# IEEE 2800-2022 Adoption

A Preliminary Detailed Gap Assessment of ERCOT's Nodal Protocols and Nodal Operating Guides relate to IEEE 2800-2022

**ERCOT Inverter-Based Resources Task Force (IBRTF)** 

Jens Boemer, Jose Cordova, EPRI Julia Matevosyan, ESIG

April 8, 2022

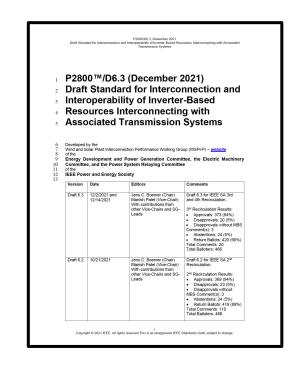
Classification: Public Version updated May 23, 2022





# **Acknowledgements and Disclaimers**

- The views presented in this presentation are the personal views of the individuals presenting it and shall not be considered the official position of the IEEE Standards Association or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE, in accordance with IEEE Standards Association Standards Board Bylaws 5.2.1.6.
- The content on IEEE-2800-2022 presented here is adapted and reprinted with permission from IEEE. Copyright IEEE 2022. All rights reserved. Some content presented here is based on an unapproved proposed IEEE Standard (e.g., IEEE P2800.2). As such, the document are subject to change, any draft requirements and figures shown in this presentation may change.
- All comments provided reflect only the view of the EPRI technical experts performing the review and do not necessarily reflect
  the opinions of those supporting and working with EPRI to conduct collaborative research and development.
- EPRI conducts research and development relating to the generation, delivery, and use of electricity for the benefit of the
  public. EPRI does not provide recommendations or regulatory advice related to the contents of this presentation.
- Part of this work was supported in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office and Wind Energy Technologies Office.
- Part of this work is supported by the U.S. Department of Energy, Solar Energy Technologies Office under Award Number DE-EE0009019 Adaptive Protection and Validated MODels to Enable Deployment of High Penetrations of Solar PV (PV-MOD).
- The views expressed in the presentation do not necessarily represent the views of the DOE or the U.S. Government.


This assessment is ongoing. We explicitly encourage stakeholders to provide feedback!



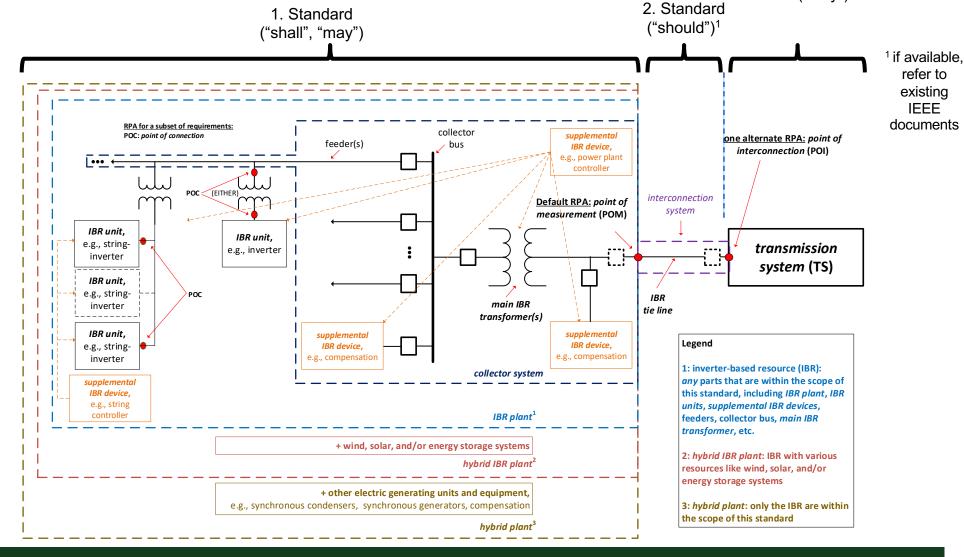
# Introduction & Refresher

#### Common Ground: IEEE 2800-2022

- Harmonizes technical minimum capability for Large Solar, Wind, and Storage Plants at the time of interconnection, including those connected via VSC-HVDC like offshore wind
  - Could create a "level playing field" for IBR developers, if adopted
- A consensus-based, voluntary IEEE performance standard
  - Developed by over 175 working group participants from transmission owners, OEMs, developers, and consultants
  - Successfully passed the industry peer review by 466
     IEEE SA balloters (>94% approval, >90% response rate)
- Approved in January 2022, publication in April/May 2022



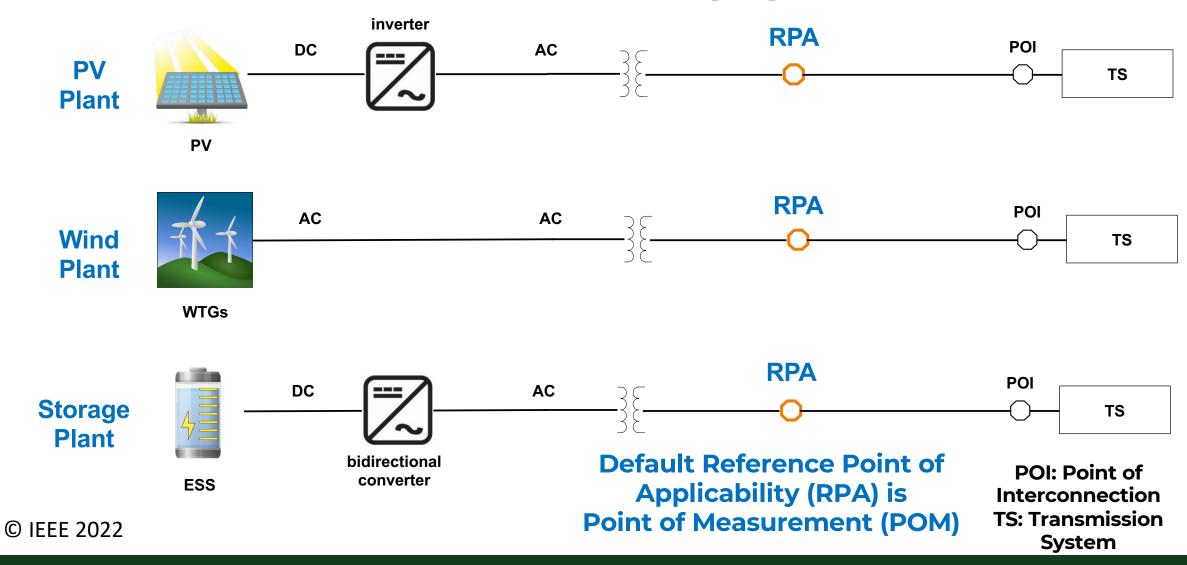
Latest draft is available from IEEE at <a href="https://standards.ieee.org/project/2800.html">https://standards.ieee.org/project/2800.html</a>


