

Long-Term West Texas Export Special Study - Update

Shun Hsien (Fred) Huang

Regional Planning Group December 15, 2020

Methodology

Study Cases and Study Tools

Study Case Development

- Reliability and economic cases will be developed for the near-term 2023 and long-term 2030 assessments.
- Seed cases:
 - 2020RTP2023Min reliability case is used as the seed case for the 2023 and 2030 reliability assessment
 - 2020RTP2023 and 2020LTSA2030CT economic cases are used as the seed case for the economic assessment

Study Tools

- VSAT: to evaluate the West Texas export voltage stability constraint
- PSS/e: to evaluate the West Texas export dynamic stability constraint
- UPLAN: to assess the congestion and economic impact of tested and identified potential system improvements

Progress Update

Tasks	Description	Status
1	Study Case Developments	In Progress
2	2030CT Simulation and Improvement Identification	Not Started
3	2023MIN Simulation and Improvement Identification	Not Started
4	Roadmap Development	Not Started
5	Reports	Not Started

ERCOT plans to complete the study by Q2 2021

Notable Updates and Assumptions

Steady State Cases

- Synchronous generators are assumed off in West Texas
- Review and adjust reactive devices and voltage profile based on the system conditions
- New or projected generators are assumed to meet ERCOT voltage support requirements

Dynamic Cases

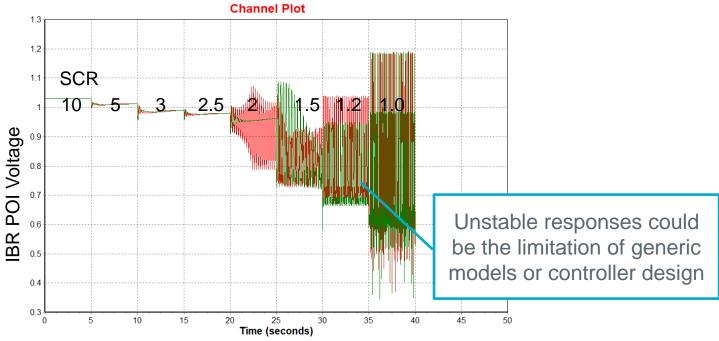
- New flat start cases will be prepared based on the developed steady state cases
- Dynamic models provided by Resource Entities will be used for the existing resources
- Assumed generic dynamic models and parameters will be used for new or projected IBRs

Economic Cases

Generation and transmission topology are consistent with reliability cases

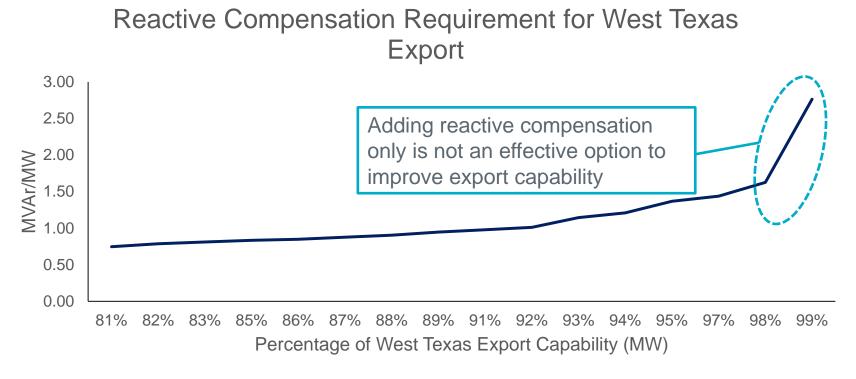
Preliminary Steady State Cases

Inverter-Based Resource Capacity and System Load


Scenarios	Wind (MW)	Solar (MW)	Battery (MW)	System Load (MW)
2023 ⁽¹⁾	~37 GW	~15.5 GW	~1.3 GW	~42.4 GW
2030(2)	~60 GW	~27.7 GW	~1.9 GW	~52 GW

⁽¹⁾ Include new generation resources that met Planning Guide 6.9(1) between April and November 2020. New added resources include ~5GW Solar, ~2GW Wind and 0.7 GW Battery. (2) Based on the 2020LTSA2030CurrentTrends economic seed case.

Preliminary Test: Assumed Generic Models for Inverter-based Resource (IBR)


System strength test for two assumed IBR generic models

Actual user-defined models may better reflect actual performance that cannot be presented in the generic model under weak grid conditions.

Preliminary Steady State Observations

Notes:

- 1. Horizontal axis: percentage of estimated WTX export voltage stability constraint on 16 345-kV circuits
- 2. Vertical axis: ratio of additional reactive compensation requirement for power transfer increase

Discussion and Next Steps

- Models are critical to assess the impact of the potential system improvement options
- ERCOT plans to host a transmission workshop in Q1 2021
 - To invite subject matter experts (SMEs) to present system improvement technologies that can help the West Texas transfer capability
 - Topics include HVAC, HVDC, reactive support, etc.
 - Please contact Shun Hsien (Fred) Huang, <u>shuang@ercot.com</u> if interested in presenting

