections for many larger operators and midstream companies in the Permian. 
However, further research on conversion economics and ongoing market surveying is necessary for future 
considerations. Therefore, in this study, the scenario definition focuses on the level of electrification operation (mainly 
for midstream operations of gas) in Permian, among other operation factors. The possible range for scenarios is defined 
based on the progress of the electrification trend, shown in Figure 7-7.  
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Figure 7-7 Definition of electrification level by scenario 

Based on the discussion above, here are three suggested scenarios for the ERCOT load project for this current study:  

• Base Scenario: this is the reference case scenario with the most likely current oil price projection ($70/bbl) and 
gas ($2.5/MMBtu). There is business as usual regulation on GHG emissions with slow progress. The conversion 
of gas compressors will reach about one-third of the load requirement at the end of the forecasted period.  

• High Scenario: oil price remains relatively high at $90/bbl, and gas price stabilizes at $2.5/MMBtu in the long-
term. The regulation of GHG emissions accelerates electrification in oil and gas operations. About 58% of the 
load for the gas gathering will be switched to a grid connection by the end of the forecasted period.  

• Low Scenario: oil price remains low at $35/bbl, and gas price increases to $3.0/MMBtu in the long-term. The 
regulation of GHG emissions on oil and gas activities is slow with more focus on switching from fossil fuels to 
renewables (remaining 90 percent on the gas-fired compressor).  

7.3. Load forecast  

This section discusses the methodology and structure that assembles the forecasted production from the year 2021 to 
the year 2035. In past historical data, each type of activity is summed up based on the number of assets. For forecasted 
periods, the production outlook can be further divided into two categories of well activities: production from existing 
wells that have already started production and production from future wells. 

First, it is important to understand the drilling activity level in the Permian, which would tie into the number of existing 
wells that have been drilled and some references of the forecasted drilling activities. Figure 7-8 shows the number of 
existing wells categorized by the first year of production. Therefore, the total existing well is presented by the 
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accumulated numbers of all past years until 2020 for drilled wells. Existing wells reported production in the historical 
database and have already started producing. For these wells, the load requirement is based on extending their 
production outlook of oil, water, and gas from currently observed levels into the future with assumptions of the number 
of years of operation. Figure 7-9 shows the total expected production by county and by well type for these wells in 
2035.  

 

Figure 7-8 Number of existing wells by the first year of production 
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Figure 7-9 Number of existing wells by the first-year of production by county 

Figure 7-10 shows the production profile, also known as the type curve, for existing horizontal wells in the Delaware 
and Midland Basins, from TORA under Wolfcamp A and Wolfcamp B sections. The existing wells' inventories would go 
through their typical life cycle with a decline in production volume over time. That is why there is a long decline, 
representing the declining well-level production on existing wells (starting from different years). If taking a well that 
was drilled in the year 2020 and the year 2021 is its second year of production, it would appear in the category of the 
year 2020 in the following plot. Furthermore, each well continues to produce until it is no longer economical to continue. 
The methodology of estimating existing wells' decline curve (or type curve) is similar to future wells, except the drilling 
decision was already made. The speed of decline and ratio of oil, gas, and produced water of a producing well is 
determined based on its subsurface geological formation, operation technology, and cumulative producing intensity.  

Besides the horizontal wells in the most prolific areas, there are also existing horizontal and vertical wells that would 
continue their production in other areas in the Permian, shown in Figure 7-11. The methodology for the non-TORA area 
is similar to the productivity of an existing well also follows a typical type curve with a year-on-year decline in oil, gas, 
and produced water production. Those profiles are applied based on the observed current output and the number of 
years of production of all existing vertical wells.   

Figure 7-12 shows the total electric load for these existing wells by scenario. Note that the existing wells are not affected 
by the price scenario. Therefore, the difference between the scenarios is solely from the electrification assumptions of 
operation. It is clear to observe the difference in the portion of the midstream sector from each scenario in the chart.  
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Figure 7-10 Single well productivity (type curve) of existing well, and its aggregated production over time 

 

Figure 7-11 - Total crude production divided by TORA area versus non-TORA area 
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Figure 7-12 Total load requirement from existing wells by load type5 

The second category of production presented in the forecasts is from future wells that were not yet drilled before 2021. 
For example, Figure 7-13 shows the expected drilling in the most prolific area like Wolfcamp A and B of the Delaware 
and Midland Basins of the TORA focused area, based on the perception of the future oil prices. Drilling activities indicate 
incremental wells being drilled each year.  

