## 2020 EORM Study SAWG Presentation 10/26/2020

Prepared for Electric Reliability Council of Texas Kevin Carden



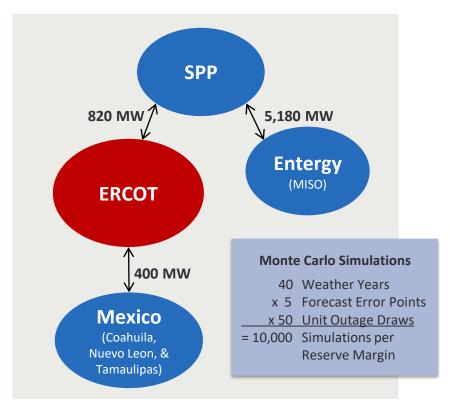
### Contents

- Overview
- Scenarios
- Renewable Accounting
- Current Results
- Storage Modeling



### Study Context: an Evolving Load and Resource Mix

|                                | 2018 Study Quantity<br>(2022 Study Year) | 2020 Study Quantity<br>(2024 Study Year) | Differences | Comments                                                                                                  |
|--------------------------------|------------------------------------------|------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|
|                                | (MW)                                     | (MW)                                     | (MW)        |                                                                                                           |
| Peak Load                      | 79,027                                   | 82,982                                   | 3,955       | 2.5% Annualized Load Growth, larger system corresponds to fewer reliability issues all else equal         |
| Demand Response                |                                          |                                          |             |                                                                                                           |
| LRs serving RRS                | 1,119                                    | 1,172                                    | 53          |                                                                                                           |
| 10-Minute ERS                  | 140                                      | 76                                       | -64         |                                                                                                           |
| 30-Minute ERS                  | 632                                      | 692                                      | 60          |                                                                                                           |
| TDSP Curtailment Programs      | 282                                      | 262                                      | -20         |                                                                                                           |
| Supply                         | 85,595                                   | 93,979                                   | 8,384       |                                                                                                           |
| <b>Conventional Generation</b> | 72,441                                   | 68,395                                   | -4,046      | CT capacity treated as variable given range of RMs                                                        |
| Hydro                          | 466                                      | 474                                      | 8           |                                                                                                           |
| Wind                           | 6,331                                    | 9,137                                    | 2,806       | +5.55 GW nameplate, adjusting the 2018 Study Year for current accounting value the delta is only +721 MW; |
| Solar                          | 2,708                                    | 12,161                                   | 9,453       | +12.4 GW nameplate, adjusting the 2018 Study Year for<br>current accounting value the delta is +36 MW;    |
| Storage                        | 0                                        | 0*                                       | 0           | -                                                                                                         |
| PUNs                           | 3,259                                    | 2,962                                    | -297        |                                                                                                           |
| Capacity of DC Ties            | 389                                      | 850                                      | 461         |                                                                                                           |
| Reserve Margin                 | 11.37%                                   | 16.34%                                   | 4.97%       | Treated as variable to determine MERM and EORM                                                            |


\*1,103 MW of nameplate capacity of storage is included in the 2024 study but given a 0% capacity credit in the reserve margin calculation Note: Energy Efficiency Programs are already removed from the modeled peak load and are not represented in the modeled load reduction programs (2,884 MW in 2024 Study Year)



### **Overview**

- Strategic Energy and Risk Valuation Model (SERVM) is a probabilistic multi-area reliability and economic modeling tool, representing:
  - Demand in ERCOT and external regions
  - Generation with randomized outages
  - Demand response of several types with differing availability and emergency or economic triggers
  - Emergency procedures that ERCOT triggers in shortage conditions
- Monte Carlo simulation of 20,000 different annual hourly-sequential simulations at each reserve margin
- Primary outputs are reported at each reserve margin, including:
  - Reliability metrics such as LOLE
  - Economic costs such as production costs, DR curtailment costs, and emergency intervention costs
  - Market results including prices and energy margins

#### Modeled Interconnection Topology



Sources:

http://www.ercot.com/content/wcm/key\_documents\_lists/90055/ERCOT\_DC\_Tie\_Operations\_Document.docx



| Scenario Name                    | Base Case<br>Assumption                                        | Alternate Scenario<br>Assumption                                                                                                                                     | Expected EORM<br>Impact                                       |  |
|----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| High Renewables<br>Penetration   | Only include Tier 1<br>wind and solar from<br>CDR              | Include some of the wind<br>and solar from the<br>interconnection queue that<br>has not met all<br>requirements for CDR (15<br>GW of new solar, 5 GW of<br>new wind) | Downward<br>pressure on prices<br>and therefore lower<br>EORM |  |
| Storage<br>Reference<br>Resource | Use Gas CT as reference resource                               | Use storage as reference resource. Simulate at high renewable penetration                                                                                            |                                                               |  |
| EFOR                             | Last 3 years used to<br>populate outage rates<br>for all units | Use class average EFORs<br>from 2018 study                                                                                                                           | 2018 outage rates<br>will produce a<br>lower EORM             |  |



# We will also run several non-model sensitivities to test the impact if key uncertainties on the economic and optimal reserve margins.

| Sensitivity                              | Base Case Assumption                     | Sensitivity Range                            |  |
|------------------------------------------|------------------------------------------|----------------------------------------------|--|
| Gross Cone/ATWACC                        | General merchant values                  | -10%/+25%                                    |  |
| VOLL                                     | \$9,000/MWh                              | \$5,000-\$30,000/MWh                         |  |
| Weather Weights of Load<br>Years         | Equal weight to all 40 weather years     | Only use last 15 years of<br>weather history |  |
| Forward Period for Capacity<br>Decisions | 4 years                                  | 0 years to 4 years                           |  |
| Economic Forecast<br>Uncertainty         | 4% under-forecast to 4%<br>over-forecast | Change weightings of<br>forecast scenarios   |  |



### Load Modeling Peak Load and Neighbor Diversity

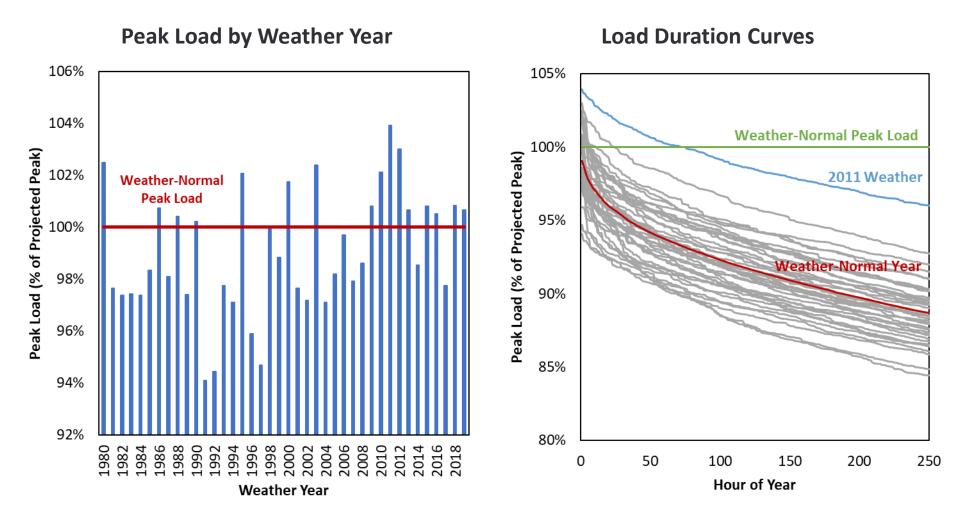
#### **Summer Peak Loads and Diversity**

Loads as used in Reserve Margin Accounting

|                             |      | ERCOT  | Entergy | SPP    | Mexico | Total   |
|-----------------------------|------|--------|---------|--------|--------|---------|
| Summer Peak Load Forecast   |      |        |         |        |        |         |
| Non-Coincident              | (MW) | 82,982 | 33,658  | 54,012 | 12,950 | 183,601 |
| Coincident                  | (MW) | 80,572 | 32,618  | 52,893 | 12,651 | 178,734 |
| At ERCOT Peak               | (MW) | 82,982 | 30,809  | 48,605 | 12,872 | 175,268 |
| Load Diversity              |      |        |         |        |        |         |
| At Coincident Peak          | (%)  | 2.99%  | 3.19%   | 2.11%  | 2.36%  | 2.72%   |
| At ERCOT Peak               | (%)  | 0.00%  | 9.25%   | 11.12% | 0.61%  | 4.75%   |
| Reserve Margin at Criterion |      |        |         |        |        |         |
| At Non-Coincident Peak      | (%)  | n/a    | 16.80%  | 12.00% | 15.00% | n/a     |
| At ERCOT Peak               | (%)  | n/a    | 27.60%  | 24.46% | 15.00% | n/a     |

Sources and Notes:

ERCOT load shapes for 2024 provided by ERCOT staff, table is consistent with peak loads used in reserve margin accounting (excluding any PRD or LR gross-up but including TDSP Energy Efficiency Programs.)


