GE Energy Consulting

Evaluation of the need for limitations on resources providing RRS-PFR

February 2022 GEEnergyConsulting.com

GE Reservoir Solutions www.GEPower.com/EnergyStorage

STUDY QUESTION: What limits should be defined for new resources providing primary frequency response (PFR) in ERCOT?

2 Study objectives, process and key deliverables

GE Energy Consulting Power system experts for >100 years

~120 grid experts9 countries>100 patents

Economic Network complex grid Equipment INTEGRATED grid value of voltage and frequency analysis integration technology strategy interconnection **STUDIES** performance Stability studies Interconnection System planning support and strategy Network risk assessment **Financial modeling** Grid code testing and forecasting and compliance Grid upgrades **Transients** Planning MODELS Capacity **Power flow** Energy **4** ¥\$€ SOFTWARE **GE MARS* GE PSLF* GE MAPS***

GE technology | 1/3 earth's power | #1 clean energy fleet

Evaluate need for new PFR limits given likely risks Targeted approach to simulations

Hypothesize likely risk areas

- Systemic risks ... overall system reliability
- 1. Frequency response obligation (FRO) met?
- 2. Instabilities? e.g. oscillations, load-shedding, interactions
- 3. Resilient? e.g. vulnerable to single point of failure

Locational risks ... limitations due to location?

- 1. Inter-area stable? e.g. area constraints, oscillations, UFLS
- 2. Inter-equipment stable? e.g. control interactions
- 3. Locally resilient? e.g. local point of failure

Other risks

- 1. Modeling risk? e.g. shortcomings w/generic models
- 2. Procurement risk? e.g. transmission limitations
- 3. Under-performance risk? e.g. deployment failure
- 4. Torsional risk? e.g. w/synchronous generators
- 5. Protection risk

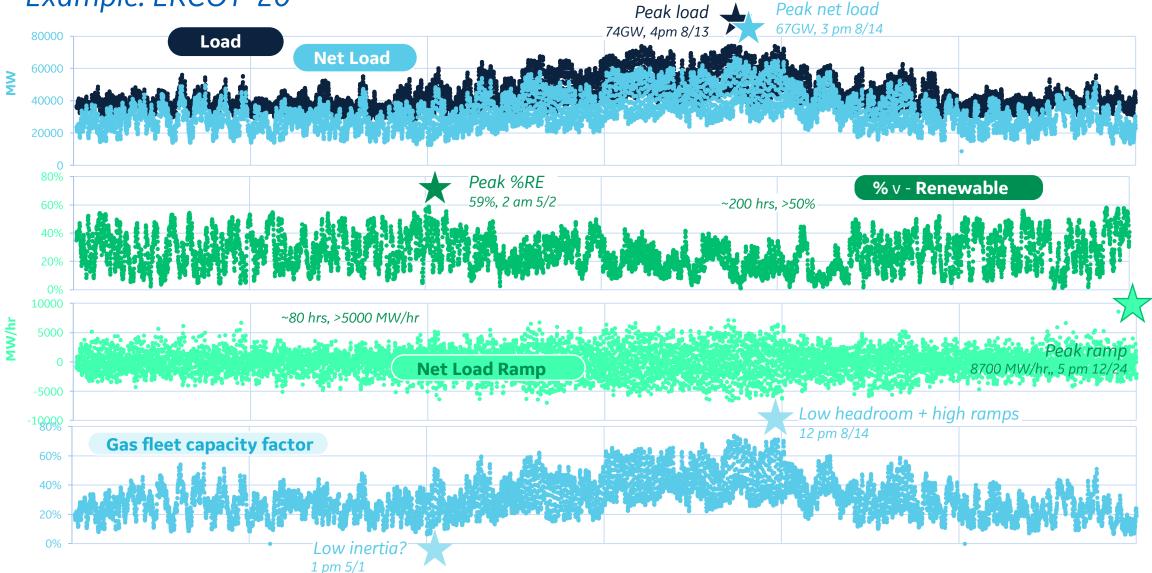
Design scenarios to assess

Dispatch condition

1 scenarios ... TO BE DETERMINED (e.g. low/high load)

