West Texas Export Analysis

John Schmall ERCOT Transmission Planning

ROS Meeting May 7, 2020

Background and Study Purpose

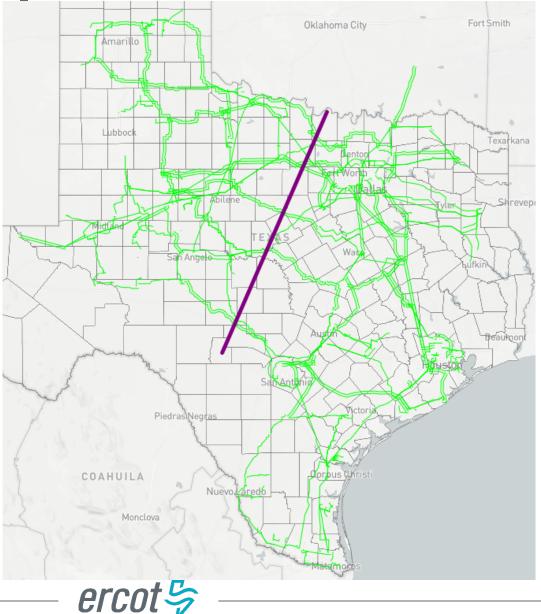
- Renewable generation levels (Inverter-based Resources, IBR) continuing to increase, especially in the Western part of ERCOT
- Increasing stability challenges associated with power transfer from West Texas to ERCOT load centers
- Investigate potential transfer limits and stability constraints associated with high IBR penetration in West Texas as identified in previous study: <u>http://www.ercot.com/content/wcm/lists/144927/Dynamic_Stability_Assessment_of_High_Penetration_of_Renewable_Gene</u> ration in the ERCOT_Grid.pdf

Study Case

• DWG 2022 HWLL case was used - IBRs were re-dispatched to achieve

higher renewable penetration

- Synchronous generators in west Texas were turned off
- Generation meeting PG 6.9 were added
- Solar resources were turned on
- Renewable dispatch averaged at 83% of capacity


	IBR Capacity (MW)	IBR Output (MW)
ERCOT Total	31,214	25,781
West Texas	24,373	20,166

• Study Case Totals:

	MW
Generation Output	48,312
Load (including PUN load)	45,545

Power Transfer Map

- Sixteen 345 kV circuits:
- Riley WestKrum 2ckt
- Jacksboro WestKrum ckt
- Jacksboro WillowCreek 2ckt
- ClearCrossing WillowCreek 2ckt
 - Graham Parker 2ckt
- WestShackelford Sam/Navarro 2ckt
- Brown Comanche ckt
- Brown Killeen 2ckt
- BigHill Kendall 2ckt
- Study case flow on the sixteen 345 kV circuits
 ≈ 12.5 GW

