

ERCOT Market Education

Settlements 301

Module 6: Real-Time Operations

Purpose of Real-Time Operations

- Manage reliability
 - Match generation with demand
 - Operate transmission system within established limits
- Operate the system at least cost

Security Constrained Economic Dispatch

Locational Marginal Prices (LMPs)

- Produced by SCED
- Combined with Reserve Price Adders to form Real-Time Settlement Point Prices

LMPs are location-specific. Reserve Price Adders represent the value of reserves ERCOT-wide.

Real-Time Reserve Price Adders

- Produced outside of SCED
- Two flavors:
 - **RTORPA** On-line Reserves
 - **RTOFFPA** Off-line Reserves

... for each SCED interval

RTORPA	Real-Time On-Line Reserve Price Adder
RTOFFPA	Real-Time Off-Line Reserve Price Adder

Real-Time Reserve Price Adders

... for each 15-minute interval

RTRSVPOR	Real-Time Reserve Price for On-Line Reserves
RTRSVPOFF	Real-Time Reserve Price for Off-Line Reserves

ERCOT added a Reliability Deployment Price Adder on June 1, 2015

- Reliability deployments suppress Real-Time prices
- Price Adder reverses price suppression

Reliability deployments include RUC, Emergency Response Service (ERS), RMR and Load Resources

Reliability Deployment Price Adder

RTORDPA – Captures impact of reliability deployments during SCED Interval

... for each 15-minute interval

RTORDPA	Real-Time On-Line Reliability Deployment Price Adder
RTRDP	Real-Time On-Line Reliability Deployment Price

Settlement Point Prices:

Average (LMPs)

+ RTRSVPOR

> + RTRDP

> > ... for each 15-minute interval

The way the LMPs are averaged varies by Settlement Point

Real-Time

Real-Time Activities

- Imbalances
- Base Point Deviations
- Other odds & ends

Settlement of PTP Obligations purchased in the DAM

Real Time Ancillary Service Settlements

Revenue Neutrality

Fundamentals of Real–Time Energy Imbalances

Who:	All QSEs that have Generation, Load, Trades, and DAM purchases or sales at any Settlement Point	
What:	A charge or payment for the imbalance of Energy at a Settlement Point	
Why:	To pay or charge a QSE for their injection or withdrawal at a Settlement Point	

The basic idea at any Settlement Point:

Now, we simply fill in the appropriate elements for each Settlement Point

Real-Time Energy Imbalance at a Hub:

At a Hub

RTSPP is used to settle financial transactions

RTSPP	Real-Time Settlement Point Price	
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves	
RTRDP	Real-Time On-Line Reliability Deployment Price	

Real-Time Energy Imbalance at a Load Zone:

ercot 🖓

At a Load Zone,

RTSPP is used to settle financial transactions

RTSPP	Real-Time Settlement Point Price	
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves	
RTRDP	Real-Time On-Line Reliability Deployment Price	

At a Load Zone,

RTSPPEW is used to settle physical energy consumption

RTSPPEW	Real-Time Settlement Point Price Energy-Weighted
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves
RTRDP	Real-Time On-Line Reliability Deployment Price

ercot 😓

Real-Time Energy Imbalance at a Resource Node:

At a Resource Node,

RTSPP is used to settle financial transactions

RTSPP	Real-Time Settlement Point Price	
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves	
RTRDP	Real-Time On-Line Reliability Deployment Price	

ercot 😓

At a Resource Node,

RTRMPR is used to settle physical energy production

RTRMPR	Real-Time Resource Meter Price	
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves	
RTRDP	Real-Time On-Line Reliability Deployment Price	

ercot 🖓

A QSE has Trades, DAM bids or DAM offers at a Hub

A QSE has Generation, Load, Trades, DAM bids or DAM offers at a Load Zone

A QSE has Generation, Trades, DAM bids or DAM offers at a Resource Node

QSE3

- 8MW DAM Energy Sale (2MWh)
- 12 MW DAM Energy Purchase (3MWh)
- Settlement Point Price is \$40/MWh at Hub1

(-1) * Price * (Supplies – Obligations)

(-1) * \$40/MWh * (3MWh - 2MWh) = -\$40

	QSE Load
CR	R

Supplies		Obligations	
DAEP	DAM Energy Purchase	DAES	DAM Energy Sale
RTQQEP	Real-Time QSE to QSE Energy Purchase (Trade)	RTQQES	Real-Time QSE to QSE Energy Sale (Trade)

QSE Load

CRR

QSE3

- 8MW DAM Energy Sale (2MWh)
- 12 MW DAM Energy Purchase (3MWh)
- Settlement Point Price is \$40/MWh at Hub1

74]}

RTEIAMT _{q, p} = (-1) * **RTSPP** _p * {(DAEP _{q, p} * $\frac{1}{4}$)) + (**RTQQEP** _{q, p} * $\frac{1}{4}$) - (**DAES** _{q, p} * $\frac{1}{4}$) - (**RTQQES** _{q, p} * $\frac{1}{4}$)}

$$-$40 = (-1) * $40/MWh * {(12MW * \frac{1}{4}) + (0MW * \frac{1}{4})}$$

/4) — (UIVIVV

ercot 5

Refer to your Settlements Workbook

In a small group, respond to the questions that relate to Scenario #RT1.

