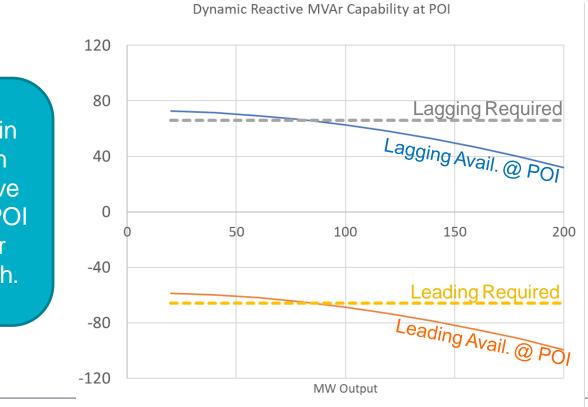


Control of Switched Shunts in Inverter-based Resources (IBRs)


Jonathan Rose and Jackson DuBro ERCOT Transmission Planning ERCOT Resource Integration

Resource Integration Working Group December 10, 2021

Motivation

- Vast majority of IBRs appear to rarely operate their switched shunts
 - Poor utilization of equipment
 - Cripples lagging capability (especially <u>dynamic</u> lagging capability) at POI when under high dispatch

Reactive losses in collector system skews the reactive capability at the POI especially under high MW dispatch.

ercot

Background

- ERCOT has observed poor coordination of switched reactive shunts at many wind and solar farms
 - E.g. Not having enough shunt capacitors in service when wind / solar output is high
 - Excessive switching delays in meeting 0.95 power-factor requirements at the POI
- Pre-positioning shunts can help ensure dynamic reactive capability at the POI by controlling shunts to offset collector losses
 - Control schemes which do not pre-position may need closer examination to ensure they provide adequate dynamic capability at the POI under all scenarios.
 - Aligns with Protocol 3.15 (17): [Switched shunts] should only be used to compensate reactive losses behind the POI
- Developers often have the option of purchasing wind turbines / inverters with additional reactive capability (like 0.90 power factor)
 - Purchasing **better** power-factor turbines allows for more forgiving shunt controls
 - Simpler controls and simpler for plant operator → less chance equipment mis-operation affects revenue → worth the minor cost difference
 - Many projects are already using 0.90 pf turbines / inverters

Observations and Current Common Practices

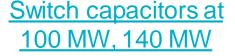
- Vast majority of IBRs appear to rarely operate their shunts in normal conditions
 - Poor equipment utilization and coordination can cause problems at higher IBR penetrations

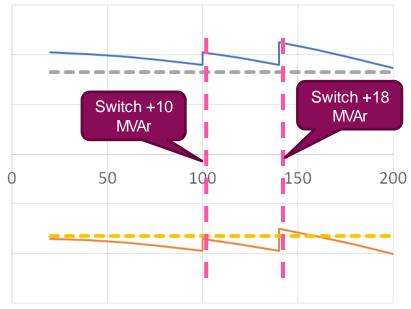
Control Scheme	Steady State Support	Dynamic Support	Concerns
Voltage-triggered shunts	×	×	The shunts and turbine are both trying to respond to and control voltage. Increased risk of mis- coordination
"Generator Unloading" (Used by many Power Plant Controllers)	~	× (Depends)	This common PPC shunt control method may not be optimal for grid stability

Generator Unloading – Shunts are adjusted to minimize generator reactive exchange. Dynamic support depends on initial conditions going into a disturbance, thus one needs to carefully consider the different scenarios and the potential for mis-coordination.

Proposed Concept – Shunt Pre-Positioning

- Improved coordination of shunts could provide better system voltage support under normal and disturbance conditions.
- Pre-Positioned shunts means that the generators are better positioned to quickly move the POI between 0.95 lagging to 0.95 leading pf
 - Frees wind turbines / solar inverters to perform voltage regulation and quickly respond to dynamic events while shunts dedicated to offset collector losses


Control Scheme	Steady State Support	Dynamic Support
Voltage triggered shunts	×	×
"Generator Unloading" (Used by many Power Plant Controllers)	\checkmark	× (Depends)
Pre-Positioned Control	~	±0.95 pf dynamic assured @ POI



Proposal: Pre-Position Shunts Based on <u>MW Trigger</u>

- Switch shunts based on MW flow
 - Reactive losses depend on MW flow
 - Simple to implement using PPC or MW relays
 - Inherently coordinated. No risk of hunting or miscoordination
 - Shunts offset losses, ensuring turbine/inverter native reactive capability reaches the POI
 - Can enhance stability
 - Preserves dynamic reactive capability, which is superior for responding to grid events
 - Shunts follow changes in real power output which is slowly-varying over several minutes
 - Add hysteresis and delays to avoid rapid switching
 - For example, switch in service the first shunt block when wind above 110 MW and switch block out when wind drops below 80 MW for 3 minutes

MW Output

Key Takeaways

- "MW-Trigger" is an elegant method of pre-positioning that is also inherently coordinated
 - Coordinated for good voltage control
 - Pre-positioned for fast response and dynamic stability
 - Shunts controlled to offset collector losses, aligned with Protocol 3.15 (17)
- Other methods providing similar performance may also be considered
 - Generator Unloading, which is commonly used today, may also work but needs careful attention to operating scenarios which could result in mis-coordination and poor dynamic capability at the POI
- Consider 0.90 power-factor generators (or better) for operational simplicity
- Next Steps
 - Revise the Interconnection Reactive Study Scope to reflect the desired control methodology of static VAr devices
 - Review the control practices of the existing IBRs

Feel free to reach out to discuss: <u>Jonathan.Rose@ercot.com</u>, <u>jackson.dubro@ercot.com</u>