More Info at <a href="https://sagroups.ieee.org/2800/">https://sagroups.ieee.org/2800/</a>

# Scope and Language of 2800 Requirements

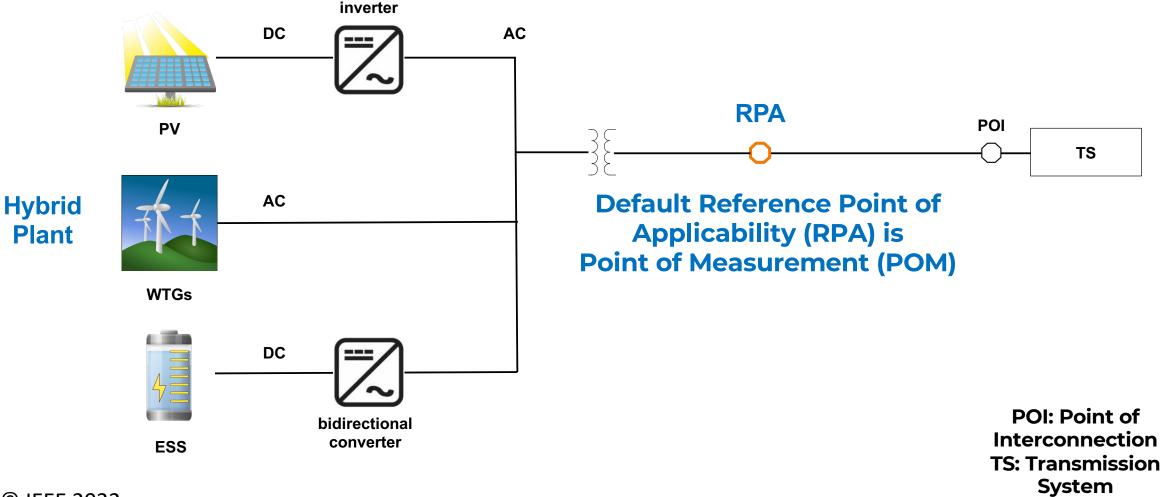
3. Informative Appendix ("may")<sup>1</sup>

#### **Important Terms**


- point of connection (POC)
  - IBR unit terminals
- point of measurement (POM)
  - IBR plant
- point of interconnection (POI)
  - interconnection system
  - IBR tie line
- transmission system (TS)
  - Transmission
  - Sub-transmission
- supplemental IBR device
  - Compensation
  - Plant controller
  - Etc.

