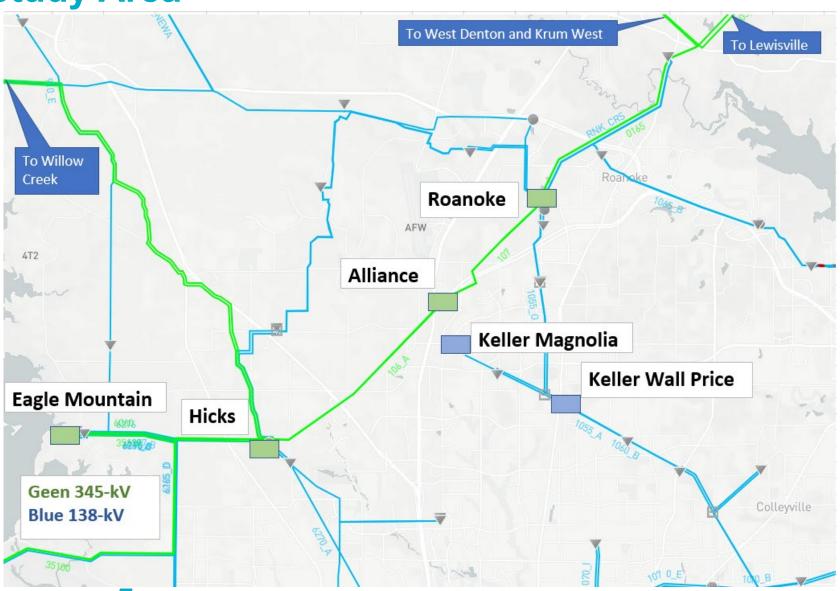


Oncor – Roanoke Area Upgrades – ERCOT Independent Review Status Update

Ben Richardson


Regional Planning Group May 17, 2022

Recap

- Oncor submitted the Roanoke Area Upgrade Project for Regional Planning Group review in February 2022. This is a Tier 1 project that is estimated to cost \$285.9 million
 - Proposed for May 2025. Oncor has expressed a need for "critical status designation"
 - Address rapid load growth in Roanoke area, existing capacity limitations and forecasted thermal and voltage violations
 - Increase thermal capacity and operational flexibility in Roanoke area
- ERCOT provided study scope for ONCOR Roanoke Area Upgrade Project during March 2025 RPG meeting:
 - https://www.ercot.com/files/docs/2022/03/11/Oncor Roanoke Area Upgrades EIR Scope 03 15 2022.pdf
 - Based on comments updated scope to include Denton Data Center load at Jim Christal 138-kV bus
 - Alliance 345/138-kV transformer included in P6-2: X-1 + N-1
 - https://www.ercot.com/files/docs/2022/04/07/Oncor_Roanoke_Area_Upgrades_EIR_Status.pdf

Study Area

Contingencies and Criteria

Contingencies for Study Region

➤ NERC TPL-001-4 and ERCOT Planning Criteria

(http://www.ercot.com/content/wcm/current_guides/53526/04_050115.doc_):

- P0 (Normal system condition)
- P1, P2-1, P7 (N-1 conditions)
- P2, P4, and P5 (EHV only)
- P3: G-1 + N-1 (G-1: Handley, Panda Sherman generator train outages)
- P6-2: X-1 + N-1 (X-1: Alliance, Roanoke, Hicks, Lewisville, Eagle Mountain 345/138-kV transformer outages)

Criteria

> Thermal

- Monitor all transmission lines and transformers in study region
- Use Rate A for pre-contingency conditions
- Use Rate B for post-contingency conditions