 

5 This does not include load for major gas pipeline.  
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Figure 7-13 Expected drilling by the scenario in Delaware and Midland Basins (TORA focus area)6 

 

 

6 Number of wells drilled each year indicates the incremental wells.  
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Figure 7-14 Expected drilling by county in the TORA area 

Figure 7-14 shows the expected drilling by the county under each scenario in the TORA focused area. Here the scenario 
difference is mainly driven by price assumptions. It is important to note that Pecos county and Reeves county continue 
to have a strong growth of activities in the high price scenario, while some other countries have limited upside.  The 
counties with higher upsides indicate that more wells may not be in the “sweet spot” of production that may become 
economical at a higher price. Of course, it is important to note that the number of wells drilled does not indicate the 
highest throughput of products. Therefore, we need to continue diving into the single well productivity in these 
expected drilling areas and calculate its expected productivity at the well level depending on its location.  

For vertical wells, the methodology is similar. The drilling rate is estimated based on the trend of incremental vertical 
well drilling in historical data, with about 300 wells drilled per year since 2018.  

The next step is to aggregate all the future well load requirements by scenario. With continuous drilling assumptions, 
whose intensity differs based on the price assumption, the drilling activities under each scenario result in different 
production levels and are impacted by the assumption of electrification of midstream pipelines (mainly for natural gas). 
With the higher price of oil, it is expected that there will be a higher level of drilling each year, leading to a higher level 
of production throughout the forecasted period. Higher electrification levels in the midstream sector imply more 
conversion from gas-fired turbines to electric ones for compressing and transporting gas, leading to a higher electric 
load on the grid, even with the same expected production throughput of gas. Figure 7-15 shows the aggregated load 
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for future wells (excluding major pipeline load) for the study area7. 

 

 

Figure 7-15 Total load requirement from future wells 

In addition to the well based load requirement, the load requirement of major pipeline cross-county load, mainly for 
natural gas, is also included here based on the methodology mentioned in section 5.6. Combining existing and future 
wells production outlook with major pipeline load on the county level, Figure 7-16 and Figure 7-17 summarize the total 
load assessment from 2012 through 2035, with forecasts starting in 2021. 

Here are some key observations from the results:  

There was astonishing growth for 2015-2020, from 950 MW to around 3400 MW, with about a 29 percent annual 
growth rate. The growth of future load is described based on scenarios here.  

The base scenario of $70 per barrel of oil remains a steady production level, increasing electrification by about 1.2 
percent per year, converting 30 percent of the total midstream compression load by 2035. There is an increase over 60 
percent, reaching 5682 MW assuming conservative drilling plans, where operators only rely on internal revenue without 
additional borrowing.  

The high scenario of $90 per barrel of oil with 58 percent of electrification of midstream transportation by 2035, lead 
to higher drilling levels and production in the future and the higher converted load from midstream. The 2035 level of 
total load will reach 8951 MW, almost 2.6 times the level in the year 2020.   

 

7 Major pipeline load were not aggregated from well level, instead it is calculated based on county level.  
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The low scenario of $35 per barrel of oil, in the long run, will have a declining production with almost no growth and a 
status quo electrification level of around 10 percent. This scenario leads to a stagnant total load level in the study area, 
with mild growth in the forecasted period, peaking at 3800 MW and then declining slowly through 2035 to 3750 MW.  
This scenario combines the industry's most pessimistic and conservative assumptions to help provide a boundary 
scenario for the future load.  

It is important to recognize that these three scenarios describe the range of possibilities for future estimated load in 
this area. The upside with the high oil prices and aggressive electrification efforts will fuel a high annual growth rate of 
6.6 percent for the required load through 2035. The downside with low oil prices and no progress in electrification will 
maintain the current load level. In other words, this study concludes that the total load associated with oil and gas 
activities in West Texas is not likely to decrease over time, even in the most conservative setting.  

 

 

Figure 7-16 Total load requirements by scenario and by load type 
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Figure 7-17 Total load requirement by scenario 8 

Figure 7-18 shows the total load assessment by county from 2012 through 2035. Reeves county continues to be the top 
county of production and load requirement in the forecasted period. However, there is slower growth in counties in 
the Midland Basin, indicating the expected increasing drilling activities in the Delaware Basin. It is noticeable that the 
scenario difference varies in magnitude for different counties. For Loving, Martin, and Midland counties, the difference 
between scenarios is fairly narrow, while there is a greater impact for Pecos and Reeves counties. Since those counties 
are mainly located in the Delaware Basin, it implies that Delaware Basin has more potential for load growth across the 
different conditions. In other words, there is a greater need for adding additional infrastructure to the grid in these 
counties with the highest load potential.  