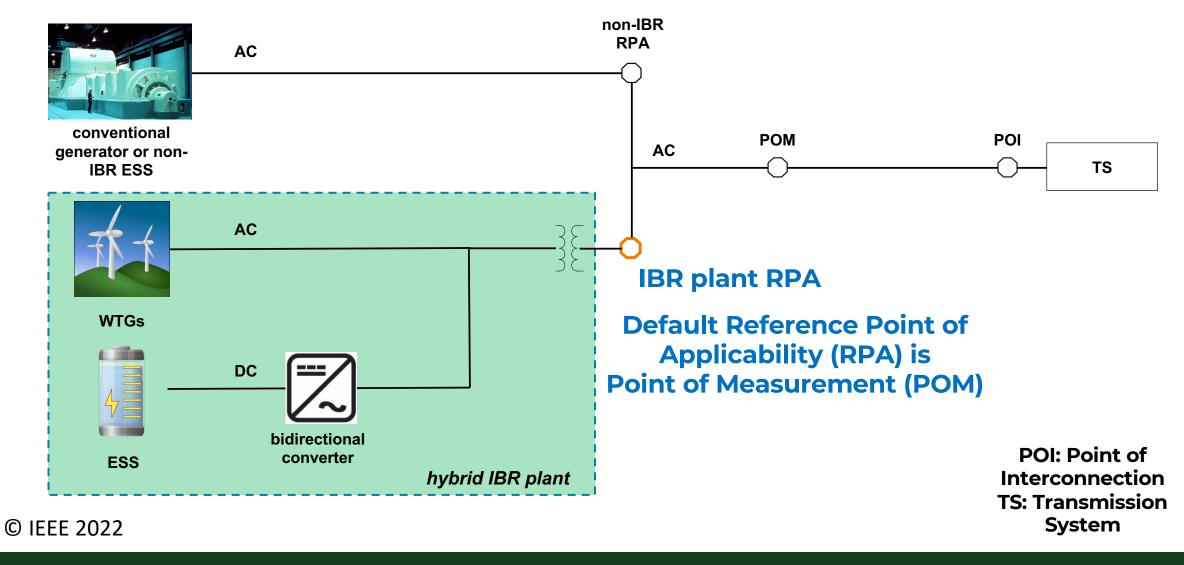





# Examples for Inverter-Bases Resources (IBR) Plants

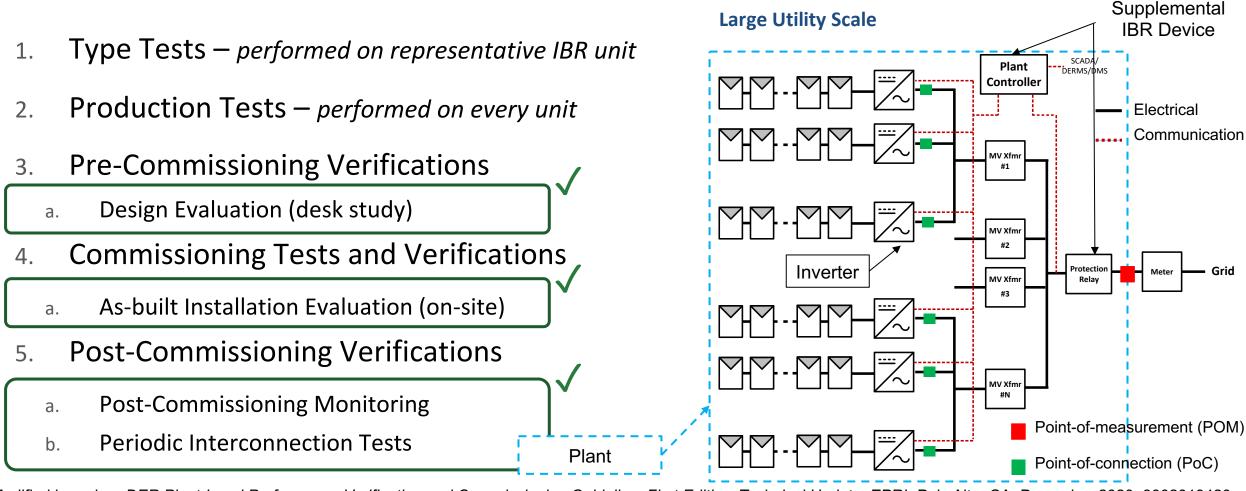
### in scope




# Example hybrid IBR plant, ac-coupled

#### in scope



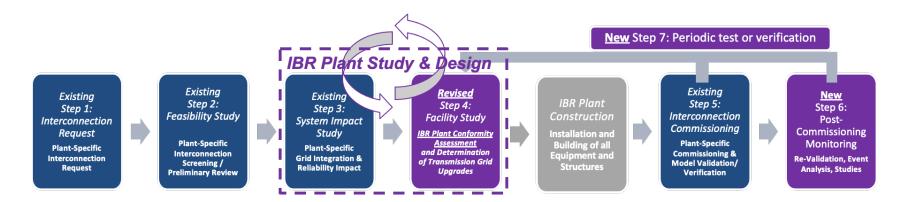

© IEEE 2022

# Example hybrid plant: operated as a single resource in scope



#### IEEE 2800-2022 Test and Verification Methods

IEEE 2800-2022 requires IBR plant-level conformity more than just IBR unit conformity




Modified based on DER Plant-Level Performance Verification and Commissioning Guideline: First Edition. Technical Update. EPRI. Palo Alto, CA: December 2020. 3002019420



# Some Thoughts on IEEE 2800-2022 Adoption

- Transmission Owners / Planners may play a key role
  - Gap assessment, improvement of existing requirements, preferably "full adoption" of IEEE
     2800
- Adoption may <u>not</u> be contingent on publication of IEEE P2800.2 *Draft Recommended Practice for Test and Verification Procedures*
  - Determine reasonable interconnection application enforcement date, grandfathering
- Opportunities for further improvements of interconnection process
  - Potential implications for FERC Large-Scale Generators Interconnection Process (LGIP) and pro-forma Agreement (LGIA), e.g., reference for "good utility practice"





#### Preliminary High-Level Gap Assessment of ERCOT Nodal Protocols (3/18/22)

Legend:

X Prohibited, V Allowed by Mutual Agreement, ‡ Capability Required, NR Not Required
(‡) Procedural Step Required as specified, Δ Test and Verification Defined, !!! Important Gap

#### Additions/changes for 4/8/22 in red font

Acknowledgements for contributions and peer-review: Julia Matevosyan (ESIG)

| Function Set | Advanced Functions Capability                                            | ERCOT<br>Nodal<br>Protocols | IEEE<br>2800-2022 |
|--------------|--------------------------------------------------------------------------|-----------------------------|-------------------|
|              | Definitions                                                              | ?                           | ?                 |
| General      | Reference Point of Applicability                                         | POI                         | РОМ               |
| General      | Adjustability in Ranges of Available Settings                            | NR (!!!)                    | ‡                 |
|              | Prioritization of Functions                                              | ‡                           | ‡                 |
|              | Ramp Rate Control                                                        |                             |                   |
|              | Communication Interface                                                  | ‡                           | ‡                 |
| Monitoring,  | Disable Permit Service<br>(Remote Shut-Off, Remote Disconnect/Reconnect) | ‡                           | #                 |
| Control, and | Limit Active Power                                                       | ‡                           | ‡                 |
| Scheduling   | Monitor Key Data                                                         | ‡                           | ‡                 |
|              | Remote Configurability                                                   |                             | ٧                 |
|              | Set Active Power                                                         | ‡                           | ٧                 |
|              | Scheduling Power Values                                                  | ‡                           | ٧                 |
|              | Constant Power Factor                                                    | ‡                           | ‡                 |
|              | Voltage-Reactive Power (Volt-Var)                                        | ‡                           | ‡                 |
| Reactive     | Autonomously Adjustable Voltage Reference                                | ?                           |                   |
| Power<br>&   | Capability at zero active power ("VArs at night")                        | NR (!!!)                    | ‡                 |
| (Dynamic)    | Active Power-Reactive Power (Watt-Var)                                   |                             |                   |
| Voltage      | Constant Reactive Power                                                  | NR (!!!)                    | ‡                 |
| Support      | Voltage-Active Power (Volt-Watt)                                         | NR                          | NR                |
| 2.00         | Dynamic Voltage Support /Balanced                                        | ‡                           | ‡                 |
|              | Current Injection during VRT Unbalanced                                  | NR (!!!)                    | ‡                 |

| Function Set               | Advanced Function                     | ERCOT<br>Nodal<br>Protoc. | IEEE<br>2800-2022 |   |
|----------------------------|---------------------------------------|---------------------------|-------------------|---|
|                            | Freque                                | ‡                         | ‡                 |   |
|                            | Rate-of-Change-of-Frequenc            | NR (!!!)                  | ‡                 |   |
|                            | Vol                                   | tage Ride-Through (VRT)   | ‡                 | ‡ |
|                            | Transient O                           | vervoltage Ride-Through   | √ (!!!)           | ‡ |
| Bulk System                | Consecutive V                         | NR (!!!)                  | ‡                 |   |
| Reliability<br>&           | Restore Output Aft                    | NR (!!!)                  | ‡                 |   |
| Krequency                  | Voltage Phase A                       | ngle Jump Ride-Through    | NR (!!!)          | ‡ |
| Support                    | Frequency                             | Droop / Frequency-Watt    | ‡                 | ‡ |
| Зарроге                    | Fast Frequency Response /             | Underfrequency FFR        | √ (!!!)           | ‡ |
|                            | Inertial Response                     | Overfrequency FFR         | NR                | V |
|                            | Return t                              | ?                         | <b>‡</b>          |   |
|                            |                                       | NR                        | V                 |   |
|                            | Д                                     | NR                        | V                 |   |
| Desta d'es                 | Rate of Change of Freque              | ?                         | V                 |   |
| Protection                 |                                       | NR                        | √                 |   |
| Functions and Coordination | AC                                    | ?                         | V                 |   |
| Coordination               | Unintentional Islaı                   | NR                        | V                 |   |
|                            | Interconnection System Protection     |                           | ?                 | V |
|                            | Limitation of DC Current Injection    |                           |                   |   |
| Power Quality              | Limitation                            | NR (!!!)                  | ‡                 |   |
|                            | Limitat                               | NR (!!!)                  | ‡                 |   |
|                            | Limitat                               | ion of Voltage Distortion | NR                | ٧ |
|                            | Limitation of (Transient) Overvoltage |                           | NR (!!!)          | ‡ |