Droop setting 2 scenarios ... TO BE DETERMINED (e.g. 1%, 5%)

Droop gain 2 scenarios ... TO BE DETERMINED (e.g. low/high)


Locational factors

4 scenarios ... TO BE DETERMINED (e.g. low/high diversity, co-location w/load or generators)

Design an experiment of 16 +16 scenarios to evaluate risks

Are there other dispatch conditions to consider? Example: ERCOT '20

First deliverable *Preliminary recommendations*

Risk screening

Post processing tools (e.g. torsional, locational, damping) **Down-selection:** Some risks dismissed, some elevated

	Risk types	50 scenarios														
		1		2	3		48	49	50							
	FRO met?	•		•	٠		٠	٠	٠							
	Stable?	•		•	•		•	•	•							
	Resilient?			•	•		•									
	Inter-area stable?	•		•	•		•	•	•							
	Inter-equipment stable?	•						•								
	Locally resilient?	•		•	•		•	•	•							
	Torsional risk?	•		•	•		•	•	٠							
Other	Modeling risk?															
	Procurement risk?	•		•	•		•	•	•							
	Under-performance risk?	•		•	•		•	•	•							

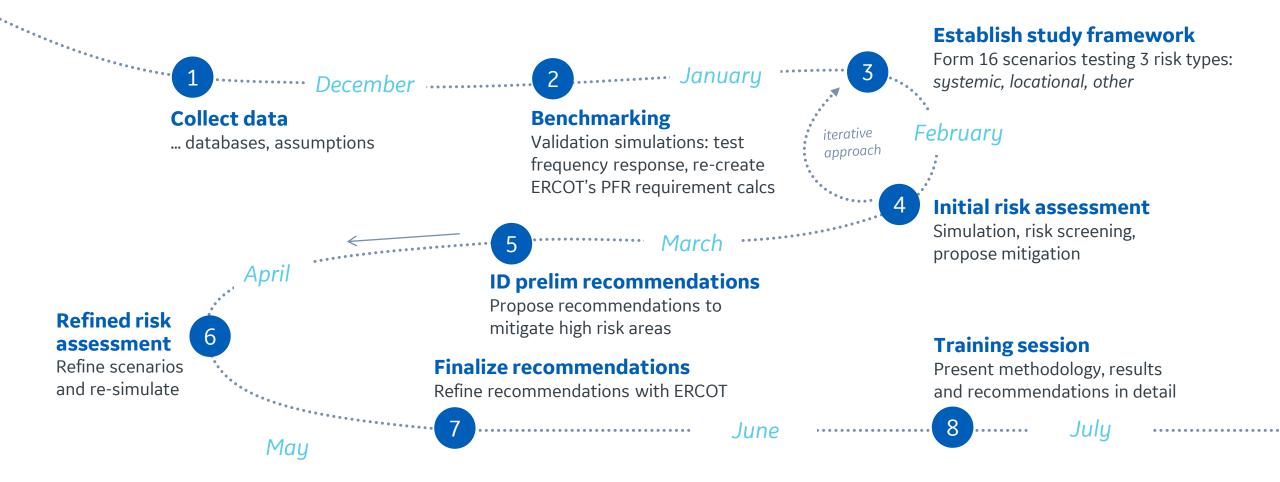
Recommendations

... if current ERCOT procurement is not ok

Individual resource qualification

- **Resource qualification criteria** (e.g. frequency control validation, torsional screening w/nearby synchronous machines)
- System impact analysis & mitigation (e.g. site specific gain limits, add'l controls, protection)
- Re-study criteria (e.g. new topology, change in control or rating)

Procurement (e.g. amt/locational requirements)


- Overlap w/FFR product?
- Add'l limits: locational, performance (e.g. transient gains limited), proximity (e.g. SCR or other resource proximity)
- Efficacy: high response resources ↓ PFR need while clustering of resources may ↑ need

Operational (e.g. is current monitoring enough?)