Furthermore, based on the type of activities, the breakup of load by type is also different by county. For example, Pecos 
County has one of the highest infrastructure networks of natural gas, including the Waha header hub, connecting to 
multiple major pipeline systems to transport gas out of the Permian Basin. Therefore, the cross-county pipeline flow 
on major pipeline systems is higher for Pecos County than other counties.  

It is worth noting that all the load-requirement projections by county assume that most of the load related to oil and 
gas activities are occurring in the same county as its source of production. In reality, it is possible to have cross-country 
load occurrence. The later sections of this chapter will discuss the assumptions and their implications for locating the 
future loads in the forecasted period.  

 

8 CAGR: compounded annual growth rate.  
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Figure 7-18 Total load requirement from all wells by county 

Instead of looking at the aggregated impact, Figure 7-19 demonstrates a tornado chart of impacts between scenarios 
by load type. The chart shows the top load type that would drive the difference between scenarios: midstream gas 
transportation in both gathering and major pipelines, artificial list, and SWD injection. In the scenario set up of this 
study, we have selected three different electrification assumptions and three price scenarios. Therefore, there are dual 
impacts from prices and electrification on midstream load for natural gas.  
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Figure 7-19 Impact of the scenario by load type for the year 2035 

Recognizing that there are two drivers (oil price and electrification) for each scenario, the following analysis helps 
identify and isolate the impact of the two drivers on total load a bit further, shown in Figure 7-20. Each chart of the 
panel presents one single price scenario - low price ($35/bbl), base price ($70/bbl), and high price ($90/bbl). There are 
four different levels of electrification assumption, represented by the average annual growth rate from the year 2021 
within each chart.  

“Status quo” case – maintain the current 10 percent electrification with 0 percent growth. This is used in the low 
scenario definition. A 1.2 percent annual growth from 2021 to 2035 will reach around 30 percent of compressors' 
electrification used in the base scenario. A 3 percent annual growth from 2021 to 2035 will reach around 58 percent 
(around 2/3) of the electrification of compressors, and this is used in the high scenario. A 5.5 percent annual growth 
from 2021 to 2035 will reach around 97 percent of the electrification of the compressor and is used as an upper bound 
in this analysis to indicate the full electrification case. It is not used as a scenario assumption. In each chart, the 
particular electrification assumption picked for the scenario is highlighted in red with the black border of the area chart.  

It is worth noting that the impact of electrification increases as underlying production increases, from the low price to 
high price scenarios. Taking the example of the year 2035 estimates, the range of outcomes is around 4400 MW of 
impact from 10 percent electrification assumption to 97 percent conversion in the low-price scenario. The range of 
outcome in high priced scenario grow to over 5600 MW of impact in the high-priced scenario, when comparing the 
estimated 2035 load under 97% electrification level versus 10% electrification level.  
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7.4. Load heatmaps 

It is also important to know where the load occurs for the forecasted period. The following section analyzes the location 
and volumetric relation of load in two steps. The first step is to map oil- and gas-related load to its location. The mapping 
load to location differs depending on the type of activities and availability of data. The second step is to discuss further 
the role oil and gas activities play in the aggregated load in West Texas via historical load from ERCOT as a reference of 
reported load in the region.  

Although historical data could be mapped precisely to a point, forecasted data are presented in one-by-one square mile 
“blocks” in this study. For the consistency of the data, all mapping is done at the block level. A couple of factors would 
determine the methodology and assumption used in mapping, and the rest of the section discusses each type of activity 
separately. There are three types of mapping methods used in this study: 

• The load impacts are near well sites for most upstream activities, which can be identified by either well location 
or presented at one-by-one mile blocks.  

• The second impact category is mainly water disposal and midstream activities, which do not have granular and 
accurate locational information for the forecasted period. The specific challenges of data availability and 
rationales are covered already in previous chapters (Chapters 3 and 4). For those load impacts, an alternative 
solution is to map an approximate impact radius centered around producing well sites and based on historical 
average distances from well sites to the specific facilities, including compressor stations, pump stations, 
processing plants, and saltwater disposal sites. To study the locational relation of SWD to producing wells, we 
have mapped all producing wells to the closest two SWD facilities. The result shows that the disposal sites can 
be located anywhere between 2 miles to 20 miles from the producing wells.  

• The last category of impact is on major transmission pipeline systems. The load impact is estimated at the 
county level and mapped based on potential locations of impact on existing infrastructure. These impact 
locations are no longer centered around production.  