SPP and Entergy load shapes developed based on statistical relationships from 5 years of load data for Entergy and 6 years of load data for SPP (from FERC Form 714) and 40 years of weather data (from NOAA).

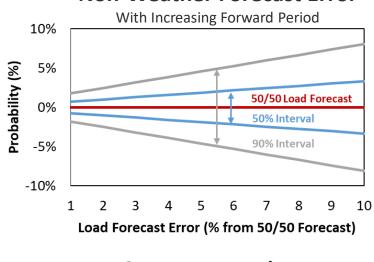
SPP wind capacity credit and reserve margin at non-coincident peak were derived from: https://www.spp.org/documents/58198/2017%20spp%20lole%20study%20report.pdf Entergy reserve margin at non-coincident peak was derived from: https://cdn.misoenergy.org/2020%20LOLE%20Study%20Report397064.pdf

Mexico load shape and forecast data were unavailable, assumed a representative 15% reserve margin above generation fleet from Ventyx and a load shape identical to ERCOT. SPP Peak Demand from the 2019 NERC LTRA <u>https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/NERC LTRA 2019.pdf</u>

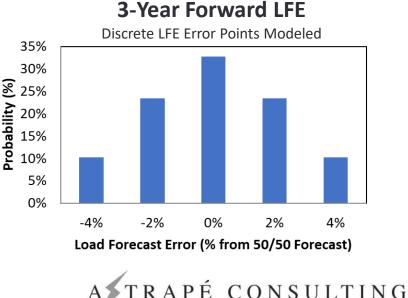


### Load Modeling Load Shapes and Weather Years



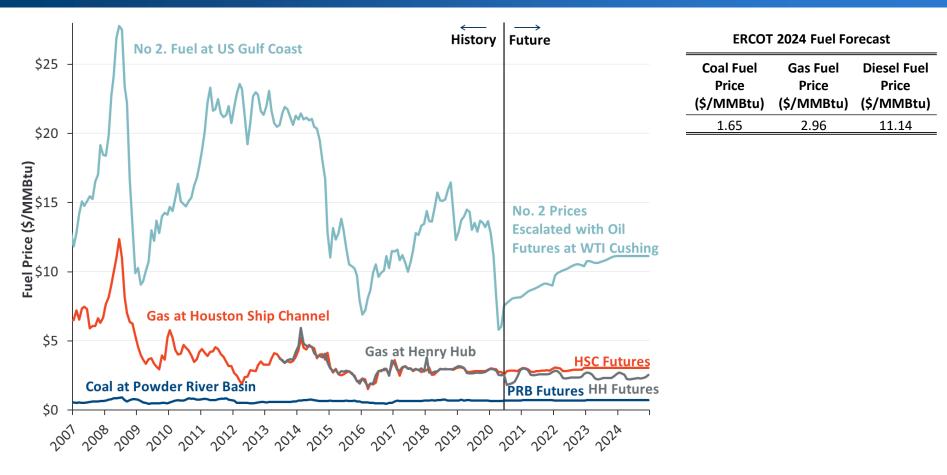

8

innovation in electric system planning


TRAPÉ CONSULTING

### Load Modeling Load Forecast Uncertainty and Forward Period

- Non-weather load forecast error increases with forward period:
  - Assume electric load growth increases at 40% the rate of GDP growth (approximately consistent with ERCOT forecast and national average)
  - Economic forecast uncertainty increases with forward period, consistent with uncertainty distribution around 28 years of CBO economic forecasts
- Modeling approach:
  - Assume resource decisions and reserve margin must be "locked in" 4 years forward, so realized forecast error is larger than if more short-term options were available
  - Sensitivity analysis examining impact of forward periods ranging from 1 to 5 years forward




#### **Non-Weather Forecast Error**



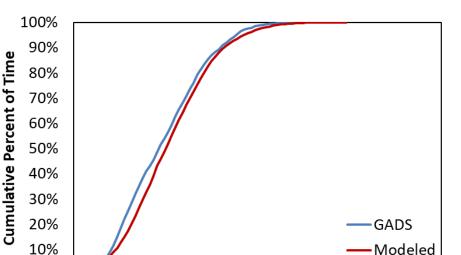
innovation in electric system planning

### Generation Resources Fuel Prices



Sources and Notes:

Historical and futures prices from Bloomberg, SNL Energy, and EIA.


Locational basis estimated using Ventyx delivered fuel price estimates in each region, escalated with inflation.

Diesel prices only apply for units in SPP, Mexico, and Entergy.



### Generation Resources Conventional Generation Outages

- Model individual unit outages stochastically, including:
  - Full Outages: mean time to fail, mean time to repair
  - Partial Outages: derate percentage, mean time to fail, mean time to repair
  - Startup Failure: probability of failure during startup
  - Maintenance Outages: average outage rate with random occurrence and limited scheduling flexibility
  - Planned Outages: average outage rate with known occurrence and substantial scheduling flexibility in fleet
- Distributions of outage parameters created from:
  - Historical GADS data provided by ERCOT for most of the fleet
  - Units without historical GADS data are linked to units with data by unit class and size
  - Calibrated to historical summer performance



Percent of System Capacity on Forced Outage

5%

0%

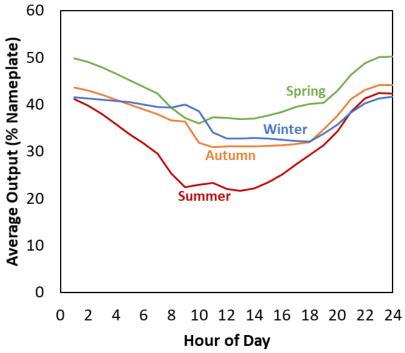
0%

#### System-Wide Forced Outages



10%

15%


### Wind

- 37,396 MW nameplate for 2024
- 40 years of hourly local wind shapes provided by ERCOT from AWS True Power
  - Aggregated operational local curves to system-wide
- 36.4% average capacity factor
- 29% panhandle wind/ 63% coastal wind/ 16% other wind capacity credit (consistent with CDR)

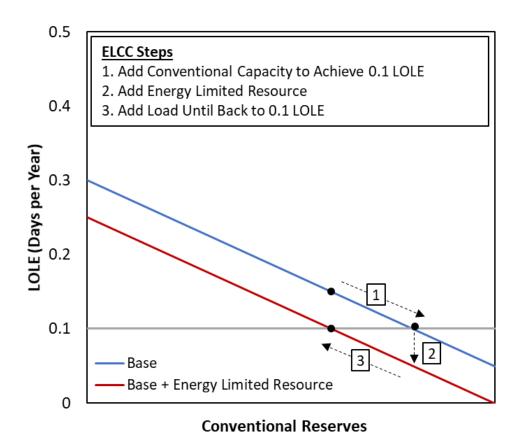
### Solar Photovoltaic

- 16,001 MW nameplate for 2024
- 40 years of hourly solar county-specific shapes provided by ERCOT
  - Aggregated operational local curves to system-wide
- 27.3% average capacity factor
- 76% capacity credit (consistent with CDR)





Sources and Notes:

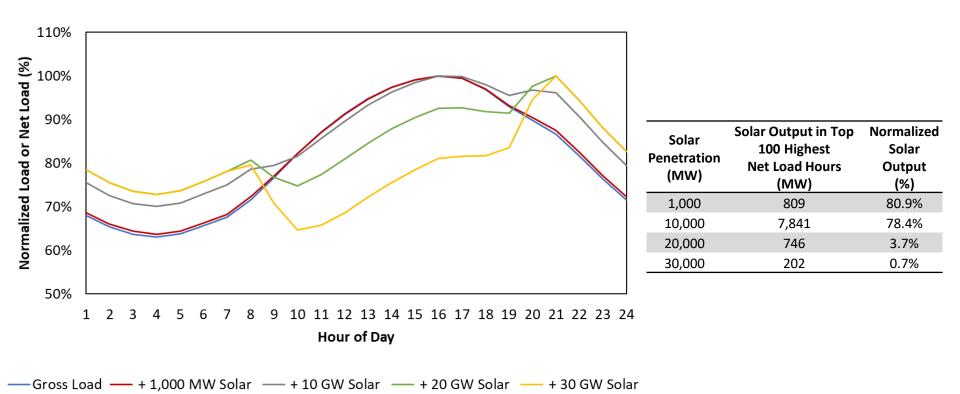

Average of 40 years' hourly wind profiles provided by ERCOT

A TRAPÉ CONSULTING

## **Renewable Accounting**



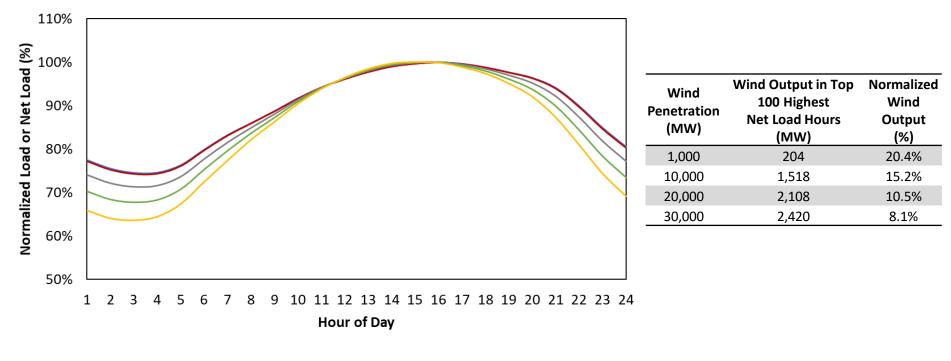
### **ELCC Methodology**




 Increasing renewable penetration results in declining ELCCs

 ELCC is intended to normalize for reliability contributions of nondispatchable or energy limited resources and maintain a static reserve margin

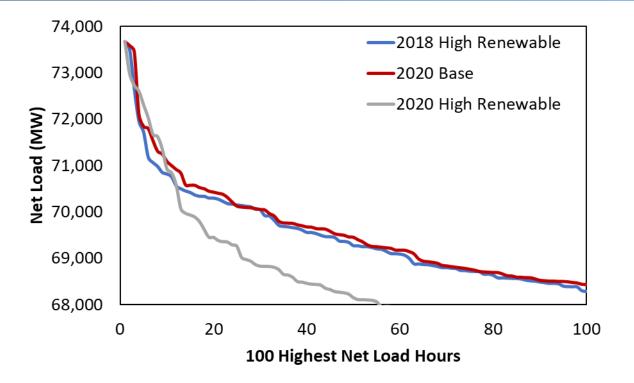



### Generation Resources Solar



- Solar ELCC declines due to shifting net load
- Average shapes when daily peak load is greater than 75,000 MW

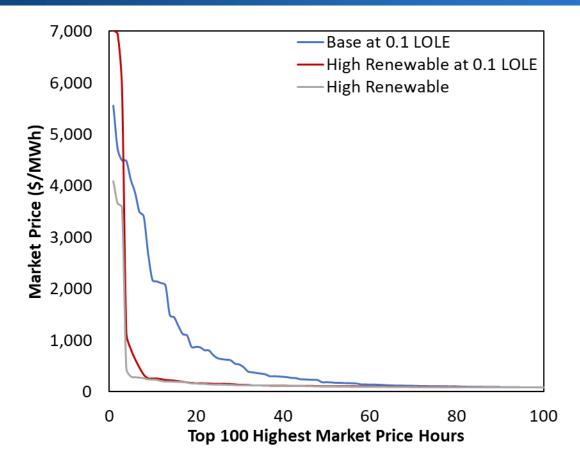



### Generation Resources Wind



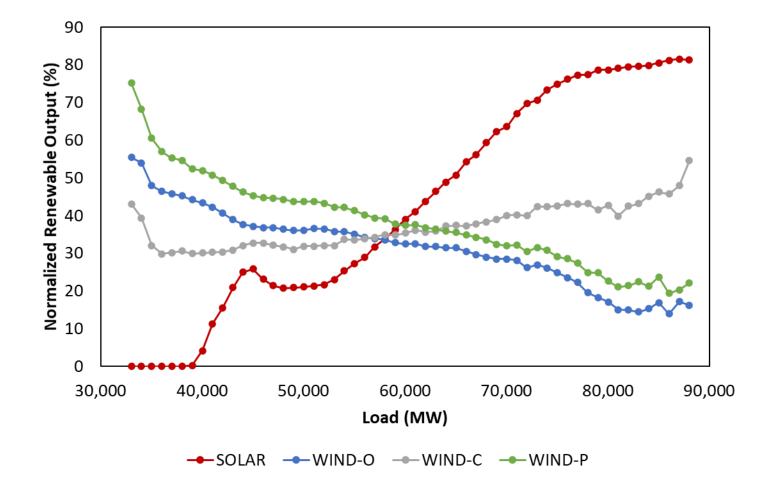
-Gross Load — + 1,000 MW Wind — + 10 GW Wind — + 20 GW Wind — + 30 GW Wind

Wind ELCC declines due to correlated low wind output






- 2020 Base Case is comparable to 2018 High Renewable Scenario
- 2020 High Renewable has steeper net load shape resulting in lower MERM


All net load shapes were normalized to the same 2020 base peak.





 Steeper net load and market price duration curve will produce the same reliability at the same reserve margin, but lower frequency of high-priced hours







### Generation Resources Marginal Resource Technology

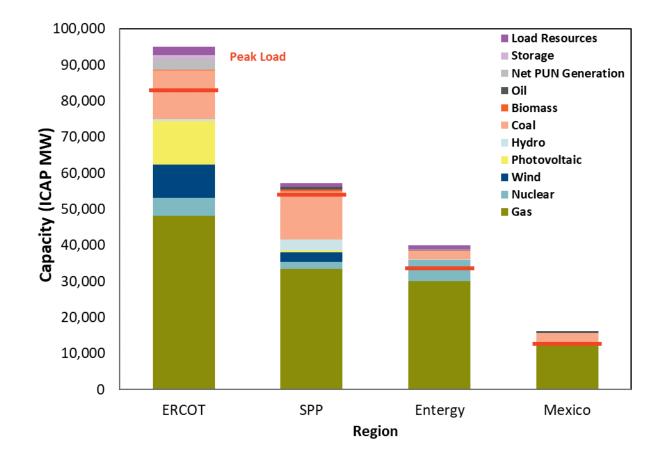
#### **CT Performance Characteristics**

|                     |            | Simple Cycle |
|---------------------|------------|--------------|
| Plant Configuration |            |              |
| Turbine             |            | GE 7HA.02    |
| Configuration       |            | 1 x 0        |
| Heat Rate (HHV)     |            |              |
| Base Load           |            |              |
| Non-Summer          | (Btu/kWh)  | 9,138        |
| Summer              | (Btu/kWh)  | 9,274        |
| Installed Capacity  |            |              |
| Base Load           |            |              |
| Non-Summer          | (MW)       | 371          |
| Summer              | (MW)       | 352          |
| Gross CONE          | (\$/kW-yr) | 93.5         |

*Note:* Based on ambient conditions of 92°F Max. Summer (55.5% Humidity) and 59°F Non-Summer.

#### Battery Storage Performance Characteristics

|                    |            | Battery Storage |
|--------------------|------------|-----------------|
| Installed Capacity |            |                 |
| Base Load          |            |                 |
| Non-Summer         | (MW)       | 100             |
| Summer             | (MW)       | 100             |
| Storage Capability | (Hours)    | 4               |
| Gross CONE         | (\$/kW-yr) | 147             |