Thirteen (13) high-level gaps in ERCOT relate to 2800 mandatory requirements



# **Detailed Gap Assessment**

# **Objective and Approach**

#### **Objective**

Inform strategic decision on IEEE 2800 adoption method:

- General reference ('wholesale adoption')
- Detailed reference ('piecemeal adoption per reference')
- Full specification ('piecemeal adoption own language')

#### **Approach**

Answer the following questions for where ERCOT and IEEE 2800 both specify requirements:

- Where IEEE 2800 are more specific or more stringent than ERCOT requirements ("<"), e.g.,
  - longer ride-through capability, or
  - detailed functional specification versus non-prescriptive specification as for dynamic voltage support / short circuit current injection during fault
- ii. Where ERCOT requirements and P2800 already align in stringency and level of specificity ("~")
- Where ERCOT requirements exceed IEEE 2800 either in stringency or specificity (">")
- iv. Analysis not yet completed or clarifying questions



# Comparison Basis and Remarks

#### **ERCOT**

 ERCOT Nodal Protocols (NPs) – applicable Sections available at <a href="https://www.ercot.com/mktrules/nprotocols/current">https://www.ercot.com/mktrules/nprotocols/current</a> and published on or prior to February 11, 2022.

The [Nodal] Protocols outline the <u>procedures and processes used by ERCOT and Market Participants</u> for the orderly functioning of the ERCOT system and nodal market.

 Nodal Operating Guides (NOGs) – applicable Sections available at <a href="https://www.ercot.com/mktrules/guides/noperating/current">https://www.ercot.com/mktrules/guides/noperating/current</a> and published on or prior to March 1, 2022

The <u>Nodal Operating Guides</u>, which <u>supplement the Protocols</u>, describe the working relationship between ERCOT and the entities within the ERCOT Region that interact with ERCOT on a minute-to-minute basis to ensure the reliability and security of the ERCOT System.

3. **Planning Guide (PG)** – applicable Sections available at <a href="https://www.ercot.com/mktrules/guides/planning/current">https://www.ercot.com/mktrules/guides/planning/current</a> and published on or prior to `January 1, 2022

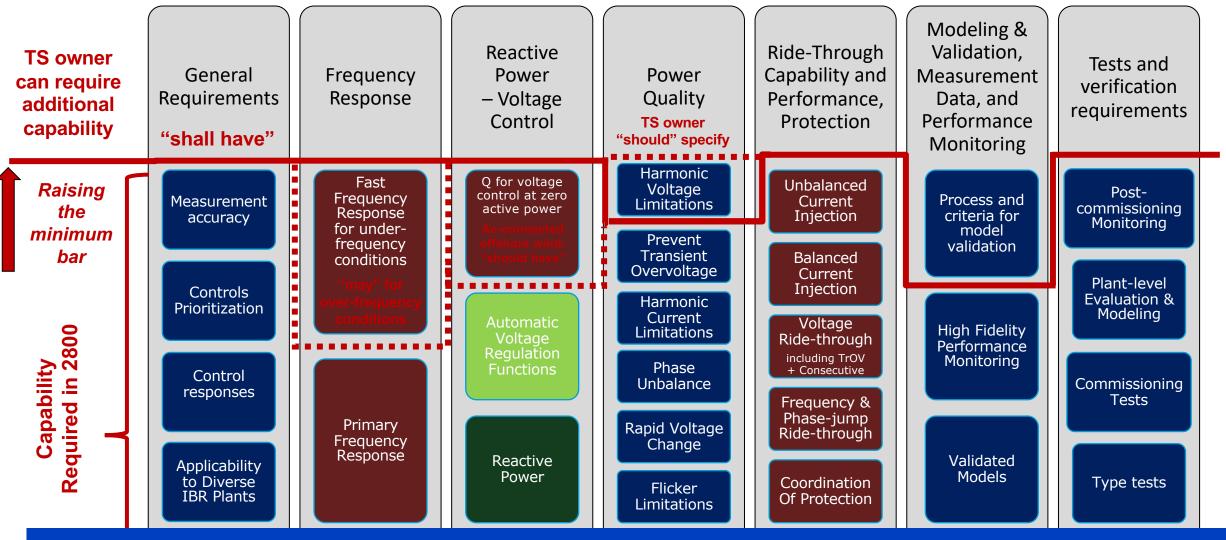
The <u>Planning Guide</u>, which <u>supplements the ERCOT protocols</u>, provides ERCOT stakeholders and market participants with information and documentation concerning the ERCOT transmission planning process.

 Model Quality Guide (MQG) – applicable Sections available at <a href="https://www.ercot.com/services/rg/integration">https://www.ercot.com/services/rg/integration</a> and published on or prior to April 20, 2021

Assists REs/IEs submit stability models per Planning Guide Section 6.2, including the new Model Quality Testing requirements. Also includes the UDM Model Guideline and PSCAD Model Guideline.