4

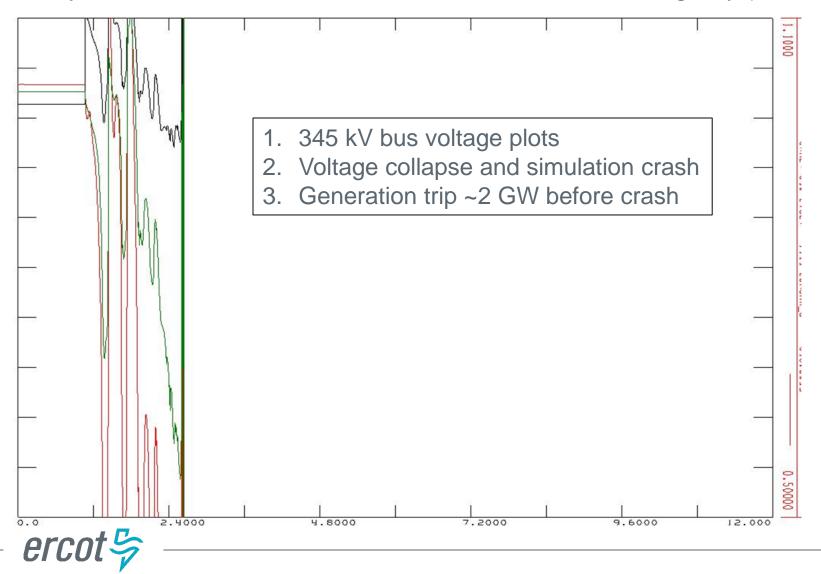
Study Scope

- Steady state voltage stability analysis: VSAT (Transfer analysis)
- Dynamic stability analysis: PSSE (Stability analysis)
 - Contingencies tested with both 3-phase fault and no fault condition
- Focused on the following NERC Planning Event 345 kV contingencies in West Texas:
 - P1 (single)
 - P6 (single + single)
 - P7 (double)
 - P1 + P7 (single + double)
 - P7 + P7 (double + double)

Observations

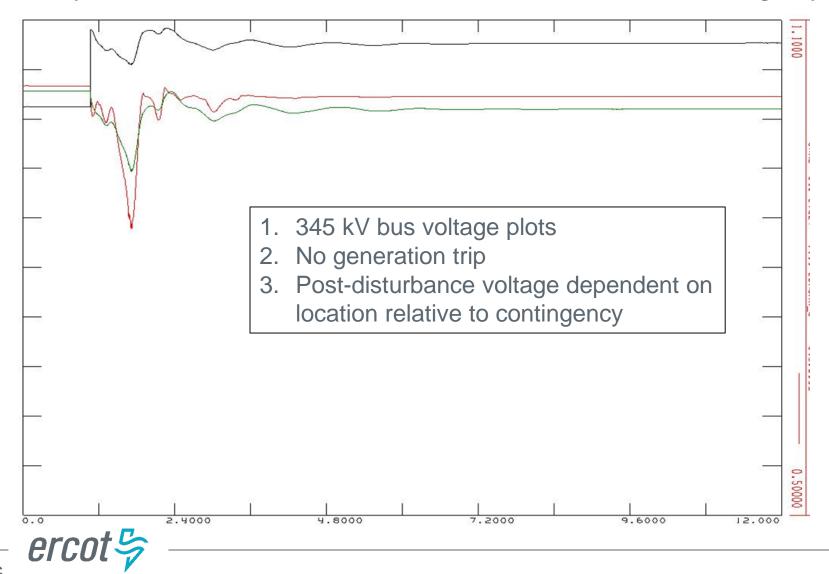
• MW flow comparison with study case and DWG base cases

Segments	Power Flow (Study Case) (MW)	Power Flow (HWLL 2023) (MW)
BigHill - Kendall double ckt	1924	1224
West Shakelford - Sam Switch/Navarro double ckt	2232	1758
Brown - Killeen double ckt	1696	1338
16-Line export	12500	9900


• Large reactive power losses – comparison with DWG base cases

Segments	Reactive Losses (Study Case) (MVAR)	Reactive Losses (HWLL 2023) (MVAR)
BigHill - Kendall double ckt	1112	274
West Shakelford - Sam Switch/Navarro double ckt	2160	1132
Brown - Killeen double ckt	630	260
16-Line reactive losses	5093	2335