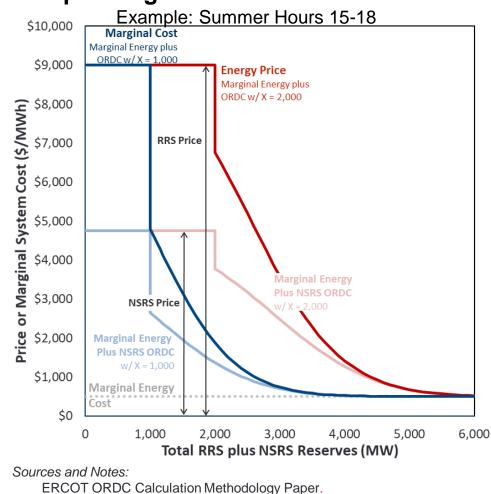

### Demand-Side Resources Cost and Modeling of Demand Resources

| <b>Resource Type</b>              | Quantity<br>(MW) | Modeling Approach                                                                                                | Marginal<br>Curtailment<br>Cost | Adjustments to ERCOT Load<br>Shapes                                             | Reserve Margin<br>Accounting                        |
|-----------------------------------|------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
| TDSP Programs                     | (10100)          |                                                                                                                  |                                 |                                                                                 |                                                     |
| Energy Efficiency                 | 2,884            | Not explicitly modeled                                                                                           | n/a                             | None<br>(ERCOT load shapes already<br>reduced for TDSP EE Programs)<br>None     | Load reduction                                      |
| Load Management                   | 262              | Emergency trigger at EEA Level 2                                                                                 | \$2,469                         | (ERCOT load shapes estimated<br>assuming no LM curtailments)                    | Load reduction                                      |
| Emergency Response Services (ERS) |                  |                                                                                                                  |                                 |                                                                                 |                                                     |
| 30-Minute ERS                     | 691              | Emergency trigger at EEA Level 1                                                                                 | \$1,372                         | None<br>(ERCOT load shapes estimated                                            | Load reduction                                      |
| 10-Minute ERS                     | 76               | Emergency trigger at EEA Level 2                                                                                 | \$2,469                         | assuming no ERS curtailments)                                                   | Load reduction                                      |
| Load Resources (LRs)              |                  |                                                                                                                  |                                 |                                                                                 |                                                     |
| Non-Controllable LRs              | 1,172            | Economically dispatch for RRS (most<br>hours) or energy (few peak hours).<br>Emergency deployment at EEA Level 2 | \$2,469                         | None<br>(ERCOT load shapes estimated<br>assuming negligible LR<br>curtailments) | Load reduction                                      |
| Controllable LR                   | 0                | Currently no controllable LRs modeled<br>in ERCOT                                                                | n/a                             |                                                                                 |                                                     |
| Voluntary Self-Curtailment        |                  |                                                                                                                  |                                 |                                                                                 |                                                     |
| 4 CP Reductions                   | 1,700            | Response modeled to match load gross<br>up. Same response modeled in all<br>reserve margins.                     | n/a                             | Load grossed up based on observed performance.                                  | None. Already<br>excluded from<br>reported peak loa |
| Price-Responsive Demand           | Variable         | Economic self-curtailment, but with<br>uncertain availability. Will vary by<br>reserve margin.                   | \$500 -<br>\$9,000<br>/MWh      | Load grossed up based on observed performance.                                  | None. Already<br>excluded from<br>reported peak loa |

Note: The marginal cost of the emergency DR is given by the prices on the <u>dark blue curve</u> corresponding to the reserve levels at the EEAs at which emergency DR is triggered. That assumes the blue curve reflects actual costs (with the red curve shifted right to boost resource adequacy) and that actions are taken at an economically rational point. Prices are set according to the red curve. We observed that modeled prices will tend to cluster around the EEA trigger points on the red curve since a range of net loads and corresponding emergency DR depbyments will stay on that shelf.

### System Summary Resource Mix



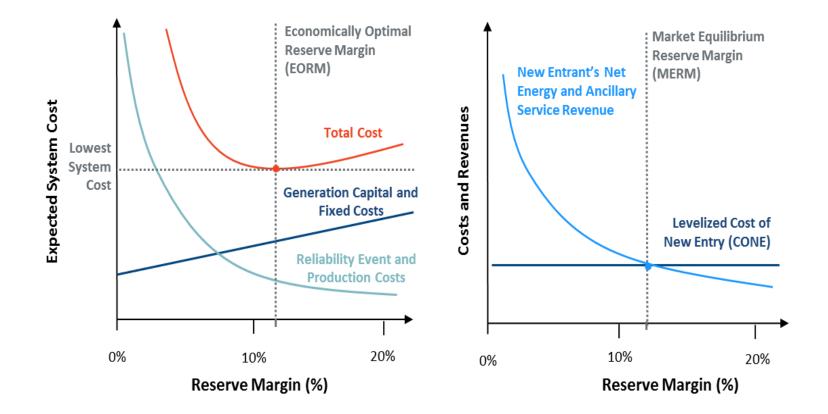



### Scarcity Conditions Operating Reserve Demand Curve

#### Implementation

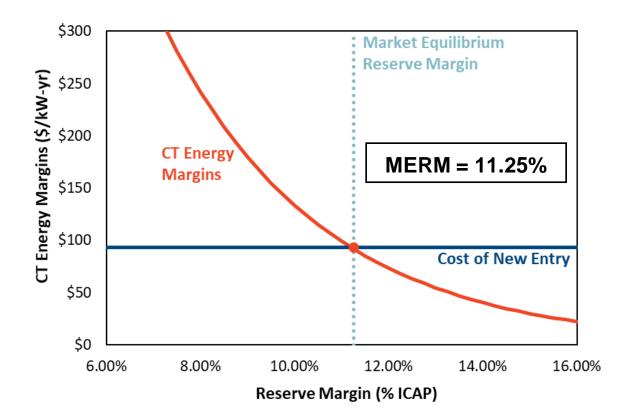
- All ORDC curves implemented (4 seasons, 6 times of day, 2 reserve types)
- Price-setting based on curve where X = 2,000 MW; marginal system cost assumes load shed at X = 1,000 MW
- Simplifications:
  - Assume PRC, Spin, and ORDC x-axis are all self-consistent
  - Do not scale ORDC curves each hour, instead calculate as if marginal energy were fixed at the emergency gen dispatch price of \$1,372/MWh
  - Assume non-spin is depleted before spin (i.e. 1-to-1 correspondence between the xaxes of Spin and Non-Spin ORDC curves)
  - Day-ahead commitment of spin is equal to the minimum of: (a) ERCOT requirement, and (b) reasonable min ORDC spin price of \$3/MWh (i.e. allow self-commitment to prevent very high prices during long conditions)