You have 5 minutes to complete your questions.

If you cannot complete all questions, don't worry – all questions will be reviewed as a class.

A QSE has Trades, DAM bids or DAM offers at a Hub

A QSE has Generation, Load, Trades, DAM bids or DAM offers at a Load Zone

A QSE has Generation, Trades, DAM bids or DAM offers at a Resource Node

At a Load Zone a QSE may have:

- Metered Load
- Non-Modeled Generation
- Trades
- DAM Bids & DAM Offers

If a QSE has	The QSE will receive
Net Supply	Payment
Net Obligation	Charge

Don't forget: Load Zone has two prices

Translated into a Settlement Equation,

$$\begin{array}{l} \textbf{RTEIAMT}_{q, p} = (-1) * \{ [\textbf{RTSPP}_{p} * [(\textbf{DAEP}_{q, p} * \frac{1}{4}) + (\textbf{RTQQEP}_{q, p} * \frac{1}{4}) \\ & - (\textbf{DAES}_{q, p} * \frac{1}{4}) - (\textbf{RTQQES}_{q, p} * \frac{1}{4})]] \\ & + [\textbf{RTSPPEW}_{p} * (\textbf{RTMGNM}_{q, p} - \textbf{RTAML}_{q, p})] \} \end{array}$$

Supplies		Obligations	
DAEP	DAM Energy Purchase	DAES	DAM Energy Sale
RTQQEP	Real-Time QSE to QSE Energy Purchase (Trade)	RTQQES	Real-Time QSE to QSE Energy Sale (Trade)
RTMGNM	Real-Time Metered Generation Non-Modeled	RTAML	Real-Time Adjusted Metered Load

Real-Time Energy Imbalance at a Load Zone

ien & Loar

CRR

QSE4

• Has a 12MW DAM Energy Purchase (3MWh)

- Purchased 20MW through a Trade (5MWh)
- Has Load at LZ3 of 10MWh
- The RTSPP is \$100/MWh at LZ3
- The RTSPPEW is \$101/MWh at LZ3

ercot 5

Refer to your Settlements Workbook

In a small group, respond to the questions that relate to Scenario #RT2.

You have 10 minutes to complete your questions.

If you cannot complete all questions, don't worry – all questions will be reviewed as a class.

A QSE has Trades, DAM bids or DAM offers at a Hub

A QSE has Generation, Load, Trades, DAM bids or DAM offers at a Load Zone

A QSE has Generation, Trades, DAM bids or DAM offers at a Resource Node

At a Resource Node A QSE may have:

- Metered Generation
- Trades
- DAM Bids & DAM Offers

If a QSE has	The QSE will receive
Net Supply	Payment
Net Obligation	Charge

Don't forget: Resource node has multiple prices

If all Generation Sites were simple ...

Real-Time Energy Imbalance at a Resource Node =

But in reality ...

Many Generation Sites are complex

- Multiple generators per meter
- Multiple owners
- Load and generation
- Combined Cycle Resources

ERCOT uses a single methodology to settle all Generation Sites

ercot

Introducing Net Metering ...

Real-Time Energy Imbalance at a Resource Node =

ercot \$

Splitting Percentage: GSPLITPER

- QSE's per Resource share of Total Site Payment
- Calculated from SCADA telemetry

Total Site Payment: NMSAMTTOT

- For all Resources at Site
- For all QSEs at Site

GSPLITPER	Generation Resource SCADA Splitting Percentage
NMSAMTTOT	Net Metering Site Amount Total
RESREV	Resource Share Revenue Settlement Payment for QSE

ercot

RTRMPR	Real-Time Resource Meter Price	
MEB	Metered Energy at Bus	
Real-Time Energy Imbalance at a Resource Node

QSE1

- Has one Resource with 60% of the generation at this site
- The metered energy at Bus 1 is 10MWh
- The metered energy at Bus 2 is 20MWh
- The Real Time Resource Meter Price is \$30/MWh at both Bus 1 & Bus 2.

Total Site Payment: NMSAMTTOT = ∑ (RTRMPR * MEB) = \$30/MWh * (10MWh + 20MWh) = \$900

QSE1 RESREV = GSPLITPER * NMSAMTTOT

= 60% * \$900

= \$540

Don't forget: The Resource Node can have other transactions

RTEIAMT _{q, p} = (-1) * {
$$\sum_{r}$$
 (**RESREV** _{q, r}) + **RTSPP** _p * [(**DAEP** _{q, p} * ¹/₄)
+ (**RTQQEP** _{q, p} * ¹/₄) - (**DAES** _{q, p} * ¹/₄) - (**RTQQES** _{q, p} * ¹/₄)] }

Supplies		Obligations	
DAEP	DAM Energy Purchase	DAES	DAM Energy Sale
RTQQEP	Real-Time QSE to QSE Energy Purchase (Trade)	RTQQES	Real-Time QSE to QSE Energy Sale (Trade)
RESREV	Resource Share Revenue Settlement Payment for QSE		

ercot 5

Refer to your Settlements Workbook

In a small group, respond to the questions that relate to Scenario #RT3.

You have 5 minutes to complete your questions.