- New monitoring metrics (e.g. K_t, R_{frac}, etc.)
- Extreme event needs
- **Commitment and dispatch**/headroom and footroom availability
- **Updates to rules**/procedures for PFR limit management
- Adherence of individual resources to PFR delivery obligations

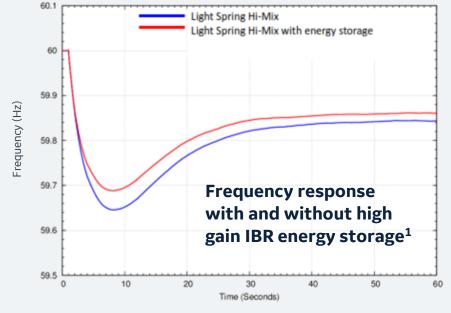
ERCOT-GE collaborative study approach *Hypothesize risks, evaluate, mitigate ... repeat!*

Project schedule & deliverables

ERCOT Engagement

Monthly pacing meetings

Data collection


Strategy sessions

- 1. Benchmarking
- 2. Scenario development
- 3. Identify recommendations

		Dec							May Jun												
	nd of Week	1 2	2 3	4	56	7	89	10 [·]	1 12	2 13	14 1	5 16	6 17 ⁻	18 19	20	21 2	2 23	24	25 2	6 27	7
Γask / Item																					
ask 1: Data collection																					
Collection of required study items																					
Validation of collected data																					
Task 2: Benchmarking																					ſ
GE team re-creates ERCOT PRF requirement calculation																	-				~
																					~
Task 3: Establish study framework																					
Establish and agree upon study risk areas, assumptions &	& scenarios	;																			
Task 4: Initial risk assessment							,														ĺ
Simulations										L	Ļ										ĺ
PSS/E Steady state simulations										V	1										
PSS/E dynamics simulations																					
Small signal stability assessment																					
Risk screening																					
Task 5: Identify preliminary recommendations																					
Engagement w/ ERCOT to identify recommendations																					
Task 6: Second iterationRefined risk assessment & reco	mmendatio	n tes	sting	3																_	l
Deeper assessment based on Task 4 & 5																					
Refine scenarios																					
Simulation work																					
Task 7: Finalize recommendations & report writing																				-	ĺ
Engagement w/ ERCOT to refine recommendations																					l
Write report & final presentation																					
Task 8: Training session	ļ																			-5	
Develop training material																					
Training session with ERCOT staff																					
ТОР									Dr	مان	m re		lte					Fin	al Re	2011	
DELIVERABLES																			sen		
									pr	ese	enta		Л					bre	sen	tati	l

We've studied using IBRs for PFR before ... though every system is different

Figure 16. Frequency response to two Palo Verde unit trip for Light Spring Hi-Mix – with and without energy storage.

¹ GE for NREL "Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability" http://www.nrel.gov/docs/fy15osti/62906.pdf

² GE for NREL "Eastern Frequency Response Study", June 2013; http://www.nrel.gov/docs/fy13osti/58077.pdf

Top GE studies relevant to this study question:

1. Western wind and solar integration studies¹

- Investigation of PFR and stability risks w/high wind and solar
- Examined PFR and FRR from batteries and IBR generation

2. Eastern frequency response study²

- First industry study highlighting divergence of EI system models for frequency response from observed behavior
- Investigated contributions and challenges (e.g. governor squelch) of IBRs towards PFR and FRR

3. Hawaii

 Investigated utilizing batteries for PFR in coordination w/a commercial wind plant subject to strict operating constraints of small island system

> We have also enabled interconnection of >70GW wind, solar and batteries globally

GE Renewable integration study references (page 1 of 2)

PJM Interconnection, LLC, "PJM Renewable Integration Study," <u>http://www.pjm.com/~/media/committees-groups/subcommittees/</u> <u>irs/postings/pris-executive-summary.ashx</u>

Australian Energy Market Operator, "Technology Capabilities for Fast Frequency Response," <u>https://www.aemo.com.au/-</u> /media/Files/Electricity/NEM/Security_and_Reliability/Reports/2017/2017-03-10-GE-FFR-Advisory-Report-Final---2017-3-9.pdf

Electrical Reliability Council of Texas, "Analysis of Wind Generation Impact on ERCOT Ancillary Services Requirements," <u>http://www.ercot.com/news/presentations/2008/Wind_Generation_Impact</u> <u>on_Ancillary_Services_-_GE_Study.zip</u> (Note, this is a zip file that automatically downloads.)