#### **Operating Reserve Demand Curves**



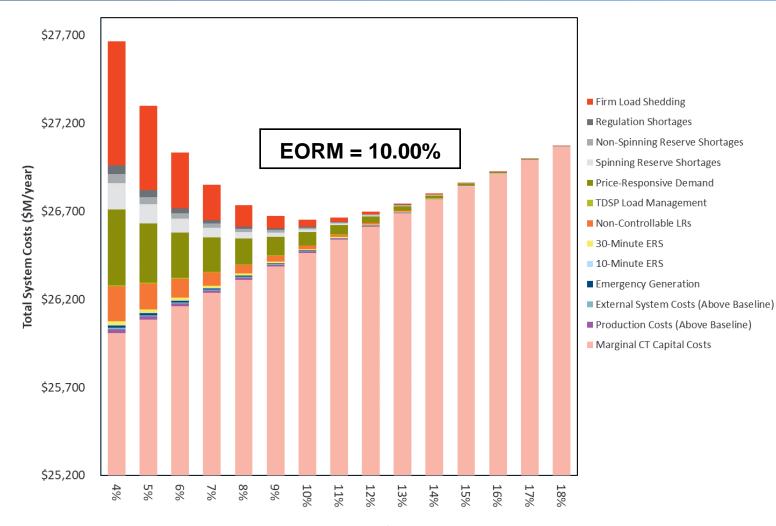

A TRAPÉ CONSULTING

## **Current Results**




### EORM and MERM

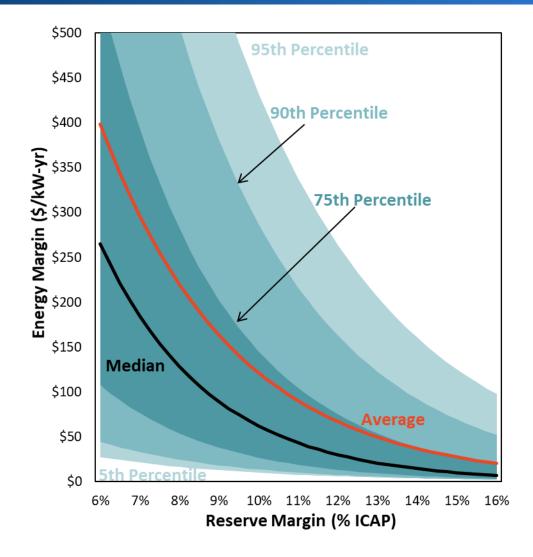





### Market Equilibrium Reserve Margin (MERM)

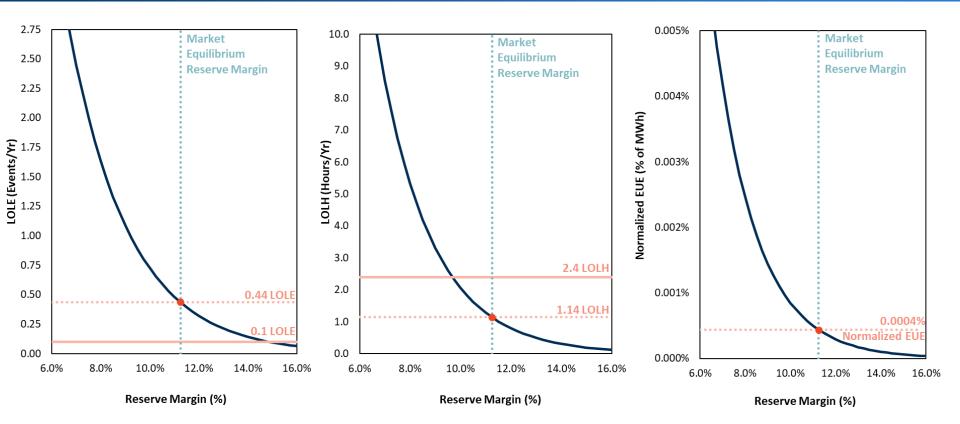





### **EORM Curve**

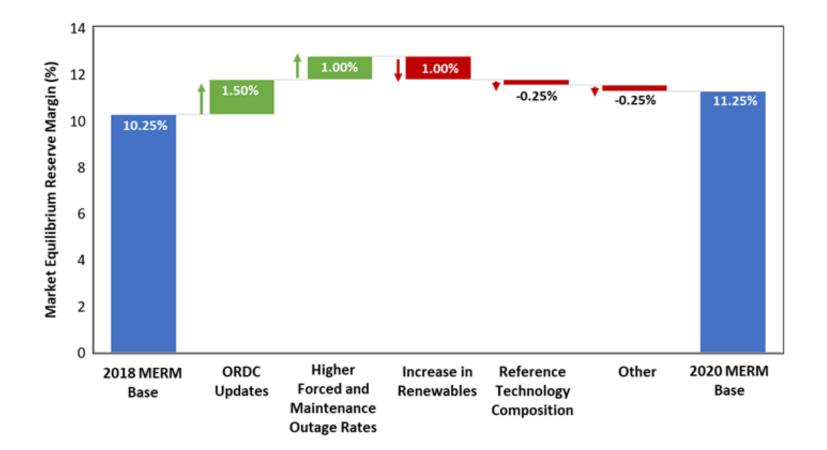


ERCOT Reserve Margin



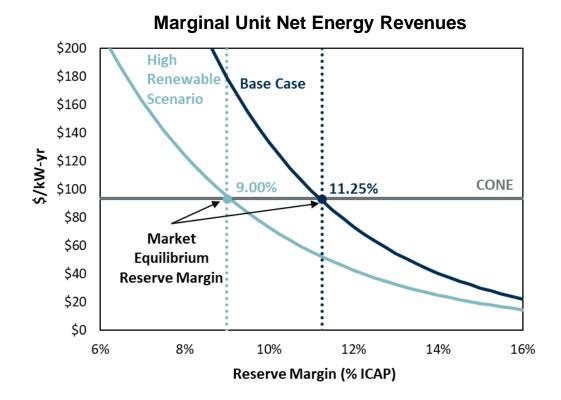

#### Percentile Distribution of Energy Price Forecast by Reserve Margin






### **Reliability Metrics**






### Base MERM Changes from 2018 to 2020 Study

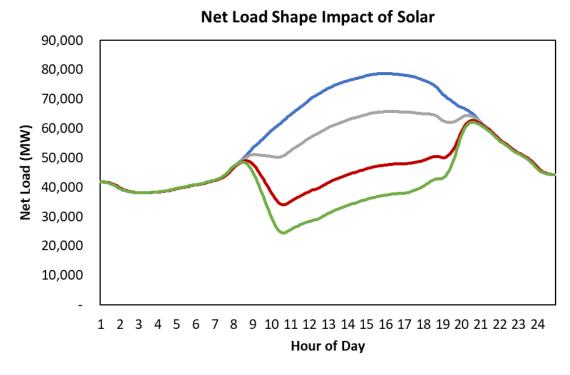




### **High Renewable Sensitivity**





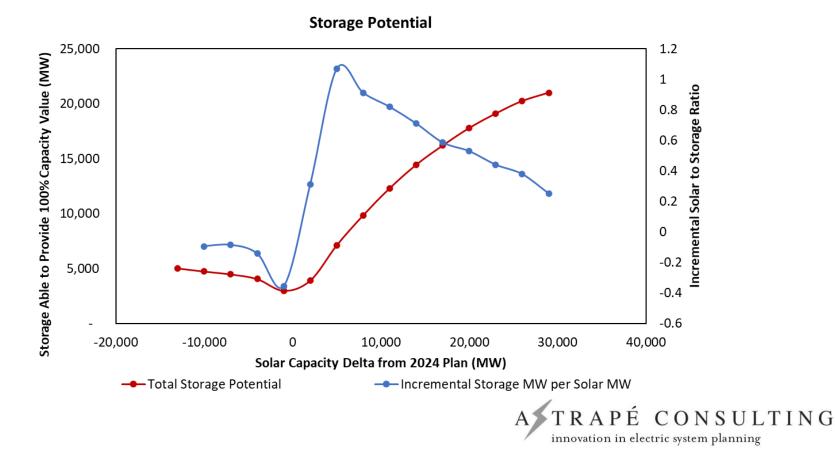

## **Storage Scenario**



### **Storage Scenario**

### Current 2024 net load shape is too flat to support much storage as capacity resources

- Solar additions up to 2024 have flattened the net load shape
- Future additions will steepen the net load shape, opening the door for storage to supply capacity value



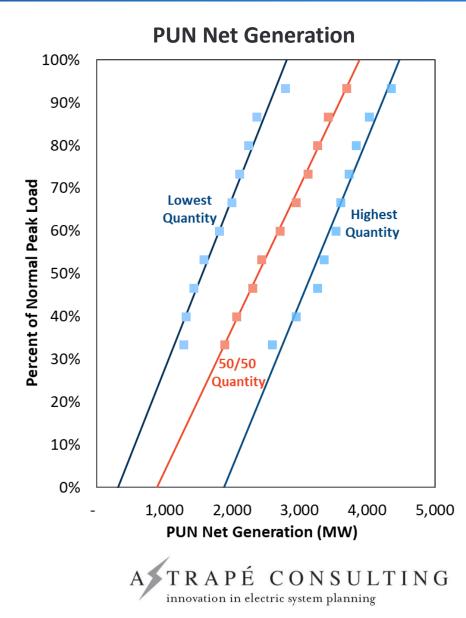

----Base (No Solar) -----2024 Projected Solar -----+15GW Solar -----+30GW Solar



### **Storage Scenario**

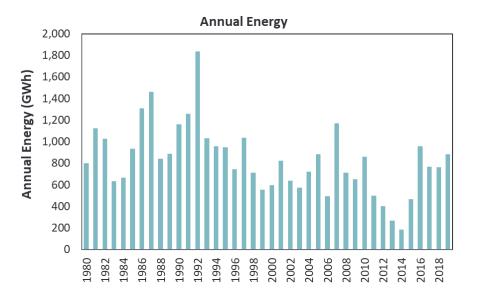
- With 2024 Fleet, <3,000 MW of 4-hour storage can supply full capacity value
  - Storage EORM/MERM curve will be simulated with the high renewable scenario which has the potential for 15+GW of storage to supply capacity value.