If you cannot complete all questions, don't worry – all questions will be reviewed as a class.

Volumetric determinants for Real-Time Energy Imbalance:

- **RESMEB**_q = **GSPLITPER** \bigstar \sum **MEB** for Generation Site
- **RNIMBAL**_a = MWh Imbalance for all transactions at Resource Node
- $LZIMBAL_{q}$ = MWh Imbalance for all transactions at Load Zone
- **HBIMBAL**_a = MWh Imbalance for all transactions at Hub

For information only; not used in Settlements

RESMEB	Resource Share of total Metered Energy at Bus for QSE
RNIMBAL	Resource Node Energy Imbalance per QSE
LZIMBAL	Load Zone Energy Imbalance per QSE
HBIMBAL	Hub Energy Imbalance per QSE

		Resource Node	
Bill Determinant	Description	Logical Resource Node	Physical Resource Node
RTEIAMT	Real Time Energy Imbalance	X	
DAES	Day Ahead Energy Sales	X (3PO)	
GSPLITPER	Generation Unit Splitting Percentage	X	

RTEIAMT	Real Time Energy Imbalance	Х
DAEP	Day Ahead Energy Purchase	X
DAES	Day Ahead Energy Sales	X (Energy only)
RTQQEP	Real Time QSE to QSE Purchase	X
RTQQES	Real Time QSE to QSE Sale	X

ercot 🖓

Fundamentals of Payment for DC Tie Import

Who:	A QSE that has a DC Tie import
What:	A Payment for the Energy that is imported into the ERCOT grid through a DC Tie
Why:	When a QSE brings Power into the ERCOT grid they need to receive a payment for it

A QSE Schedules a DC Tie to import power into ERCOT area

DC Tie Import Payment

• A QSE Schedules a DC Tie to import energy into ERCOT area

• The QSE receives a payment for the injection of energy

DC Tie Import Payment

A QSE1

- Schedules 100 MW import on DC Tie one
- The Settlement Point Price is \$50/MWh at DCTIE1

RTDCIMPAMT
$$_{q, p} = (-1) * RTSPP_{p} * (RTDCIMP_{q, p} * \frac{1}{4})$$

$$5-1250 = (-1) * $50 * (100MW * \frac{1}{4})$$

Fundamentals of Real–Time Ancillary Service Imbalances

Who:	All QSEs that have Resource Capacity available to ERCOT during Real-Time
What:	A charge or payment based on the imbalance between available Capacity and Ancillary Service Reserves
Why:	To make Resources indifferent to the utilization of their capacity for energy or Ancillary Service reserves

The Basic Idea:

Calculated ERCOT-wide per QSE

Real-Time Ancillary Service Imbalance Overview

<u>For Generation</u> <u>Resources:</u>

ercot 😓

Real-Time Ancillary Service Imbalance Overview

ercot 🖓

Ancillary Service Imbalance Details:

RTASOLIMB_{*q*} = **RTOLCAP**_{*q*} – [Online Capacity already reserved]

Online Capacity in Real-Time:

 $RTASOLIMB_q = RTOLCAP_q - [Online Capacity already reserved]$

Online Capacity in Real-Time:

RTASOLIMB_q = **RTOLCAP**_q – [Online Capacity already reserved]

$\begin{aligned} \mathsf{RTASOLIMB}_{q} &= \mathsf{RTOLCAP}_{q} - [(\mathsf{RTASRESP}_{q} * \frac{1}{4}) - \mathsf{RTASOFF}_{q} \\ &- \mathsf{RTRUCNBBRESP}_{q} - \mathsf{RTCLRNSRESP}_{q} - \mathsf{RTRMRRESP}_{q}] \end{aligned}$

RTASRESP	Real-Time Ancillary Service Supply Responsibility
RTASOFF	Real-Time Ancillary Service Schedule for the Off-Line Generation Resource
RTRUCNBBRESP	Real-Time RUC Ancillary Service Supply Responsibility in Non-Buy-Back hours
RTCLRNSRESP	Real-Time Controllable Load Resource Non-Spin Responsibility
RTRMRRESP	Real-Time Ancillary Service Supply Responsibility for RMR Units

Ancillary Service Imbalance Details:

RTASOFFIMB_{*q*} = **RTOFFCAP**_{*q*} – [Offline Capacity already reserved]

Offline Capacity in Real-Time:

RTASOFFIMB_{*q*} = **RTOFFCAP**_{*q*} – [Offline Capacity already reserved]

Offline Capacity in Real-Time:

RTASOFFIMB_{*q*} = **RTOFFCAP**_{*q*} – [Offline Capacity already reserved]

Offline Capacity in Real-Time:

Putting it all back together ...