With the mapping methodology, the load for the entire study area is mapped one mile by one-mile block across the 
area with 27272 blocks, indicating its load impact locations. To provide a reference of history, Figure 7-21 shows the 
results of the load assessment by blocks in West Texas in the year 2020. Figure 7-22 shows the panel of heatmaps for 
total load in the year 2025, the year 2030, and the year 2035 by scenario. Here are some key observations: 

Figure 7-20 Sensitivity of load on price and electrification assumptions 
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Figure 7-21 Heat map of electric load in West Texas in the year 2020 

First, the areas with the most activities-related load are located in the sweet spot – the most prolific areas of the 
Delaware and Midland Basins. In contrast, the Central Basin Platform continues to have some additional load activities 
due to local vertical well production and some pipeline transportation load crossing the basin, especially delivering gas 
to the Waha hub located in Pecos County.  

Second, the geographic coverage of electric load related to oil and gas activities grows for both Delaware and Midland 
Basins over the forecasted period, based on the forecasted drilling activities. It is easy to observe the intensified load 
by color in the maps of the high scenario of 2025, 2030, and 2035.  Furthermore, it is worth noting that although there 
is almost no change in total load in the low scenario, with low oil price for the long-term and status quo in electrification, 
there are changes in the locations of load occurrences in both basins.  
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Figure 7-22 Heat map of electric load in year 2025 and year 2030 by scenario 
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Chapter 8. Conclusion and additional research 

This study provides two major deliverables: first, a comprehensive analysis of load estimates related to oil and gas 
activities in upstream and midstream in the Texas portion of the Permian Basin; second, a detailed scenario-based load 
forecast, which can be mapped onto one square mile blocks, for the study area through the year 2035. 

The major conclusions of the study include: 

The projected growth of load in Permian is driven by a range of factors, including market conditions and a future trend 
in operation and regulation of emissions in the oil fields. It is important to recognize that additional factors drive the 
load growth in the next 10 to 15 years, along with the oil price, for Permian electric load, which is driven by the 
decarbonization efforts in the basin.  

The study has effectively provided a robust method to identify the range of outcomes based on the defined scenarios. 
Besides estimating the aggregated load, this study also discussed the impact sensitivity with individual load types from 
oil and gas activities.  

The scenarios described in this study cover two fundamental axes for the future: the market condition of the oil and 
the progress of decarbonization. The study concludes in March 2022 that the world oil price has increased to over 100 
dollars per MMBtu, with a rise in natural gas prices in all markets. It is important to recognize that it is early to tell if 
that would be sustainable. Suppose this concern remains for the long-term, where what occurred in the year 2021 and 
early year 2022 becomes a norm, it would make the high scenario discussed here in the study more plausible, with a 
high oil price in the world, while a continuous progression in regulation on electrifications as part of the energy 
transition policies in the United States.  

Furthermore, a few factors are not included in the current scope of the study, which may emerge in the future and 
require additional attention when ERCOT considers the load forecasts. For example, there is additional momentum of 
new projects that is worth monitoring: 

Electric fracking: This study does not include any load that occurred during the fracking and drilling activities at the well 
site. The load required for fracking is significant but short-last (in weeks). Currently, fracking is supported by on-site 
generators instead of relying on the grid. This study assumes that the drilling and fracking continue to use on-site 
generation instead of the grid because it is challenging to accommodate these intense and short-term load peaks due 
to fracking operations. However, there are some indications from producers in the Permian that they are considering 
the electric fracking process as part of the strategy of further decarbonization efforts. The current momentum in electric 
fracking is slow, and it is worth monitoring its future development. The potential load impact could be significant on 
the grid.  

Carbon Capture Utilization and Storage (CCUS): about 15 major carbon capture projects are expected to reach a final 
investment decision in 2022 around the world. Oxy’s DAC-1, a direct air capture project in the New Mexico portion of 
the Permian Basin that would eventually capture1 million tpa of CO2 emissions, is on the list. There are no major CCUS 
projects within the current study area for the ERCOT West Texas zone.  

Blue hydrogen projects: Permian basins has the advantage of inexpensive associated gas production, which provides 
cost-competitive feedstock for blue hydrogen production. Blue hydrogen refers to splitting hydrogen atoms from 
natural gas, either by auto thermal reforming (ATR) or steam methane reformation (SMR), then preventing carbon 
dioxide (CO2) emissions from being released. The emerging interests in leveraging Permian gas for blue hydrogen 
attract operators' attention to new investment opportunities.  