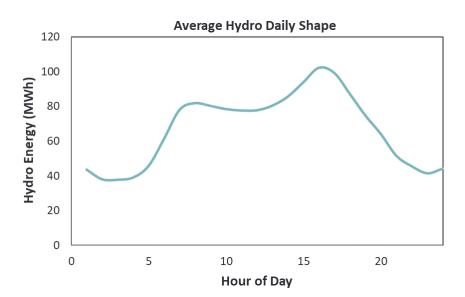



## **Backup Slides**



### Generation Resources Private Use Networks


#### Net Gen Supply Curve


- Modeled as probabilistic quantity of net output, with 10 different possible quantities at any given load level
- Expected quantity increases with load level, based on realized net generation levels at normalized load levels in 2012-2019

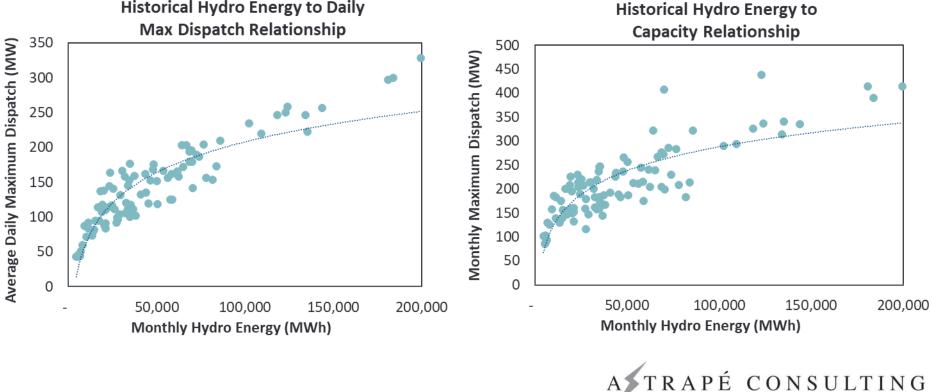


#### Generation Resources Hydroelectric

- 558.1 MW nameplate
- Characterized resources based on:
  - 8 years of hourly data from ERCOT
  - 40 years of monthly data from EIA 923
- Hydro resources modeled with different parameters each month:
  - Monthly total energy output
  - Daily maximum output
  - Daily minimum output
  - Monthly maximum output
- Energy is primarily scheduled to shave peak loads consistent with historical operations
- Unscheduled hydro capacity (monthly capacity minus output) counts toward RRS and ORDC x-axis






# **Generation Resources** Hydroelectric, continued

- Historical Hydro Energy to Daily Max Dispatch Relationship
  - Curve fit equation used to determine input for each month into SERVM for daily maximum output
  - Similar curve developed for daily minimum dispatch

Historical Hydro Energy to Daily

- Historical Hydro Energy to Capacity Relationship
  - Curve fit equation used to determine maximum capacity for each month
  - Emergency capacity of 49.25 MW modeled for drought conditions and 116.15 MW modeled for all other months

innovation in electric system planning



# Generation Resources Storage

The following assumptions were made for the storage resources:

- Economic Commitment and Dispatch
- Charges from the Grid
- Any Unit Without Provided Charging Capability was Assumed to Have a 4 Hour Storage Capability
- 85% Round Trip Efficiency



In general, we use the 2020 LTRA as the authoritative source, but use the following assumptions for including certain resource types:

- Switchable Units: include as internal resources, with the units that are committed off-system excluded from our model
- New Units: include starting in the LTRA-specified year (Note: we may exclude the some of these units with the lowest commercial probability if needed to reduce the system reserve margin to a low level)
- Retirements: exclude starting in the LTRA-specified year
- **Permanent Mothballs**: exclude from model



# Demand-Side Resources Emergency Response Service (ERS)

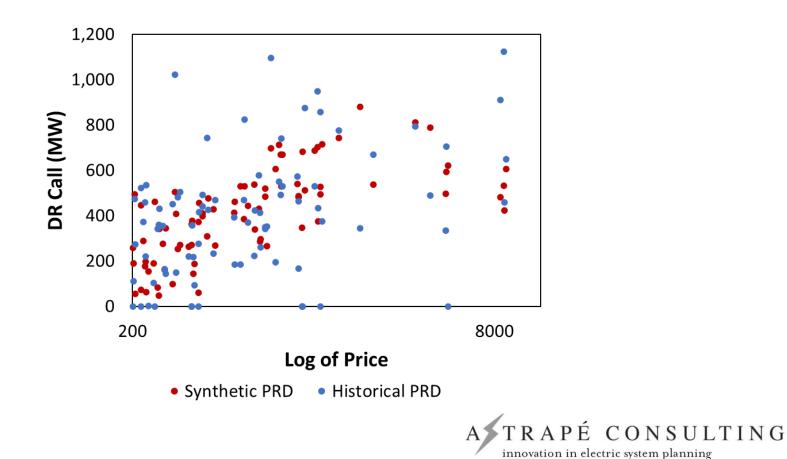
| Assumed ERS Quantities Available in 2024 |            |            |           |       |  |
|------------------------------------------|------------|------------|-----------|-------|--|
| Contract Period                          | Quantity   |            |           |       |  |
|                                          | 10-Min NWS | 30-Min NWS | 30-Min WS | Total |  |
|                                          | (MW)       | (MW)       | (MW)      | (MW)  |  |
| June - September                         |            |            |           |       |  |
| TP1: Weekdays HE 6 AM - 8 AM             | 86         | 767        |           | 853   |  |
| TP2: Weekdays HE 9 AM - 1 PM             | 91         | 820        |           | 911   |  |
| TP3: Weekdays HE 2 PM - 4 PM             | 90         | 780        | 26        | 896   |  |
| TP4: Weekdays HE 5 PM - 7 PM             | 76         | 666        | 26        | 767   |  |
| TP5: Weekdays HE 8 PM - 10 PM            | 81         | 784        |           | 865   |  |
| TP6: All Other Hours                     | 76         | 710        |           | 785   |  |
| October - January                        |            |            |           |       |  |
| TP1: Weekdays HE 6 AM - 9 AM             | 95         | 829        | 5         | 930   |  |
| TP2: Weekdays HE 10 AM - 1 PM            | 88         | 799        |           | 887   |  |
| TP3: Weekdays HE 2 PM - 4 PM             | 88         | 804        |           | 892   |  |
| TP4: Weekdays HE 5 PM - 7 PM             | 96         | 849        | 5         | 950   |  |
| TP5: Weekdays HE 8 PM - 10 PM            | 93         | 832        |           | 925   |  |
| TP6: Weekend and Holidays HE 6 AM - 9 AM | 66         | 746        | -         | 812   |  |
| TP7: Weekend and Holidays HE 4 PM - 9 PM | 66         | 742        | -         | 808   |  |
| TP8: All Other Hours                     | 67         | 729        |           | 795   |  |
| February - May                           |            |            |           |       |  |
| TP1: Weekdays HE 6 AM - 9 AM             | 96         | 843        | 5         | 945   |  |
| TP2: Weekdays HE 10 AM - 1 PM            | 89         | 833        |           | 922   |  |
| TP3: Weekdays HE 2 PM - 4 PM             | 87         | 834        |           | 921   |  |
| TP4: Weekdays HE 5 PM - 7 PM             | 94         | 877        | 5         | 976   |  |
| TP5: Weekdays HE 8 PM - 10 PM            | 93         | 851        |           | 945   |  |
| TP6: Weekend and Holidays HE 6 AM - 9 AM | 56         | 740        | -         | 795   |  |
| TP7: Weekend and Holidays HE 4 PM - 9 PM | 54         | 743        | -         | 796   |  |
| TP8: All Other Hours                     | 65         | 750        |           | 816   |  |

Sources and Notes:

Total available ERS MW for 2024 June-Sept. TP4 provided by ERCOT staff.

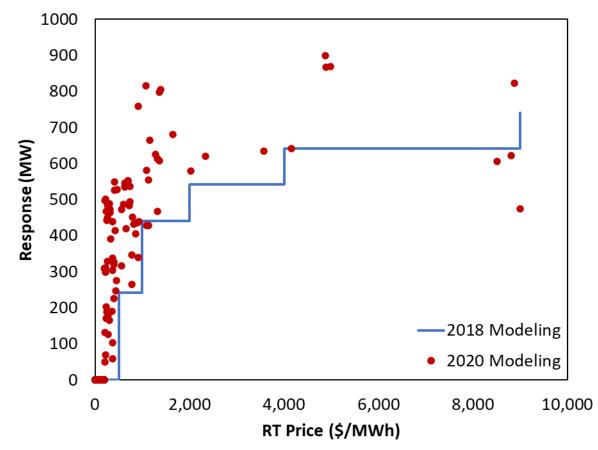
ERS 10-min and 30-min MW for other contract periods scaled proportionally to the 2024 LTRA summer quantity (767 MW), based on availability in 2020. Assume an 8-hour call limit applies to both product types, resources not callable outside contracted hours.