RTASIAMT _q = (-1) * [(RTASOLIMB _q * RTRSVPOR) + (RTASOFFIMB _q * RTRSVPOFF)]

RTASIAMT	Real-Time Ancillary Service Imbalance Amount
RTASOLIMB	Real Time Ancillary Service On-Line Reserve Imbalance
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves
RTASOFFIMB	Real Time Ancillary Service Off-Line Reserve Imbalance
RTRSVPOFF	Real-Time Reserve Price for Off-Line Reserves

A QSE has On-Line Reserves in Real-Time

A QSE has Off-Line Reserves in Real-Time

Real-Time Ancillary Service Imbalance

QSE1

- One Generation Resource online
- HSL is 200 MW (50MWh for 15 minutes)
- Metered Generation is 40 MWh
- No Ancillary Service commitments
- · No other Resources available within the hour
- On-line Reserve Price is \$20/MWh
- Off-line Reserve Price is \$5/MWh

RTASIAMT_q = (-1) * [(RTASOLIMB_q * RTRSVPOR) + (RTASOFFIMB_q * RTRSVPOFF)]

RTASIAMT_q = (-1) * [(RTASOLIMB_q * RTRSVPOR) + (RTASOFFIMB_q * RTRSVPOFF)] = (-1) * [(10MWh * \$20/MWh) + (0 * \$5/MWh)] = -\$200

A QSE has On-Line Reserves in Real-Time

A QSE has Off-Line Reserves in Real-Time

Real-Time Ancillary Service Imbalance

QSE4

- No Resources online
- One Generation Resource offline and available within the hour
- HSL is 100 MW (25MWh for 15 minutes)
- Entire Resource is reserved for Non-Spin
- · No other Resources available within the hour
- On-line Reserve Price is \$20/MWh
- Off-line Reserve Price is \$5/MWh

RTASIAMT_q = (-1) * [(RTASOLIMB _q * RTRSVPOR) + (RTASOFFIMB _q * RTRSVPOFF)]

 $\begin{aligned} \textbf{RTASOLIMB}_{q} &= \textbf{RTOLCAP}_{q} - [\text{Capacity already reserved}] \\ &= \textbf{0} - [(\textbf{RTASRESP} * \frac{1}{4}) - \textbf{RTASOFF}] \\ &= \textbf{0} - [(100\text{MW} * \frac{1}{4}\text{h}) - 25\text{MWh}] \\ &= \textbf{0} \text{ MWh} \end{aligned}$

 $\begin{aligned} \textbf{RTASOFFIMB}_{q} &= \textbf{RTOFFCAP}_{q} - [\text{Reserved Capacity}] \\ &= \textbf{RTOFFNSHSL} - [\textbf{RTASOFF}] \\ &= 25\text{MWh} - [\textbf{25MWh}] \\ &= 0 \text{ MWh} \end{aligned}$

RTASIAMT_q = (-1) * [(RTASOLIMB_q * RTRSVPOR) + (RTASOFFIMB_q * RTRSVPOFF)] = (-1) * [(0 * \$20/MWh) + (0 * \$5/MWh)] = \$0

ercot 💝

ercot 5

Refer to your Settlements Workbook

In a small group, respond to the questions that relate to Scenario #RT4.

You have 10 minutes to complete your questions.

If you cannot complete all questions, don't worry – all questions will be reviewed as a class.

Real-Time Activities

- Imbalances
- Base Point Deviations
- Other odds & ends

Fundamentals of Real–Time Reliability Deployment Ancillary Service Imbalances

Who:	All QSEs that have Resource Capacity available to ERCOT during Reliability Deployments in Real-Time
What:	A charge or payment based on the imbalance between available Capacity and Ancillary Service Reserves
Why:	To make Resources indifferent to the utilization of their capacity for energy or Ancillary Service reserves

A QSE has On-Line Reserves in Real-Time ercot 🖓

Real-Time Reliability Deployment AS Imbalance

Had a Real-Time Ancillary Service Online Reserve Imbalance

RTRDASIAMT	Real-Time Reliability Deployment Ancillary Service Imablance Amount
RTASOLIMB	Real Time Ancillary Service On-Line Reserve Imbalance
RTRDP	Real-Time On-Line Reliability Deployment Price

Fundamentals of Base Point Deviation Charge

Who:	QSEs that have Resources that do not follow Base Points as dictated by SCED
What:	A charge for over generation or under generation – May not receive this charge when helping frequency
Why:	The Resource did not follow Dispatch Instructions and Ancillary Services deployments within defined tolerances
Base Point Deviation Charge

- Resource did not follow Dispatch Instructions and Ancillary Services Deployments within defined tolerances
- Tolerances
 - ± 5% or ± 5MW, whichever is greater
 - + 10% for Intermittent Renewable Resources (when curtailed)

Base Point Deviation Charge

- Exclusions
 - No charge during a Frequency deviation greater than 0.05 Hz if the QSEs deviation helps frequency
 - No charge for any intervals with Responsive Reserve deployments

Base Point Deviation Charge

- Exemptions
 - RMR Units
 - Qualifying Facilities (QFs) that do not submit Energy Offer Curves
 - Quick Start Generation Resources (QSGRs) exempt for the first Settlement Interval in which they are deployed

Determining Basepoint Deviation Charges

ERCOT compares Adjusted Aggregated Base Points to the Time-Weighted Telemetered Generation.

Calculating Adjusted Aggregated Base Point

Resource did not follow Dispatch Instructions and OVER Generated

Resource did not follow Dispatch Instructions and UNDER Generated

- Resource did not follow Dispatch
 Instructions and OVER Generated
- The Over Generation is outside of the 5% or 5 MW tolerance

• QSE is charged:

Settlement Point Price * the MW above Tolerance

If system frequency dipped below 59.95 Hz during the settlement interval, then the QSE would not be charged.