➤ Voltages

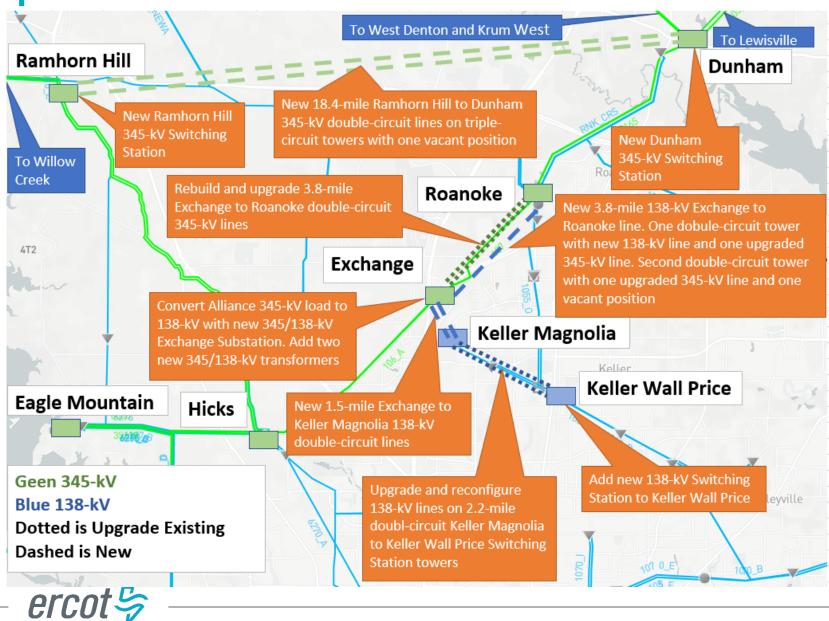
- Monitor all busses 60 kV and above in the study region
- Voltages exceeding their pre-contingency and post-contingency limits
- Voltage deviations exceeding 8% on non-radial load busses

Preliminary Results of Reliability Assessment

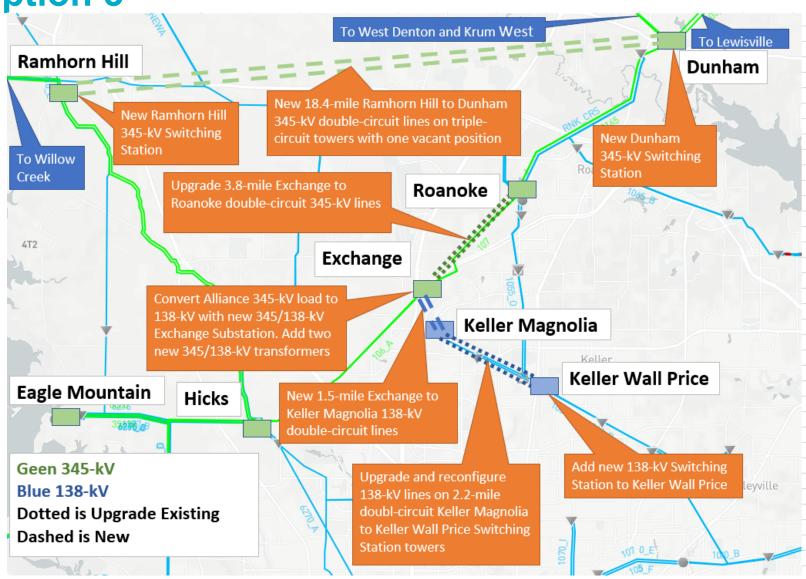

Contingency Category*	Unsolved Power Flow	Thermal Overloads (Quantity of Elements)
P1	0	0
P2.1	0	0
P3 (G-1+N-1)**	0	15.4 miles of 345-kV lines(1) 345/138-kV transformers
P6.2 (X-1+N-1)* *	0	17.7 miles of 138-kV lines25.9 miles of 345-kV lines(3) 345/138-kV transformers
P7	0	0
Total	0	17.7 miles of 138-kV lines25.9 miles of 345-kV lines(3) 345/138-kV transformers

^{*}Bus voltage violations were also identified

^{**}See slide 4 for list of G-1 generators and X-1 transformers tested



Option 1



Option 2

Option 3

Reliability Assessment for short-listed Options

	N-1		X-1 N-1		G-1 N-1	
	Thermal Violations	Voltage Violations	Thermal Violations	Voltage Violations	Thermal Violations	Voltage Violations
Option 1	No	No	No*	No	No	No
Option 2	No	No	No	No	No	No
Option 3	No	No	No	No	No	No

^{*}Produced some thermal loadings just under 100%

Next Steps

Project Evaluation

- ERCOT may also perform the following studies:
 - Planned maintenance outage
 - Long-term Load Serving Capability Assessment
 - Dynamic stability impact

Generation and Load Scaling Sensitivity Analyses

- Planning Guide Section 3.1.3(4)
- Subsynchronous Resonance (SSR) Assessment
 - Nodal Protocol Section 3.22.1.3(2)

Congestion Analysis

 Congestion analysis will be performed to ensure that the identified transmission upgrades do not result in new congestion within the study area

Deliverables

Tentative Timeline

- > Status updates at RPG meetings
 - o June 2022
- > Final recommendation July 2022

Stakeholder Comments Also Welcomed to Sun Wook Kang: skang@ercot.com

