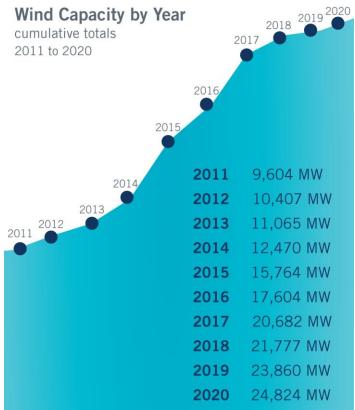


Impact of increased wind resources in the ERCOT region

Since 2000, installed wind capacity in the ERCOT region has increased from just over 100 MW to more than 24,000 MW as of June 2020. West Texas has the largest amount of installed wind capacity in the ERCOT region with 13,300 MW. The remaining capacity is spread across the Panhandle (4,400 MW), coastal (3,400 MW), north (1,300 MW) and south (2,300 MW) load zones. There is 82,000+ MW of installed capacity in ERCOT.

New challenges and opportunities

The changing resource mix in the ERCOT region has presented unique challenges for grid operators. In response, ERCOT has evolved its technical requirements and market rules, as well as developed new analytical and monitoring tools, to manage a diverse resource mix while maintaining system reliability and market efficiency.


The grid operator procures operational reserves called Ancillary Services to ensure reserve capacity is available to address variability that cannot be covered by the five-minute energy market. ERCOT continues to focus on evolving its Ancillary Services to ensure the grid operator remains efficient, technology-neutral and takes advantage of the capabilities of newer resources.

Renewable forecasting accuracy improves with new tools and increased experience

With a significant amount of renewable power in the ERCOT region, the grid operator devotes considerable time and resources to continually improve the performance of both wind and solar power forecasting. Improved forecasting, in general, has the potential to reduce the amount of operational reserves needed to ensure a reliable electric system.

Wind records (as of June 2020):

- Instantaneous wind record 21,144 MW on May 7, 2020 at 8:43 p.m.
- Wind penetration record 59.3% on May 2, 2020 at 2:10 a.m.

ERCOT currently uses two wind forecasting vendors and one solar forecast vendor to ensure the grid operators receive the most accurate forecast data. This checks-and-balances system helps improve the reliability and flexibility of the forecast process. In 2018, ERCOT also added intra-hour wind forecasting to help grid operators better prepare for potential ramps in wind generation at every five-minute interval, which aligns with ERCOT's system dispatch intervals.

Pricing impacts in the ERCOT wholesale market

Generally speaking, system-wide prices in the ERCOT wholesale market tend to be lower when more wind generation is being produced. When there are no reliability or operational considerations, the ERCOT market generally uses the lowest-cost resources to meet consumer demand. Since wind (and solar) resources do not incur any fuel costs when producing electricity, they typically offer into the ERCOT market at lower prices relative to other resources that must pay for the fuel used to generate power.

For wind developers, federal tax credits also are a contributing factor, even allowing the wind resources to make offers at negative prices. However, low and/or negative offers are not limited to any particular resource, and it is not uncommon for thermal generators to submit negative prices to decrease their chances of being dispatched below their desired or capable levels.

The current ERCOT market rules related to pricing allow resources to offer energy at prices as low as negative \$250/MWh and as high as \$9,000/MWh.

Negative pricing

Market prices tend to go negative when there is low consumer demand and the thermal generators that have chosen to remain online cannot be backed down further to allow the available, lower-cost wind generation to serve consumer demand. In situations like this, some wind generators will be curtailed to balance generation with load. In these cases, since wind is the marginal generation, it sets the market price, which may be low or negative. In 2019, system-wide negative pricing occurred for 58.5 hours, or less than one percent of the year.

Wind contributions during summer peak periods

The final summer Seasonal Assessment of Resource Adequacy Report (SARA) released in May 2020 forecasts wind to contribute around 6,641 during summer peak demand periods.