QSE1 unit 5

- Adjusted Aggregated Base Point of 40MW
- Time Weighted Telemetered Generation of 12MWh (Operated at 48MW)
- Tolerances are 5% or 5MW
- Settlement Point Price is \$20/MWh at RN5

Base Point Deviation Charge

- = Price * (Generation 1/4 h * Max (AABP + 5% or AABP + 5MW))
- = \$20/MWh * (12MWh 1/4h * Max (42MW or 45MW))
- = \$20/MWh * (12MWh 11.25MWh)

= \$15

Translated into Settlement Equations,

OGEN = Max
$$\left(0, \left(\text{TWTG} - \frac{1}{4} * \text{Max}\left((1 + \text{K1}) * \text{AABP}, (\text{AABP} + \text{Q1})\right)\right)\right)$$

BPDAMT _{q, r, p}	Base Point Deviation Amount
OGEN	Over Generation Volume
TWTG _{q, r, p}	Time Weighted Telemetered Generation
AABP _{q, r, p}	Adjusted Aggregated Base Point
PR1	Minimum price for over-generation, \$20.
K1	The percentage tolerance for over-generation, 5%.
Q1	The MW tolerance for over-generation, 5 MW.

Gen

QSE1 unit 5

- Adjusted Aggregated Base Point of 40MW
- Time Weighted Telemetered Generation of 12MWh (Operated at 48MW)
- Tolerances are 5% or 5MW
- Settlement Point Price is \$20/MWh at RN5

BPDAMT = Max (PR1, RTSPP) * OGEN
OGEN = Max
$$\left[0, \left[TWTG - \frac{1}{4} * Max \left[(1 + K1) * AABP, (AABP + Q1) \right] \right] \right]$$

OGEN = Max (0, (12MWh – ¼h * Max (42 MW, 45MW))) = 0.75 MWh BPDAMT = Max (\$20/MWh, \$20/MWh) * OGEN = \$15

Key Differences between Intermittent Renewable Resources (IRRs) & Conventional Resources

- **IRR must be Curtailed**
- Curtailment Flag
- IRR must be Over-Generating
- Telemetered Generation
- Instructed Base Point

Wider tolerance for deviation from Base Point

83

When are IRRs exposed to deviation charges?

	IRR output <u>within</u> 10% acceptable range	IRR output <u>exceeds</u> 10% acceptable range
Curtailment Flag is not set	No Charge	No Charge
Curtailment Flag <u>is</u> set	No Charge	<u>Charge</u>

Translated into Settlement Equations,

If SBPBHDLFLAG = 1, then
BPDAMT = Max (PR1, RTSPP) * OGENIRR
OGENIRR = Max
$$\left(0, \left(\text{TWTG} - \frac{1}{4} * \text{AABP} * (1 + \text{KIRR})\right)\right)$$

SBPBHDLFLAG	SCED Base Point Below HDL FLAG
BPDAMT _{q, r, p}	Base Point Deviation Amount
OGENIRR	Over Generation Volume per IRR Generation Resource
TWTG q, r, p	Time Weighted Telemetered Generation
AABP _{q, r, p}	Adjusted Aggregated Base Point
PR1	Minimum price for over-generation, \$20.
KIRR	The percentage tolerance for IRRs, 10%.

ercot 5

Refer to your Settlements Workbook

In a small group, respond to the questions that relate to Scenario #RT5.

You have 5 minutes to complete your questions.

If you cannot complete all questions, don't worry – all questions will be reviewed as a class.

Resource did not follow Dispatch Instructions and OVER Generated

Resource did not follow Dispatch Instructions and UNDER Generated

- Resource did not follow Dispatch Instructions and UNDER Generated
- The Under Generation is outside of the 5% or 5 MW tolerance

• QSE is charged:

Settlement Point Price * the MW below Tolerance

If system frequency rose above 60.05 Hz during the settlement interval, then the QSE would not be charged.

QSE4 unit 8

- Adjusted Aggregated Base Point of 40MW
- Time Weighted Telemetered Generation of 8MWh (Operated at 32MW)
- Tolerances are 5% or 5MW
- Settlement Point Price is -\$20/MWh at RN8

Base Point Deviation Charge

- = (-1) * Price * (¹/₄h * Min (AABP 5% or AABP 5MW) Generation)
- = (-1) * -\$20/MWh * (1/4 h * Min (38MW or 35MW) 8MWh)
- = (-1) * -\$20/MWh * (8.75MWh 8MWh)

= \$15

Translated into Settlement Equations,

BPDAMT = (-1) * Min (**PR2**, **RTSPP**) * Min(1, **KP**) * UGEN

UGEN = Max
$$\left[0, \left(Min\left((1 - K2) * \frac{1}{4} \text{ AABP}, \frac{1}{4} (\text{ AABP} - Q2)\right) - TWTG\right)\right]$$

BPDAMT _{q, r, p}	Base Point Deviation Amount
UGEN	Under Generation Volume
TWTG _{q, r, p}	Time Weighted Telemetered Generation
AABP _{q, r, p}	Adjusted Aggregated Base Point
PR2	Minimum price for under-generation, -\$20.
K2	The percentage tolerance for under-generation, 5%.
Q2	The MW tolerance for under-generation, 5 MW.
KP	Settlement Point Price coefficient, (1.0, for now)