New England ISO "New England Wind Integration Study," <u>https://www.iso-ne.com/committees/comm_wkgrps/prtcpnts_</u> <u>comm/pac/mtrls/2009/nov182009/newis_slides.pdf</u>

CanWEA "Pan-Canadian Wind Integration Study," (PCWIS), 2016 https://canwea.ca/wind-integration-study/ **Hawaiian Electric Company**, Hawaii Natural Energy Institute, "Oahu Wind Integration Study," <u>https://www.hnei.hawaii.edu/sites/www.hnei.hawaii.edu/files/Oahu%20Wind</u> <u>%20Integration%20Study.pdf</u>

Hawaii Natural Energy Institute, National Renewable Energy Laboratory, Hawaiian Electric Company, Maui Electric Company, "Hawaii Solar Integration Study," <u>http://www.hnei.hawaii.edu/projects/hawaii-solar-integration</u>

Hawaii Natural Energy Institute, "Hawaii RPS Study," <u>http://www.hnei.hawaii.edu/projects/hawaii-rps-study</u>

Hawaii Natural Energy Institute, "Maui/O'ahu Interconnection Study," <u>http://www.hnei.hawaii.edu/projects/oahu-maui-interconnection-study</u>

Hawaii Natural Energy Institute, "Oahu Distributed PV Grid Stability Study," <u>http://www.hnei.hawaii.edu/projects/oahu-distributed-pv-grid-stability-study</u>

integration-study.pdf Nova Scotia Power, Inc., "Nova Scotia Renewable Energy Study," June 2013 https://www.nspower.ca/site/media/Parent/2013COSS_CA_DR-California Energy Con "Appendix B - Impact of Power Grid," https://www.nspower.ca/site/media/Parent/2013COSS_CA_DR-

14_SUPPLEMENTAL_REISFinalReport_REDACTED.pdf

New York State Energy Research and Development Authority

http://www.nyserda.ny.gov/-/media/Files/EERP/Renewables/wind-

"The Effects of Integrating Wind Power on Transmission System Planning,

NREL "Eastern Frequency Response Study," June 2013, <u>https://www.elp.com/articles/print/volume-93/issue-1/sections/t-d-operations/eastern-interconnection-offers-positive-outlook-for-wind-generation-with-frequency-responsive-plant-controls.html</u>

NREL, "Western Wind and Solar Integration Study," <u>http://www.nrel.gov/docs/fy10osti/47434.pdf</u> <u>http://www.nrel.gov/docs/fy10osti/47781.pdf</u>

Reliability, and Operations,"

Barbados Light & Power Company, "Barbados Wind and Solar Integration Study," <u>http://www.blpc.com.bb/images/watts-</u> <u>new/Barbados%20Wind%20and%20Solar%20Integration%20Study%20-</u> %20Exec%20Summary.pdf **Minnesota Public Utilities Commission**, "Minnesota Renewable Energy Integration and Transmission Study," <u>http://www.minnelectrans.com/documents/MRITS-report.pdf</u>

California Energy Commission's Intermittency Analysis Project Study "Appendix B - Impact of Intermittent Generation on Operation of California Power Grid,"

http://www.energy.ca.gov/2007publications/CEC-500-2007-081/CEC-500-2007-081-APB.PDF

https://www.caiso.com/Documents/Integration-RenewableResourcesReport.pdf

California ISO, "Frequency Response Study," Oct, 2011 http://www.caiso.com/Documents/Report-FrequencyResponseStudy.pdf

Colorado Springs: <u>https://ge-energy.postclickmarketing.com/Global/</u> FileLib/PDFs/Final-Executive-Summary-GE-CSU-7-24-17.pdf</u>

GE Renewable integration study references (p. 2 of 2)