#### **IEEE 2800-2022**

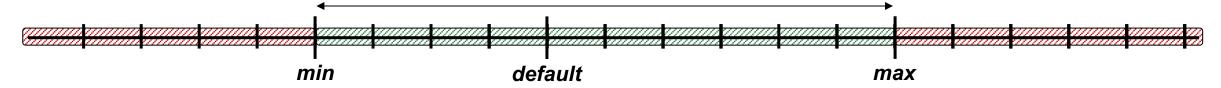
IEEE P2800 Draft 6.3 (December 2021)


#### Remarks on ERCOT documents:

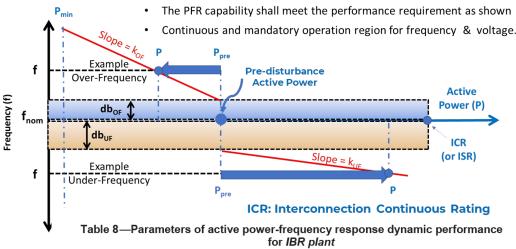
- Both NPs and NOGs are <u>mandatory</u>.
- NPs are broad in scope and tend to high level.
- NOGs tend to be narrower in scope and provide guidance on more practical/ operational aspects.
- The language in NPs and NOGs should not be in conflict; if it is in conflict, it should be pointed out as a finding.
- Some requirements only apply to resources providing ancillary services (AS); this would be explicitly stated, or it is obvious from the Section of the NPs.
  - For example, where an entire section is on Responsive Reserve (RRS) qualification or performance.

Question: shall comparison be relative to current language or approved revisions (grey boxes)?




# IEEE 2800-2022 Technical Minimum Capability Requirements




Question: shall ERCOT only adopt capabilities that are immediately utilized?



# What are ranges of available settings?



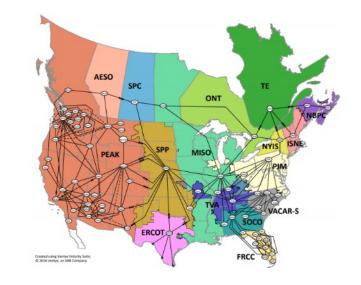
#### **Example:** Frequency Droop Settings



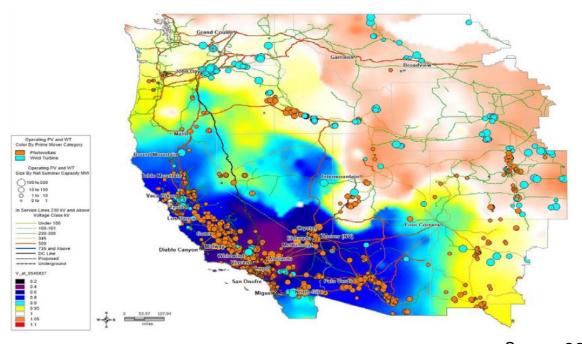
| Parameter     | Units       | Default value                       | Ranges of available settings |         |  |
|---------------|-------------|-------------------------------------|------------------------------|---------|--|
| rarameter     | Units       | Default value                       | Minimum                      | Maximum |  |
| Reaction time | Seconds     | 0.50                                | 0.20                         | 1       |  |
|               |             |                                     | (0.5 for WTG)                |         |  |
| Rise time     | Seconds     | 4.0                                 | 2.0                          | 20      |  |
|               |             |                                     | (4.0 for WTG)                |         |  |
| Settling time | Seconds     | 10.0                                | 10                           | 30      |  |
| Damping ratio | Unitless    | 0.3                                 | 0.2                          | 1.0     |  |
| Settling band | % of change | Max (2.5% of change or 0.5% of ICR) | 1                            | 5       |  |

#### **Meaning of Droop Functional Settings**

- Not an adjustability of frequency droop capability.
- Depending on the function, sometimes a
  - Limiting requirement: the setting shall not be set to lower values.
  - Minimum requirement: the setting may be set above this value.
- Report droop settings to ERCOT.


Question: Shall ERCOT specify 'ranges of available settings' or only "default" values?




# Focus Today: Voltage Ride-Through, Reactive Power, and Voltage Support

# Motivation for Frequency and Voltage Ride-Through Capability

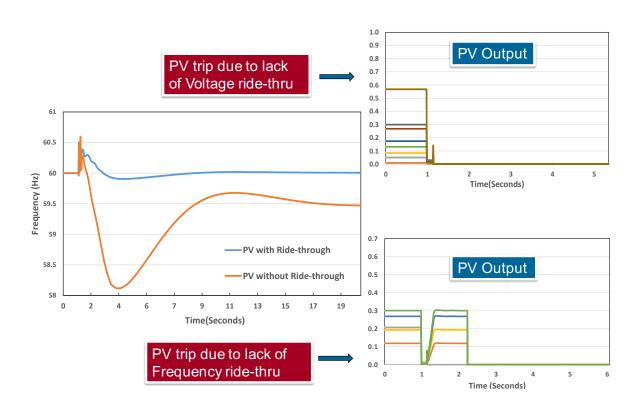
- System frequency is defined by balance between load and generation
- Frequency is similar across entire interconnection; any DER exposed to large frequency deviations may trip simultaneously; special concerns for system-split conditions
- Impact the same whether or not DER is on a high-penetration feeder
- NERC
   Reliability
   Coordinators
  - Colored entities in the map to the right

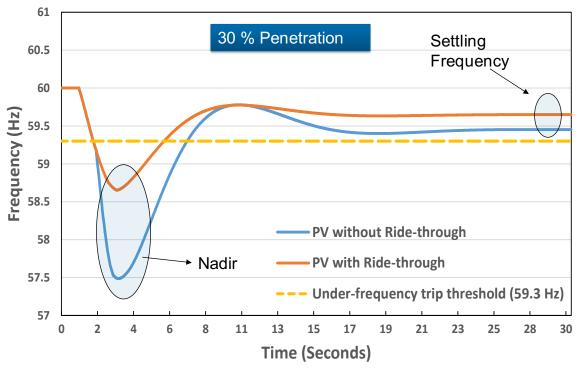


Source: NERC



Source: SCE


- Transmission faults can depress distribution voltage over very large areas
- Sensitive voltage tripping (e.g., UL 1741 certified inverters) can cause massive loss of IBR generation
- Resulting BPS event may be greatly aggravated




# Case Study Results

#### **Voltage Trip Can Cascade into Frequency Trip**

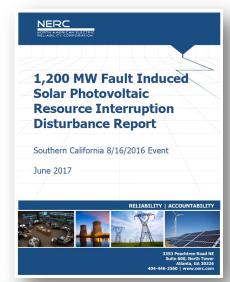
#### Frequency Ride-Through Can Improve Nadir





Source: EPRI (2014)