QSE4 unit 8

- Adjusted Aggregated Base Point of 40MW
- Time Weighted Telemetered Generation of 8MWh (Operated at 32MW)
- Tolerances are 5% or 5MW
- Settlement Point Price is -\$20/MWh at RN8

$$BPDAMT = (-1) * Min (PR2, RTSPP) * Min(1, KP) * UGEN$$
$$UGEN = Max \left[0, \left[Min \left[(1 - K2) * \frac{1}{4} AABP, \frac{1}{4} (AABP - Q2) \right] - TWTG \right] \right]$$

UGEN = Max (0, Min (9.5MWh, 8.75MWh) – 8MWh) = 0.75MWh BPDAMT = (-1) * Min (-\$20/MWh, -\$20/MWh) * Min (1, 1) * UGEN = \$15

E.

Who:	QSEs that have load
What:	Distributes the funds collected from Base Point Deviation Charges.
Why:	To keep ERCOT revenue neutral

Charges for Base Point Deviations are collected

- Resources Over or Under Generated
- ERCOT charges the QSEs representing the Resources

- Sum Base Point Deviation charges for the interval
- Calculate each QSE's Load Ratio Share
- Pay each QSE their portion of the revenue

For interval one ERCOT charged for deviation

- Total Charges \$255
- QSE 5 has thirty percent of Load
- QSE 5 is paid for 30 percent of the \$255

$$-76.50 = (-1) * 255 * 0.30$$

LABPDAMT _q	Load-Allocated Base Point Deviation Amount
BPDAMTTOT	Base Point Deviation Amount Total
LRS _q	Load Ratio Share

Real-Time Settlement of PTP Obligations purchased in DAM Different of PTP Descriptions purchased Description of PTP Obligations Settled in Real-Time

II.

Who:	QSEs that have purchased PTP obligations in the DAM
What:	A Charge or Payment based on Real-Time Congestion
Why:	To Hedge the Cost of congestion in Real-Time

ercot 😓

A QSE buys a PTP obligation in the DAM

• A QSE buys a PTP obligation in the Day-Ahead Market.

- The Price is the Difference between the RTSPP of the Source and Sink
- If Sink price is higher, the QSE is paid
- If Source price is higher, the QSE is charged

- QSE3 bought 40 MW of PTP obligations in the Day-Ahead Market.
- RT Settlement Point Prices during the hour

Interval	Source	Sink
0415	\$17	\$21
0430	\$17	\$22
0445	\$16	\$21
0500	\$15	\$21

ercot 😓

• QSE3 receives a payment

RTOBLPR
$$_{(j, k)} = \Sigma$$
 (**RTSPP** $_{k, i} -$ **RTSPP** $_{j, i}$) / 4

ercot 🖓

Real-Time

Settlement of PTP Obligations purchased in DAM

н

Real-time Settlement of DAM PTP Obligations with Links to Option

Who:	NOIE that owns PTP Options before DAM and buys PTP Obligations in DAM linked to those Options
What:	A Payment based on Real-Time Congestion
Why:	To Hedge the Cost of congestion in Real-Time

NOIE buys DAM PTP Obligations based on PTP Options they own

Settlement for DAM PTP Obligations with Links to Options

RTOBLLOAMT $_{q, (j, k)} = (-1) * Max (0, RTOBLPR _{(j, k)}) * RTOBLLO _{q, (j, k)}$ **Determinants Determinants REALTIME Obligation with** Links to an Option **Amount** q = QSE j = Source Settlement Point k = Sink Settlement Point**Price**

Real-Time Ancillary Service Settlements

Who:	QSEs that sold Reg-Up, Reg-Down, Responsive, or Non-Spin in a SASM
What:	A Payment for the services sold in a SASM
Why:	To cover the costs of a services to ensure ERCOT reliability

Reasons ERCOT may procure Ancillary Services in the Adjustment Period

- Failure to Provide by a QSE
- Infeasible due to Transmission Constraints
- Increased need after DAM
- Insufficient Ancillary Service Offers in DAM

ERCOT executes a SASM and Ancillary Services are sold

In SASM1

- QSE1, 50 MW of Regulation Up at \$8/MW
- QSE4, 10 MW of Regulation Down at \$4/MW
- QSE4, 20 MW of Responsive Reserve at \$8/MW
- QSE1, 40 MW of Non-Spin at \$12/MW

 $\begin{array}{l} \textbf{RTPCRUAMT} \\ \textbf{RTPCRDAMT} \\ \textbf{RTPCRDAMT} \\ \textbf{RTPCRRAMT} \\ \textbf{RTPCRRAMT} \\ \textbf{RTPCNSAMT} \end{array} \begin{array}{l} \textbf{q, M} = (-1) * \textbf{MCPCRU} \\ \textbf{q, M} = (-1) * \textbf{MCPCRD} \\ \textbf{q, M} \end{array} \begin{array}{l} \textbf{* RTPCRD} \\ \textbf{M} \end{array} \begin{array}{l} \textbf{* RTPCRD} \\ \textbf{q, M} \end{array} \begin{array}{l} \textbf{q, M} \\ \textbf{q, M} \end{array}$

$$\begin{array}{l} \textbf{-\$400}_{q, M} = (-1) * \$ 8/MW * 50MW_{q, M} \\ \textbf{-\$40}_{q, M} = (-1) * \$ 4/MW * 10MW_{q, M} \\ \textbf{-\$160}_{q, M} = (-1) * \$ 8/MW * 20MW_{q, M} \\ \textbf{-\$480}_{q, M} = (-1) * \$ 12/MW * 40MW_{q, M} \end{array}$$