erco

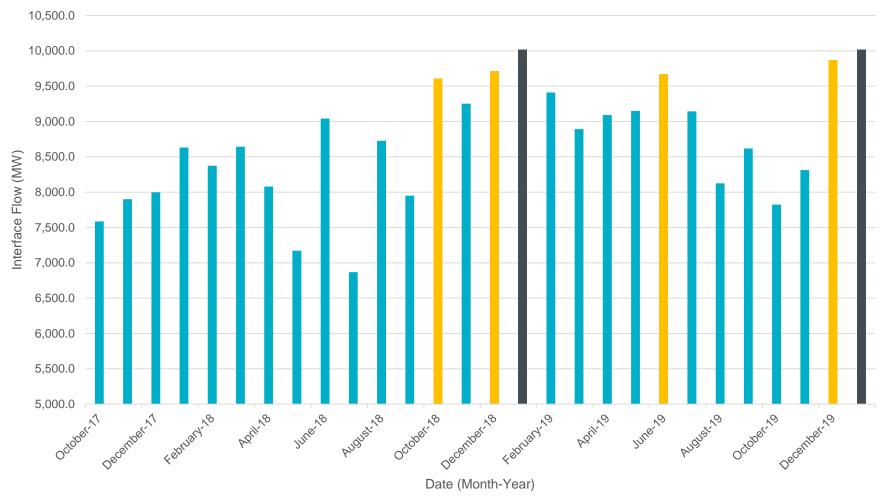

Observed Unstable Result

- System unstable at 11.8 GW transfer level under P7 contingency (no fault)

Observed Stable Result

- System stable at 11.5 GW transfer level under the same P7 contingency

Preliminary Results


- Scenario with 12.5 GW on interface was insecure for P7 events
- Steady state VSAT transfer analysis and dynamic simulations performed
 - The dynamics limits observed to be more binding than VSAT limits
- Summary of interface limits:

Contingency Type	VSAT (GW)	Dynamic (GW)
P7-P7	10.9	10.1
P7	12.2	11.5

Recent Historical Data

Highest monthly flow on the defined sixteen 345 kV circuits

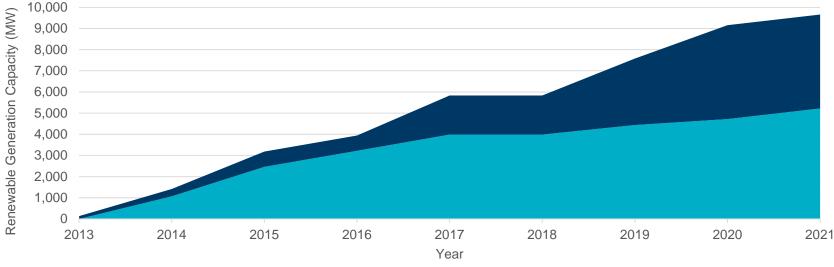
• The highest monthly flow surpassed 10 GW twice

Next Steps

- Incorporate results into planning processes (RTP, LTSA, etc.)
- Tentative schedule: complete study and report in June 2020

Panhandle Study Update

ERCOT Transmission Planning


ROS Meeting May 7, 2020

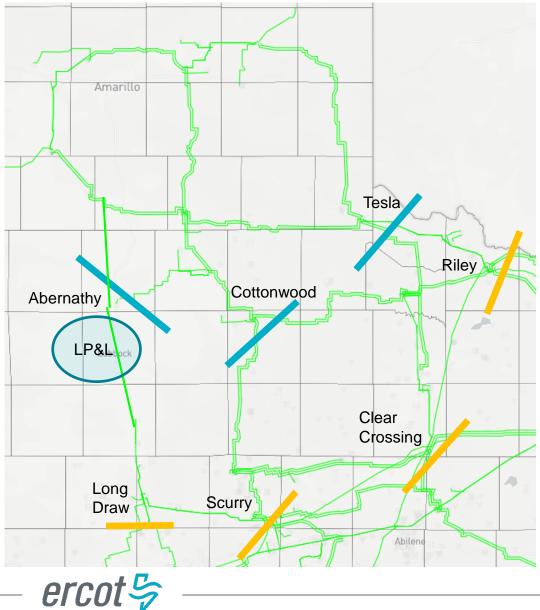
Background and Study Purpose

- Integration of Lubbock Power and Light
- Fast evolving interconnection situations in the Panhandle and Nearby Panhandle area require more frequent PSS/e and PSCAD analysis
- Nearby Panhandle capacity (meeting PG 6.9) increased from ~3.5 GW

to ~5.3 GW since 2019 study

Cumulative Panhandle and Nearby Panhandle Renewable Generation Capacity (MW)