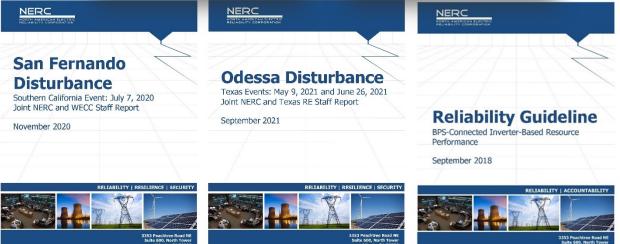

# Reported Reliability Issues with IBR and Mitigations

#### Odessa Disturbance recommendations call for more than guidelines

- Significant Updates and Improvements Needed to the FERC Generator Interconnection Agreements
- Improvements to NERC Reliability Standards Needed to Address Systemic Issues with Inverter-Based Resources
  - > Improvements to Performance-Based Requirements
  - Performance Assessment and Mitigation
  - ➤ Ride-Through Standard In Lieu Of PRC-024-3
  - Analysis and Reporting of Inverter-Based Resource Reductions
  - ➤ Electromagnetic Transient Modeling and Studies for All Newly Interconnecting Inverter-Based Resources

#### Causes of Solar PV Reduction to be Addressed

- PLL Loss of Synchronism
- Inverter AC Overvoltage
- Momentary Cessation
- Feeder AC Overvoltage
- Unknown
- Inverter Underfrequency
- Not Analyzed
- Feeder Underfrequency






Bulk System
Reliability
&
Frequency
Support

#### Addressed Reliability Issue

- PLL Loss of Synchronism
- Inverter AC Overvoltage
- Momentary Cessation
- Feeder AC Overvoltage
- Unknown
- Inverter Underfreque ncy
- Not Analyzed
- Feeder
   Underfreque
  ncy





# Voltage Ride-Through (VRT)

ERCOT - Nodal Operating Guide: 2.9.1: Voltage Ride-Through Requirements for Intermittent Renewable Resources and Energy Storage Resources Connected to the ERCOT Transmission Grid

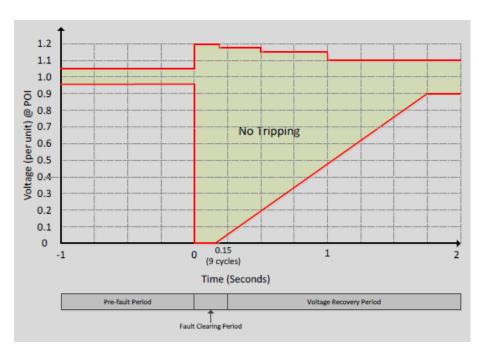
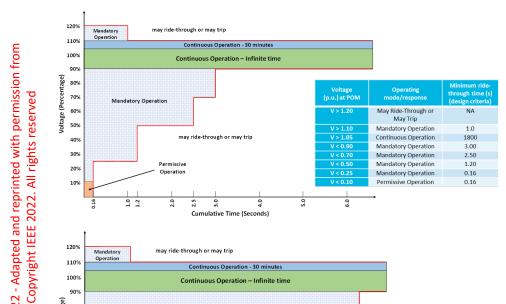
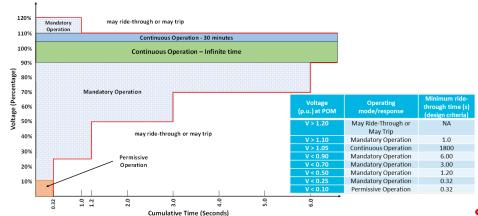




Fig. 1. Default Voltage Ride-Through Boundaries for IRRs and ESRs Connected to the ERCOT Transmission Grid

# IEEE 2800 - 7.2.2.3 Low and High voltage ride-through within the mandatory operation region




Bulk System
Reliability
&
Frequency
Support

#### Addressed Reliability Issue

- Inverter AC Overvoltage
- Momentary Cessation
- Unknown
- Not Analyzed

Wind



Solar

ERCOT < IEEE 2800: raise to 2800 and require more stringent VRT capability?

# Restore output after voltage ride-through

#### **ERCOT MQG - LVRT Leading - Figure 6:**

 The real power started to recover prior to the voltage reaching 0.9 per unit and recovered quickly upon reaching 0.9 per unit and thus was acceptable.

# IEEE 2800 – 7.2.2.6 Restore output after voltage ride-through

- restore output: Return operation of the inverter-based resources (IBR) to the state prior to the abnormal excursion of voltage or frequency that resulted in a ridethrough operation of the IBR. (Adapted from IEEE Std 1547TM -2018)
- Upon the applicable voltage returning to continuous operation region, from a mandatory operation region or permissive operation region where the IBR plant performs ride-through in mandatory operation mode, the IBR plant shall have capability to restore active power output to 100% of pre-disturbance level at an average rate equal to 100% of ICR divided by specified active power recovery time. The default active power recovery time shall be 1.0 second.

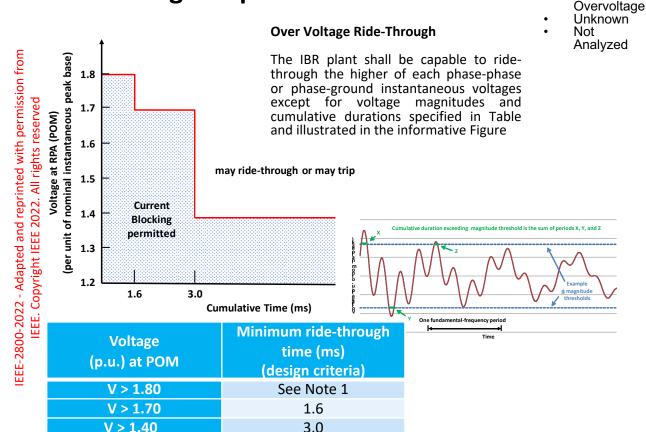
Bulk System
Reliability
&
Frequency
Support

#### Addressed Reliability Issue

- Inverter AC Overvoltage
- Momentary Cessation
- Unknown
- Not Analyzed

EE-2800-2022 - Adapted and reprinted with permiss IEEE. Copyright IEEE 2022. All rights reserved

ERCOT < IEEE 2800: raise to 2800 and specify restore output after VRT?