Fundamentals of Payments for AS Procured through RUC

Who:	QSEs who were committed to provide AS through RUC and Opted out of the RUC commitment
What:	A Payment for the reserved capacity
Why:	To cover the value of the reserved capacity

ercot \$

Available only for QSEs who opt out of RUC

ercot 😓

QSE1

- Was committed to provide Ancillary Services on several Resources
- Opted out of RUC commitment

ercot 😓

RTRUCRSVAM	T _q = (-1) * (RTRU	CRESP _q * RTRSVPOR)
Where	RTRUCRESP _q :	= $\sum_{r} \mathbf{RTRUCASA}_{q,r} * \frac{1}{4}$

RTRUCRSVAMT	Real-Time RUC Ancillary Service Reserve Amount	
RTRUCRESP	Real-Time RUC Ancillary Service Supply Responsibility	
RTRSVPOR	Real-Time Reserve Price for On-Line Reserves	
RTRUCASA	Real-Time RUC Ancillary Service Awards	

QSE1

- Was committed to provide Ancillary Services on several Resources
- Opted out of RUC commitment before the end of the Adjustment Period

ercot 🖓

RTRDRUCRSVAMT	Real-Time Reliability Deployment RUC Ancillary Service Reserve Amount
RTRUCRESP	Real-Time RUC Ancillary Service Supply Responsibility
RTRDP	Real-Time On-Line Reliability Deployment Price

Fundamentals of Charges for Failure to Provide

Who:	QSEs that fail to provide their Ancillary Service Supply Responsibility
What:	A charge for the Failure to Provide Ancillary Service Capacity
Why:	To ensure costs are met in order to replace Failed Ancillary Service Capacity

Charge for Failure to Provide

Max Price of AS Markets * Failed Quantity

 $RUFQAMT_{q} = Max (MCPCRU_{m}) * RUFQ_{q},$ $RDFQAMT_{q} = Max (MCPCRD_{m}) * RDFQ_{q},$ $RRFQAMT_{q} = Max (MCPCRR_{m}) * RRFQ_{q},$ $NSFQAMT_{q} = Max (MCPCNS_{m}) * NSFQ_{q},$

Similar for other AS Types

RUFQAMT	Reg-Up Failure Quantity Amount
MCPCRU	Market Clearing Price for Capacity for Reg-Up
RUFQ	Reg-Up Failure Quantity

Charge for Failure to Provide

Reconfiguration SASM Price * Failed Quantity

RRUFQAMT _q = MCPCRU _{rs}	* RRUFQ _{q,}
RRDFQAMT ['] _q = MCPCRD _{rs}	* RRDFQ _{q,}
RRRFQAMT = MCPCRR _{rs}	* RRRFQ _{q,}
RNSFQAMT _q = MCPCNS _{rs}	* RNSFQ _{q,}

Similar
for other
AS Types

RRUFQAMT	Reconfiguration Reg-Up Failure Quantity Amount
MCPCRU _{rs}	Market Clearing Price for Capacity for Reg-Up by RSASM
RRUFQ	Reconfiguration Reg-Up Failure Quantity

Fundamentals of Charges for Infeasibility

Who:	QSEs with Ancillary Service Supply Responsibility that is deemed infeasible by ERCOT
What:	A charge for the Infeasible Ancillary Service Capacity
Why:	To recover payments made for Ancillary Service Capacity in the DAM

Charge for Infeasibility

DAM Price of AS Markets * Infeasible Quantity

RUINFQAMT $_{q}$ = MCPCRU $_{DAM}$	* RUINFQ _{q,}
RDINFQAMT $_{q}$ = MCPCRD _{DAM}	* RDINFQ _{q,}
RRINFQAMT $_{q}$ = MCPCRR _{DAM}	* RRINFQ _{q,}
NSINFQAMT _q = MCPCNS _{DAM}	* NSINFQ _q ,

Similar
for other
AS Types

RUINFQAMT	Reg-Up Infeasible Quantity Amount	
MCPCRU _{DAM}	Market Clearing Price for Capacity for Reg-Up in DAM	
RUINFQ	Reg-Up Infeasible Quantity	

Real-Time

Real-Time Ancillary Service Settlements

Fundamentals of Adjustments to Cost for Ancillary Service

Who:	QSEs that have Ancillary Service obligations
What:	A charge to the QSE for its share of the net total costs incurred in both DAM and SASMs less its DAM charge
Why:	To cover the costs of a services to ensure ERCOT reliability

ERCOT has net costs for AS that must be collected from the market

Adjustments to Costs for Ancillary Services Procurement

ercot 🖓

A QSE's share of the net total cost for an Ancillary Service for an <u>Operating Hour</u> is simply

(AS Price) * (AS Quantity _q)

AS Quantity $_{q}$ = AS Obligation $_{q}$ = Self-Arranged Quantity $_{q}$

Finding the Ancillary Service Obligation for a QSE

Now, the QSE's Ancillary Service Cost is simply

AS Price * (AS Obligation $_{q}$ – Self-Arranged Quantity $_{q}$)

Is this what the QSE pays for each Ancillary Service in Real-Time?