Cumulative Nearby Panhandle Renewable Generation Capacity (MW) Cumulative Panhandle Renewable Generation Capacity (MW)



Base Case

- Modified DWG 2022 HWLL case
- Panhandle IBR Capacity: ~5200 MW
- Nearby Panhandle IBR Capacity: ~5300 MW
- Solar resources turned on
- Lubbock Load: 171 MW (~35% of Peak)
- West-to-East Transfer: ~11.2 GW
- West Texas Synchronous Machines off

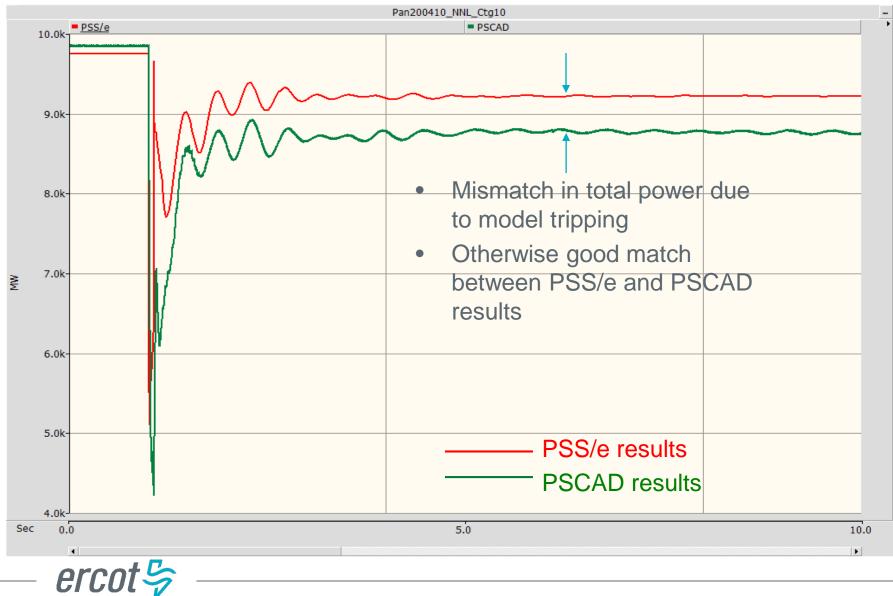
Panhandle Boundary Assumptions*

Panhandle Boundary
Nearby PH Boundary

*Boundaries are defined for purposes of classifying generation capacity as Panhandle or Nearby Panhandle and not indicative of a defined constraint interface

PSCAD Case Development

- Detailed PSCAD modeling for Panhandle and Nearby Panhandle
- Passive equivalent representation for the rest of ERCOT
- 43 parallel cases
- ~2.5 hours to run a single contingency
- 100% dispatch level
- Planned projects (454 MW) without PSCAD models are not included in the case
- Individual model performance reviews for both PSS/e and PSCAD were performed for selected projects


PSCAD Simulation Observations

- Inconsistent performance between PSCAD models and PSS/e models for individual projects
- Deficient PSCAD models for a few sites
- Challenges assessing performance for disturbances near the boundary of the equivalent network and detailed PSCAD models
- Some differences between PSCAD simulation results and PSS/e simulation results

PSCAD – PSS/e Comparison

Pan. & Nearby Pan. Ttl. Gen. (MW)

PSCAD – PSS/e Comparison (OLD)

Pan. & Nearby Pan. Ttl. Gen. (MW)

Preliminary Results

- 100% dispatch level is not acceptable
 - More than 1GW generation tripped in both PSS/e and PSCAD simulations
- The primary reason for generation trips in both PSS/e and PSCAD is overvoltage
- Increasing suspicious frequency trips in PSS/e need to be further checked

Next Steps

- Continue PSS/e and PSCAD analysis
- Review and further examine the PSS/e and PSCAD simulation results, including overvoltage trips, suspicious frequency trips
- Revise the interfaces with Lubbock integration
- Tentative schedule: complete study and report in June 2020