# Transient overvoltage ride-through requirements

#### **ERCOT**

- No explicit requirement
- Per mutual agreement where a subsynchronous resonance (SSR) study is required during the study process, if RMS voltage is still withing VRT envelope.
- See also:

https://www.ercot.com/files/docs/2020/ 06/19/VRT\_Near\_Series\_Capacitors.pdf

# IEEE 2800 - 7.2.3 Transient overvoltage ride-through requirements



15.0

ERCOT < IEEE 2800: raise to 2800 and make TrOV capability mandatory?

V > 1.20

**Bulk System** 

Reliability

Frequency Support

Inverter AC

Addressed Reliability Issue

# Voltage Phase Angle Ride-Through

#### **ERCOT**

- No requirements on the threshold.
- MQG does include a voltage phase angle jump test.

# IEEE 2800 - 7.3.2.4 Voltage phase angle changes ride-through

The IBR plant shall ride through positive-sequence phase angle changes within a sub-cycle-to-cycle time frame of the applicable voltage of less than or equal to 25 electrical degrees.

- In addition, the *IBR plant* shall **remain in operation for any change in the phase angle of individual phases** caused by occurrence and clearance of unbalanced faults, provided that the positive-sequence angle change does not exceed the forestated criterion.
- Active and reactive current **oscillations** in the *post-disturbance period* that are **positively damped** shall be acceptable in response to phase angle changes.
- **Current blocking** in the post-disturbance period shall not be permitted.

Bulk System
Reliability
&
Frequency
Support

#### Addressed Reliability Issue

- PLL Loss of Synchronism
- Momentary Cessation
- Unknown
- Inverter Underfreque ncv
- Not Analyzed

EE-2800-2022 - Adapted and reprinted with permis IEEE. Copyright IEEE 2022. All rights reserve

ERCOT < IEEE 2800: raise to 2800 and make phase angle ride-through capability mandatory?

# Consecutive Voltage Ride-Through

**Bulk System** Reliability Frequency Support

#### **ERCOT**

No requirements.

#### **IEEE 2800 – 7.2.2.4 Consecutive voltage deviations** ride-through capability

The IBR plant shall ride through multiple excursions outside of the continuous operation region with exception of the conditions and situations specified below. for which the IBR plant may trip to protect equipment integrity from the cumulative effects of successive voltage deviations:

#### **Addressed** Reliability Issue

- Inverter AC Overvoltage
- Momentary Cessation
- Unknown
- Not Analyzed
- The IBR plant may trip for disturbances for which the cumulative duration of voltage deviations within the applicable time window specified in 7.2.2.1 (i.e., 10 seconds or 3600 seconds) exceeds (i.e., undervoltages less than or overvoltages greater than) the ride-through durations specified in Table 11 or Table 12, as applicable.
- 0-2022 Adapted and reprinted with permis IEEE. Copyright IEEE 2022. All rights reserve The IBR plant may trip for more than [X] deviations of the applicable voltage at the RPA outside of the continuous operation region within any [Y]-second period.
- ≤ 10 s ≤ 120 s ≤ 30 min
- The IBR plant may trip for any voltage deviation outside of continuous operation region that follows the end of a previous deviation by less than 20 cycles of the system fundamental frequency.
- The IBR plant may trip for more than [X] individual deviations of the applicable voltage at the RPA below 50% of the nominal voltage (inclusive of zero voltage) within any [Y]-second period

|    | Х   | Υ       |
|----|-----|---------|
|    | > 2 | ≤ 10 s  |
| i. | > 3 | ≤ 120 s |

For WTG based IBR plants, individual IBR units (WTGs) may trip to self-protect for consecutive voltage deviations that result in stimulation of mechanical resonances exceeding equipment limits.

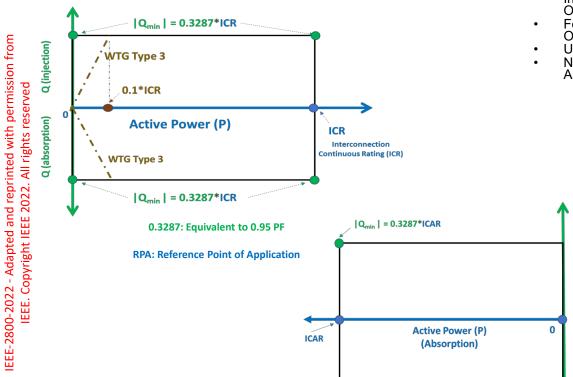
The TS owner/TS operator should specify ride-through requirements for dynamic voltage oscillations that may be stimulated by a TS fault, opening of a line, or tripping of a generator and that may cause the applicable voltage to deviate outside the continuous operation region multiple times.

As applicable, exception from specified consecutive voltage deviations ride-through capability shall be

**permitted with mutual agreement** between the *IBR owner* and *TS owner/TS operator*.

ERCOT < IEEE 2800: raise to 2800, make consecutive voltage ride-through capability mandatory, and specify ride-through requirements for dynamic voltage oscillations?

# Voltage-Reactive Power (Volt-Var)


#### **ERCOT NPs - 3.15 Voltage Support**

For Generation Resources, the Reactive Power capability shall be available at all MW output levels and may be met through a combination of the Generation Resource's Corrected Unit Reactive Limit (CURL), which is the generating unit's dynamic leading and lagging operating capability, and/or dynamic VAr-capable devices. This Reactive Power profile is depicted graphically as a rectangle.

For Intermittent Renewable Resources (IRRs), the Reactive Power requirements shall be available at all MW output levels at or above 10% of the IRR's nameplate capacity. When an IRR is operating below 10% of its nameplate capacity and is unable to support voltage at the POIB, ERCOT, the interconnecting TSP, or that TSP's agent may require an IRR to disconnect from the ERCOT System for purposes of maintaining reliability.

**For ESRs**, the Reactive Power capability shall be **available at all MW levels**, when charging or discharging, and may be met through a combination of the ESR's CURL, and/or dynamic VAr-capable devices.

#### IEEE 2800 - 5.2.2 RPA voltage control



Q<sub>min</sub> | = 0.3287\*ICAR

Addressed Reliability Issue

> Inverter AC Overvoltage

Reactive

Power

(Dynamic) Voltage Support

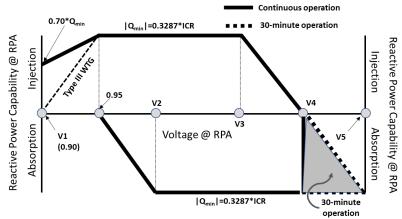
- Feeder AC Overvoltage
- Unknown
- Not Analyzed

ERCOT < IEEE 2800: raise to 2800 and require "VArs at night" capability for non-WTG Type 3 IRRs?