Adjustments to Costs for Ancillary Services Procurement

ercot 🖓

The QSE already paid part of this AS Cost in the Day-Ahead Market.

In Real-Time, the QSE pays or is paid for any difference between their AS Cost and their Day-Ahead AS Charge

RTAS=AS Cost -Day-AheadAmountAS Amount

ercot₽

Refer to your Settlements Workbook

In a small group, respond to the questions that relate to Scenario #RT6.

You have 15 minutes to complete your questions.

If you cannot complete all questions, don't worry – all questions will be reviewed as a class.

QSE's Net Cost for Reg-Up is calculated as **RUCOST** $_{q}$ = **RUPR** * **RUQ** $_{q}$

Where:

Net price for Reg-Up

RUPR = RUCOSTTOT / RUQTOT

A QSE's net quantity for Reg-Up $RUQ_q = RUO_q - SARUQ_q$ ercot \$

QSE's Net Cost for Reg-Up is calculated as **RUCOST** $_{q}$ = **RUPR** * **RUQ** $_{q}$

Where:

A QSE's obligation for Reg-Up

$$RUO_{q} = \sum_{q} (SARUQ_{q} + \sum_{m} (RTPCRU_{q,m}) + PCRU_{q})$$

$$- RUFQ_{q} - RRUFQ_{q}) * HLRS_{q}$$

ercot 🖓

Finally, the QSE is charged the difference between their net Reg-Up Cost and their Day-Ahead Reg-Up Charge

The Real-Time Reg-Up Amount for a QSE

RTRUAMT $_{q}$ = **RUCOST** $_{q}$ - **DARUAMT** $_{q}$

There is a similar Charge Type for each Ancillary Service Type

ercot

L

Fundamentals of Real-Time Revenue Neutrality Allocation

Who:	QSEs that have load	
What:	An Allocation on of a QSEs Load Ratio Share	
Why:	To keep ERCOT revenue neutral	

Real-Time Real-Time OSE Charges Payments Market Left over funds paid Pay to QSEs Revenue representing Load out to QSEs by Load **Ratio Share**

ERCOT has issued energy-related charges and payments and must achieve Revenue Neutrality

ERCOT has issued AS Imbalance charges and payments and must achieve Revenue Neutrality

- All charges and payments related to energy are summed
- Allocated to QSEs with Load

RTEIAMTTOT	Real-Time Energy Imbalance Amount Total
BLTRAMTTOT	Block Load Transfer Resource Amount Total
RTDCIMPAMTTOT	Real-Time DC Import Amount Total
RTDCEXPAMTTOT	Real-Time DC Export Amount Total (Oklaunion)
RTCCAMTTOT	Real-Time Energy Congestion Cost Amount Total
RTOBLAMTTOT	Real-Time Obligation Amount Total
RTOBLLOAMTTOT	Real-Time Obligation with Links to an Option Amount Total

- Hourly values must be divided by 4
- Allocated based on Load Ratio Share

= -\$160

ERCOT has issued energy-related charges and payments and must achieve Revenue Neutrality

ERCOT has issued AS Imbalance charges and payments and must achieve Revenue Neutrality

- All charges and payments related to AS
 Imbalance are summed
- Allocated to QSEs with Load

LAASIRNAMT _q = (-1) * [(RTASIAMTTOT + RTRUCRSVAMTTOT) * LRS_q]

LAASIRNAMT	Load-Allocated Ancillary Service Imbalance Revenue Neutrality Amount
RTASIAMTTOT	Real-Time Ancillary Service Imbalance Market Total Amount
RTRUCRSVAMTTOT	Real-Time RUC Ancillary Service Reserve Market Total Amount

ercot.

- RT AS Imbalance Total = \$1200
- RT RUC AS Reserve Total = -\$300
- QSE 5 has 30% of the load

LAASIRNAMT _q = (-1) * [(RTASIAMTTOT + RTRUCRSVAMTTOT) * LRS_q] = (-1) * [(\$1200 - \$300) * 0.30] = (-1) * [\$900 * 0.30] = - \$270

But wait, there's more!

- All charges and payments related to Reliability
 Deployment AS Imbalance are summed
- Allocated to QSEs with Load

LARDASIRNAMT _q

= (-1) * [(RTRDASIAMTTOT + RTRDRUCRSVAMTTOT) * LRS_q]

LARDASIRNAMT	Load-Allocated Reliability Deployment Ancillary Service Imbalance Revenue Neutrality Amount
RTRDASIAMTTOT	Real-Time Reliability Deployment Ancillary Service Imbalance Market Total Amount
RTRDRUCRSVAMTTOT	Real-Time Reliability Deployment RUC Ancillary Service Reserve Market Total Amount