In the current stage, there are no major projects of CCUS or blue hydrogen for the West Texas portion of the Permian. 
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However, it is plausible to expect additional projects from CCUS and blue hydrogen to emerge in the study area in the 
future.  

Microgrids and distributed energy resources (DER) in oil field operation: A recently published study by the Joint 
Institute for Strategic Energy Analysis and the National Renewable Energy Laboratory (2022) studied the techno 
economics of renewable energy technologies colocating with oil production in the Permian Basin. The key conclusion 
is that only smaller renewable energy technologies (that generate 5 % of a site’s load) are cost-optimal. Larger 
systems (that generate 50 % of the site load) offset significant amounts of CO2 and present a negative net present 
value. It is also interesting to note that the assumption of industrial electricity rate for these facilities is relatively low 
in the study, around $0.03 per kilowatt-hour. In other words, these projects may be more profitable in counties with 
higher industrial electricity rates. In the interests of the current study, these microgrids and DERs projects may not be 
contributing much to the estimated grid load in the future, based on the current economics. 

As oil and gas resources are expected to comprise a significant portion of the U.S. energy demand and economic 
output in the next decade, according to U.S. Energy Information Administration, additional attempts in 
decarbonization in the oil field would continue in the efforts to reduce the impacts on the environment and 
increasing operational efficiencies.  
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Appendix 

A. Oil pipeline power requirement  
 
*linear interpolation algorithm:    https://engineerexcel.com/bilinear-interpolation-excel/ 

 
 

    
3-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume [bbl/d] 

10 0.00564 0.00894 0.0156 0.029 

100 0.0565 0.0904 0.1670 0.403 

1000 0.582 1.07 3.27 20.3 

10000 15 103 954 9410 

 
 

    

 
 

    

 
 

    
8-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume [bbl/d] 

10 0.00564 0.00894 0.0155 0.0287 

100 0.0564 0.0894 0.1550 0.289 

1000 0.564 0.894 1.58 3.1 

10000 5.73 11.5 25.2 126 

100000.0 114 669 5950 58300 

 
 

    

 
 

    
20-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume [bbl/d] 

10 0.00564 0.00894 0.0155 0.0287 

100 0.0564 0.0894 0.1550 0.287 

1000 0.564 0.894 1.55 2.87 

10000 5.64 8.94 15.7 30.1 

100000 57.3 64.7 237 1120 

1000000 573 975 2380 11200 
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B. NGL pipeline power requirement 

*linear interpolation algorithm:    https://engineerexcel.com/bilinear-interpolation-excel/ 

 
 

    
3-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume [bbl/d] 

10 0.00282 0.00447 0.0078 0.0145 

100 0.02825 0.0452 0.0835 0.2015 

1000 0.291 0.535 1.635 10.15 

10000 7.5 51.5 477 4705 
      

 
 

    

 
 

    

 
 

    
8-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume [bbl/d] 

10 0.00282 0.00447 0.0078 0.0144 

100 0.0282 0.0447 0.0775 0.145 

1000 0.282 0.447 0.79 1.6 

10000 2.87 5.8 12.6 63 

100000.0 57 334.5 2975 29150 

 
 

    

 
 

    

 
 

    
20-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume [bbl/d] 

10 0.00056 0.00089 0.0016 0.0029 

100 0.0056 0.0089 0.0155 0.029 

1000 0.056 0.089 0.16 0.29 

10000 0.56 0.89 1.6 3.0 

100000 5.73 6.47 23.7 112 
 
1000000 57.3 97.5 238 1120 
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C. Gas pipeline power requirement 

 *linear interpolation algorithm:    https://engineerexcel.com/bilinear-interpolation-excel/ 

 
 

    
3-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume MCFD 

10 0.21110 0.21110 0.3180 0.557 

1000 0.6550 1.4800 6.5300 31.600 

10000 49.100 352.00 767.00 1380.0 

100000 10300 40600 56700 174000 

 
 

    

 
 

    
8-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume MCFD 

10 7.36 7.36000 7.4200 7.480 

1000 58.90 58.9000 59.4000 60.000 

10000 552.00 552.00 563.00 598.0 

100000 4360 4640 6150 10600 

 
 

    

 
 

    
20-inch Diameter [KW]           

 Distance [miles] 

  0.1 1 10 100 

Volume MCFD 

100 7.36 7.36 7.42 7.48 

1000 58.9 58.9 59.4 60.0 

10000 552 552 557 563 

100000 4320 4320 4400 4710 
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