- Non-controllable LR magnitude varies by season and time of day
- Dispatched according to emergency operating procedures
  - Dispatches during EEA 2 events
  - Available reserves at 1,750 MW when dispatched
- Note: CDR quotes 1,172 MW LRS for 2024



## Demand-Side Resources Price-Responsive Demand (PRD)


#### **PRD in Modeling**

 2019 historical PRD response used to develop modeling inputs to replicate stochastic response as a function of price



### Demand-Side Resources Price-Responsive Demand (PRD)

 Stochastic representation in 2020 modeling versus discrete representation in 2018 modeling





# Fleet Summary Operating Reserves Capability

#### **Fleet-Wide Reserves Capability**

| Reserve Type                              | Fleet Capability | Notes                                                                         |
|-------------------------------------------|------------------|-------------------------------------------------------------------------------|
|                                           | ( <i>MW</i> )    | ( <i>MW</i> )                                                                 |
| Regulation Up (Equal to Reg Down)         |                  |                                                                               |
| Thermal Generation                        | 6,819            | Reg-capable units' 5-min ramp capability.                                     |
| Batteries                                 | 1,103            | Batteries can simultaneously self-schedule Reg Up + Reg Down.                 |
| Total                                     | 7,923            | Total Reg Up + Reg Down capability is approximately double this number.       |
| Responsive Reserve Service (RRS)          |                  |                                                                               |
| Thermal Generation (Excluding Quickstart) | 11,910           | Maximum capability is lower of: (a) 10-min ramp capability, or (b) HSL - LSL. |
| 10-Minute Quickstart                      | 0                |                                                                               |
| Hydrosynchronous Resources                | 245              |                                                                               |
| Non-Controllable Load Resources           | 1,172            |                                                                               |
| Batteries                                 | 1,103            |                                                                               |
| Total                                     | 14,430           |                                                                               |
| Non-Spinning Reserve Service (NSRS)       |                  |                                                                               |
| Thermal Generation (Excluding Quickstart) | 24,283           | Maximum capability is lower of: (a) 30-min ramp capability, or (b) HSL - LSL  |
| 10-Minute Quickstart                      | 0                |                                                                               |
| 30-Minute Quickstart                      | 5,206            |                                                                               |
| Non-Controllable Load Resources           | 0                | Allowed, but none currently provide.                                          |
| Batteries                                 | 1,103            |                                                                               |
|                                           | 30,592           |                                                                               |

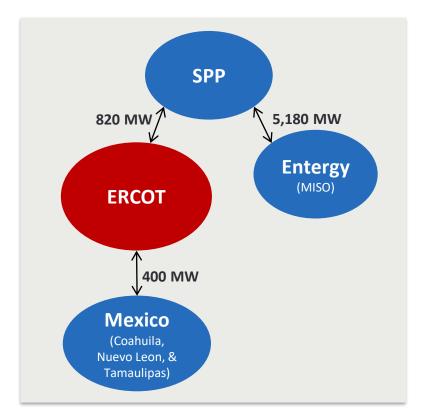
Sources and Notes:

Calculated from ramp rates and dispatch levels provided by ERCOT



### Scarcity Conditions Market Parameters

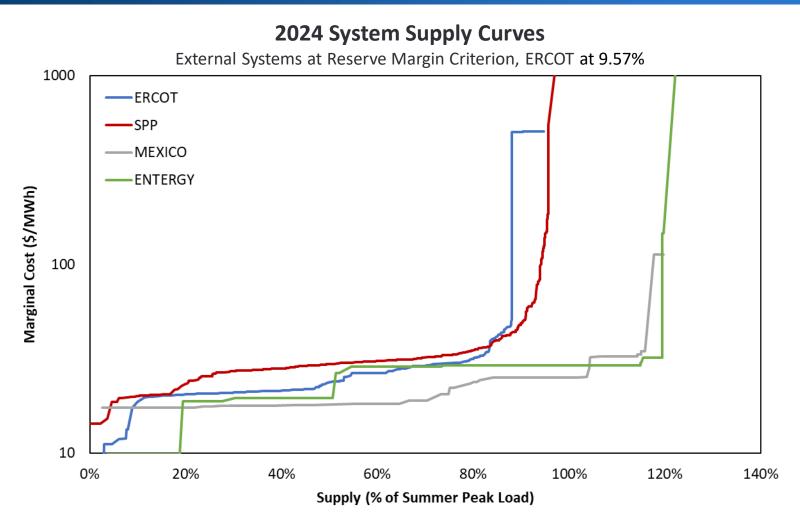
- Year: 2024
- Offer Cap:
  - <u>HCAP</u>: \$9,000 (VOLL for ORDC stays at \$9,000 even if PNM threshold is exceeded)
  - <u>LCAP</u>: \$2,000 (applies only to Power Balance Penalty Curve)
- Peaker Net Margin:
  - <u>Proxy Unit Strike Price</u>: 50 x Houston Ship Channel (LCAP is never lower than this number at current HSC futures prices)
  - <u>Threshold</u>: 3 x CT CONE = \$280,500/MW-year


Sources and Notes:

"PUC Rulemaking to Amend PUC SUBST.R. 25.505, Relating to Resource Adequacy in the Electric Reliability Council of Texas Power Region", PUCT, Approved 10/25/2017 Threshold listed above uses the Brattle CONE estimate (\$93.5/kW-yr).



# System Summary Intertie Availability


- We model total intertie capacity in line with ERCOT transmission documents
- Intertie availability at summer peak is based on historical availability consistent with the May 2020 CDR
  - The SPP-Entergy interface availability similarly modeled using a point forecast
  - Even if transmission is available, ERCOT may not be able to import in emergency if the external region is peaking at the same time



Sources: ERCOT Ties: http://www.ercot.com/content/wcm/key\_documents\_lists/90055/ ERCOT\_DC\_Tie\_Operations\_Document.docx SPP-Entergy: www.oasis.oati.com/SWPP/SWPPdocs/Interface\_Values.xls

> A TRAPÉ CONSULTING innovation in electric system planning

# System Summary System Supply Curves



Note: Renewable units not included, so depending on the hourly profile, the dispatch stacks could shift significantly.



# Scarcity Conditions Emergency Procedures and Marginal Costs

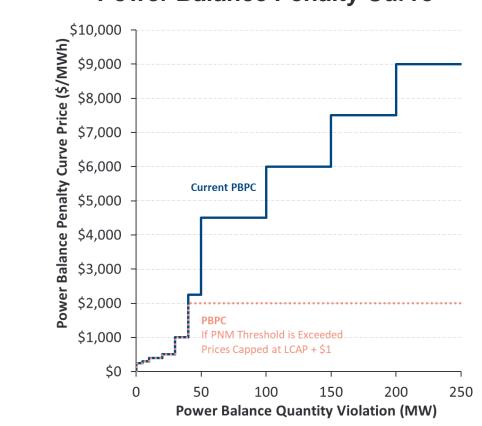
| Emergency<br>Level | Marginal<br>Resource    | Amount of Resource<br>(MW) | Trigger                     | Price                                                      | Marginal<br>System Cost |
|--------------------|-------------------------|----------------------------|-----------------------------|------------------------------------------------------------|-------------------------|
| n/a                | Generation              | Variable                   | Price                       | Approximately \$20 - \$250                                 | Same                    |
| n/a                | Imports                 | Variable                   | Price                       | Approximately \$20-\$250<br>Up to \$1,000 during load shed | Same                    |
| n/a                | Non-Spin Shortage       | 700                        | ORDC x-axis = 3,000 MW      | \$4,627 (from ORDC)*                                       | \$1,025*                |
| n/a                | Price-Responsive Demand | Variable                   | Price                       | \$500 - \$9,000                                            | Same                    |
| n/a                | Emergency Generation    | 469.8                      | ORDC x-axis = 2,300 MW      | \$5,850 (from ORDC)                                        | \$1,372                 |
| n/a                | PBPC                    | 200                        | Price                       | \$1,000 - \$9,000                                          | Same                    |
| EEA 1              | 30-Minute ERS           | 691**                      | Spin ORDC x-axis = 2,300 MW | \$5,850 (from ORDC)                                        | \$1,372                 |
| EEA1               | Spin Shortage A         | 550                        | Spin ORDC x-axis = 2,300 MW | \$7,492 (from ORDC)*                                       | \$1,856*                |
| EEA 2              | TDSP Load Curtailments  | 262                        | Spin ORDC x-axis = 1,750 MW | \$9,000 (from ORDC)                                        | \$2,469                 |
| EEA 2              | Load Resources in RRS   | 1,172***                   | Spin ORDC x-axis = 1,750 MW | \$9,000 (from ORDC)                                        | \$2,469                 |
| EEA 2              | 10-Minute ERS           | 76**                       | Spin ORDC x-axis = 1,750 MW | \$9,000 (from ORDC)                                        | \$2,469                 |
| EEA3               | Spin Shortage B         | 750                        | Spin ORDC x-axis =1,750 MW  | \$9,000 (from ORDC)                                        | \$3,562*                |
| EEA 3              | Load Shed               | Variable                   | Spin ORDC x-axis = 1,000 MW | VOLL = \$9,000                                             | Same                    |

\*: Price reflects the average price between the upper and lower level of each resource

\*\*: 76 10NWS + 666 30NWS + 26 30WS = 767 total ERS (CDR Value). Both NWS and WS are included in the 30-Minute ERS

\*\*\*: 60% of RRS




# Scarcity Conditions Power Balance Penalty Curve

#### Implementation

- Using PBPC curve as currently set by ERCOT; no expectation for the curve to change in upcoming years.
- Treat as a Reg Up shortage when called (can set price)
- Incur marginal system cost equal prices implied by PBPC
- Model only first 200 MW
- Highest price capped at LCAP + \$1 if Peaker Net Margin (PNM) threshold is exceeded

Note: Since we model PBPC as a 200 MW resource (when none exists), we need to recognize that dispatching the PBPC depletes actual regulation reserves more than our accounting implies. So the model has to shed load at 1200 MW apparent reserves instead of 1000. And the x-axis for determining ORDC prices is given by reserves + any PBPC deployment.