# Voltage-Reactive Power (Volt-Var)

#### **ERCOT - Nodal Protocols: 3.15 Voltage Support**

Each Generation Resource and ESR required to provide VSS shall comply with the following Reactive Power requirements in Real-Time operations when issued a Voltage Set Point by a TSP or ERCOT:


- (a) An over-excited (lagging or producing) power factor capability of 0.95 or less determined at the unit's maximum net power to be supplied to the ERCOT Transmission Grid and for any Voltage Set Point from 0.95 per unit to 1.04 per unit, as measured at the POIB:
- (b) An under-excited (leading or absorbing) power factor capability of 0.95 or less, determined at the unit's maximum net power to be supplied to the ERCOT Transmission Grid and for any Voltage Set Point from 1.0 per unit to 1.05 per unit, as measured at the POIB;
- (c) For any Voltage Set Point outside of the voltage ranges described in paragraphs (a) and (b) above, the Generation Resource or ESR shall supply or absorb the maximum amount of Reactive Power available within its inherent capability and the capability of any VAr-capable devices as necessary to achieve the Voltage Set Point;

| Nominal | Tolerance |
|---------|-----------|
| Voltage | Band kV   |
| 345     | +/- 4kV   |
| 230     | +/- 3kV   |
| 138     | +/- 2kV   |
| 115     | +/- 2kV   |
| 69      | +/- 1kV   |

Nodal Operating Guide Section 2.7.3.5, Resource Entity Responsibilities and Generation Resource Requirements

A Generation Resource's POI voltage may be out of the tolerance band if it has exhausted all of its reactive capability. The tolerance bands are as follows:

#### **IEEE 2800 - 5.2.2 RPA voltage control**



| Q <sub>min</sub>  =0.3287*ICR |        |        |        |        |        |
|-------------------------------|--------|--------|--------|--------|--------|
| TS Nominal                    | V1     | V2     | V3     | V4     | V5     |
| Voltage                       | (p.u.) | (p.u.) | (p.u.) | (p.u.) | (p.u.) |
| at RPA                        |        |        |        |        |        |
| < 200 kV                      | 0.90   | 0.99   | 1.03   | 1.05   | 1.10   |
| >= 200  kV                    | 0.90   | 1.00   | 1.04   | 1.05   | 1.10   |
| except 500 kV and             |        |        |        |        |        |
| 735 kV as below               |        |        |        |        |        |
| 500 kV                        | 0.90   | 1.02   | 1.06   | 1.10   | 1.10   |
| 735 kV                        | 0.90   | 1.02   | 1.06   | 1.088  | 1.10   |

TS Owner/Operator may specify different values/thresholds

Dynamic reactive power specification

Power
&
(Dynamic)
Voltage
Support

Reactive

#### Addressed Reliability Issue

- Inverter AC Overvoltage
- Feeder AC Overvoltage
- Unknown
- Not Analyzed

# **Current Injection During Fault**

# **ERCOT NP - 3.15.3 Generation Resource and Energy Storage Resource Requirements Related to Voltage Support**

(2) Generation **Resources** and ESRs **providing VSS** shall be compliant with the ERCOT Operating Guides for **response to transient voltage disturbance**.

# **ERCOT NOG – 2.9 Voltage Ride-Through Requirements for Generation Resources**

(3) During operating conditions listed in paragraph (1) above, each Generation Resource or ESR **shall not**, during and following a transient voltage disturbance, **cease providing real or reactive power** except to the extent needed **to provide** frequency support or **aid in voltage recovery**.

**Each ESR**, if it is consuming active power from the ERCOT System when operating in the charging mode, **shall reduce or cease power consumption** as necessary **to aid in voltage recovery** during and following transient voltage disturbances.

#### Model Quality Guide (MQG) - LVRT Leading - Figure 6:

For the LVRT stimulus applied at the POI (top figure), the plant reactive power increased promptly (bottom figure).

# IEEE 2800 - 7.2.2.3.4 Current injection during ride-through mode

At minimum, the *IBR unit* shall be capable of following:

Depending on mode of operation (active or reactive current priority), the *IBR unit* shall be capable of prioritizing active or reactive current equal to its *maximum current* rating when the *IBR unit* terminal voltage is less than or equal to 50% of nominal voltage.

Reactive
Power
&
(Dynamic)
Voltage
Support

#### Addressed Reliability Issue

- PLL Loss of Synchronism
- Inverter AC Overvoltage
- Momentary Cessation
- Feeder AC Overvoltage
- Unknown
- Not Analyzed

For **balanced faults**: **positive sequence** current injection

 The difference between reactive current injection during a fault and a prefault reactive current output is an incremental positive-sequence reactive current (ΔIR-1). The incremental positive-sequence reactive current shall not be negative

For unbalanced faults - positive and negative sequence current injection

- Dependent on IBR unit terminal (POC) negative sequence voltage and
- That leads the IBR unit terminal (POC) negative sequence voltage by an allowable range as specified below:
  - 90 degrees to 100 degrees for full converter-based IBR units
  - 90 degrees to 150 degrees for type III WTGs

ERCOT < IEEE 2800: raise to 2800, adopt more detailed specifications and make negative sequence current injection capability mandatory? RPA=PoC or POI?

Jens Boemer

Technical Executive

Grid Operations & Planning | DER Integration
+1 (206) 471-1180

jboemer@epri.com

#### **Discussion**

- Reactive vs. active power/current priority
  - Reactive priority needed for LVRT?
  - Active power/current withdrawal at HVRT may lead to further voltage increase?
- Coordination of IBR unit and IBR plant controller during and after faults?
- Feedback received for further action:
  - PG 7.5 PGRR 75 and 85 Update? No!?
  - NOG 2.9.1 voltage recovery to 90% in 1.75 seconds?
  - NOG 2.6.2 and 2.9?
  - TrOV requirement only for HVDC ties today?



# Focus Next Meeting: Primary Frequency Response, Fast Frequency Response, Frequency Ride-Through, RoCoF Ride-Through, etc.

# Requirements in Scope of Transmission Service Provider (TSP) and not of ERCOT

# Other Requirements of IEEE 2800 by Mutual Agreement (Optional)

# Together...Shaping the Future of Energy™