#### **Power Balance Penalty Curve**



Sources and Notes:

"Setting the Shadow Price Caps and Power Balance Penalties in Security Constrained Economic Dispatch," ERCOT 2017, p. 22.

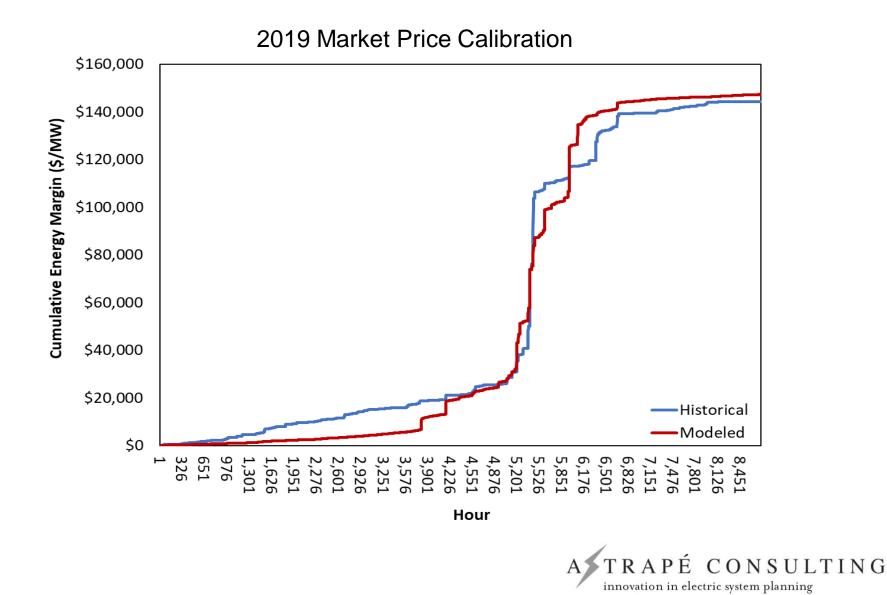


# Scarcity Conditions Reserve Requirements

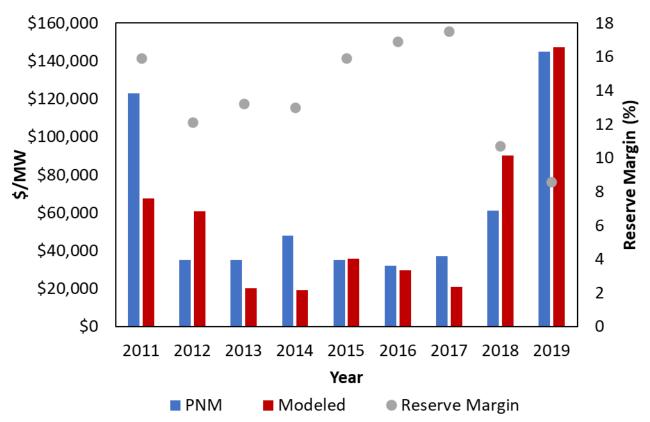
#### Reserves

- Day-ahead commitments to meet ERCOT Reg Up, Reg Down, and RRS requirements (NSRS assumed non-binding)
- Shortages relative to requirement only occur when insufficient resources exist
- Modeled RRS increased to account for ERCOT Contingency Reserve Service (ECRS)

#### Self-Commitments


- Also model economic self-commitments if ORDC spin axis price is very high (still refining approach)
- Estimate as quantity of online capacity needed to bring total daily ORDC spin payments down to historical RRS price levels in non-peak conditions
- SERVM will commit at least this quantity unless insufficient supply exists

#### **Reserves Requirements and ORDC Self-Commitments**


|                            | ERCOT Day-Ahead Procurements |                            |                       |                        | ORDC Spin X-Axis              |                                                 |
|----------------------------|------------------------------|----------------------------|-----------------------|------------------------|-------------------------------|-------------------------------------------------|
| Season and Hours of<br>Day | Regulation<br>Up<br>(MW)     | Regulation<br>Down<br>(MW) | RRS<br>10 min<br>(MW) | NSRS<br>30 min<br>(MW) | Min from<br>RRS + Reg<br>(MW) | Min w/<br>Economic Self-<br>Commitments<br>(MW) |
| Winter                     |                              |                            |                       |                        |                               |                                                 |
| 1-2 and 23-24              | 203                          | 310                        | 2998                  | 1215                   | 3201                          | 4800                                            |
| 3-6                        | 341                          | 232                        | 2972                  | 1325                   | 3313                          | 4800                                            |
| 7-10                       | 393                          | 271                        | 2844                  | 1994                   | 3237                          | 4800                                            |
| 11-14                      | 242                          | 292                        | 2844                  | 1619                   | 3086                          | 4800                                            |
| 15-18                      | 311                          | 207                        | 2844                  | 1651                   | 3155                          | 4800                                            |
| 19-22                      | 232                          | 314                        | 2868                  | 1664                   | 3100                          | 4800                                            |
| Spring                     |                              |                            |                       |                        |                               |                                                 |
| 1-2 and 23-24              | 225                          | 400                        | 2990                  | 1137                   | 3215                          | 4800                                            |
| 3-6                        | 305                          | 238                        | 3013                  | 1346                   | 3318                          | 4800                                            |
| 7-10                       | 429                          | 259                        | 2888                  | 1877                   | 3317                          | 4800                                            |
| 11-14                      | 364                          | 237                        | 2790                  | 1551                   | 3154                          | 4800                                            |
| 15-18                      | 287                          | 243                        | 2753                  | 1297                   | 3040                          | 4800                                            |
| 19-22                      | 285                          | 400                        | 2790                  | 1586                   | 3075                          | 4800                                            |
| Summer                     |                              |                            |                       |                        |                               |                                                 |
| 1-2 and 23-24              | 209                          | 485                        | 2467                  | 1163                   | 2676                          | 4800                                            |
| 3-6                        | 246                          | 199                        | 2508                  | 1358                   | 2754                          | 4800                                            |
| 7-10                       | 453                          | 209                        | 2435                  | 1738                   | 2888                          | 4800                                            |
| 11-14                      | 499                          | 193                        | 2324                  | 1614                   | 2823                          | 4800                                            |
| 15-18                      | 268                          | 262                        | 2314                  | 1295                   | 2582                          | 4800                                            |
| 19-22                      | 202                          | 448                        | 2324                  | 1188                   | 2526                          | 4800                                            |
| Fall                       |                              |                            |                       |                        |                               |                                                 |
| 1-2 and 23-24              | 199                          | 370                        | 2849                  | 1186                   | 3048                          | 4800                                            |
| 3-6                        | 280                          | 203                        | 2837                  | 1451                   | 3117                          | 4800                                            |
| 7-10                       | 411                          | 238                        | 2766                  | 1747                   | 3177                          | 4800                                            |
| 11-14                      | 374                          | 248                        | 2661                  | 1642                   | 3035                          | 4800                                            |
| 15-18                      | 301                          | 234                        | 2628                  | 1332                   | 2929                          | 4800                                            |
| 19-22                      | 217                          | 389                        | 2675                  | 1260                   | 2892                          | 4800                                            |

A TRAPÉ CONSULTING innovation in electric system planning

#### **SERVM Simulation Setup and Benchmarking**



### **SERVM Simulation Setup and Benchmarking**



Peaker Net Margin by Year

