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Real-Time Co-Optimization in ERCOT
ERCOT Market Changes

1. Introduce real-time co-optimization’
e Security-constrained economic dispatch considers reserve
2. Redefining reserve types providing primary frequency control? 2" 3
e Primary Frequency Responsive (PFR) reserve: droop control
B Response is proportional to frequency deviation
e Fast Frequency Responsive (FFR) reserve: responds within a few cycles
B Intended for batteries or load shedding
B Full and instant response to some frequency threshold violation

[1JERCOT. NPRR 863: Creation of Primary Frequency Response Service Product and Revisions to Responsive Reserve. Tech. rep. ERCOT,
Jan. 2018, URL: http://www.ercot.com/mktrules/issues/reports/nprr.

[2]Stephen Reedy. Simulation of Real-Time Co-Optimization of Energy and Ancillary Services for Operating Year 2017. Tech. rep. Potomac
Economics, June 2018, p. 8. URL:

http://www.ercot.com/content/wcm/lists/144930/IMM_Simulation_of_Real-Time_Co-optimization_for_2017.pdf.

[3]ERCOT. Study of the Operational Improvements and Other Benefits Associated with the Implementation of Real-Time Co-optimization of
Energy and Ancillary Services. Tech. rep. ERCOT, June 2018, p. 10. URL:

http://www.ercot.com/content/wecm/lists/144930/Study_of_the_Benefits_of_Real-Time_Co-optimization_FINAL.pdf.
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Interaction of Reserve Types
Sufficient Condition for Adequate Reserve Procurement
» Can be included in co-optimization problem
e Pricing implications for each product
» Condition couples three contributors to arresting frequency
e 1) Inertia, 2) PFR reserve, and 3) FFR reserve

What is Adequate Reserve Procurement?

» System can accommodate simultaneous outage of 2 largest generators!
» Maintain frequency above threshold at which firm load is shed!

frequency deviation ‘
-€

frequency nadirf - - - - - - - - oo oo "o
frequency threshold } - - - - - - << oo oo

Figure: Frequency requirement in response to 2 largest generator outages

[1]ERCOT 2018a.
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Inertia

Swing Equation

Assume uniform system frequency and simple system dynamics

4 — L (1tm(t) — e(t)),

Notation
f(t) € R: system frequency
M € R: system-wide inertia
e(t) € R: electrical power demand
m(t)€R™: mechanical power input from turbine governors
n: number of generators
1: vector of ones
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Primary Frequency Responsive (PFR) Reserve

Governor Response (Droop Response) to Large Outage?

Ramp in mechanical power supply m;(t)
Intended to conservatively approximate droop control

Droop Response (MW)
m;(t)—m;(0) o

T

—— Reference
B - - - Actual
' K — Approximate
oo 0 o
- 5 time

Figure: Turbine governor response to generator outage.
Notation
f1 € R: lower frequency dead-band threshold (f; = 59.9833 Hz)!
e € R: time delay after reaching dead-band
ki € R: constant ramp rate for generator i

r; € R: PFR reserve quantity for generator ¢
[1]ERCOT 2018a.
[4]Héctor Chavez, Ross Baldick, and Sandip Sharma. Governor rate-constrained OPF for primary frequency control adequacy. n:
IEEE Transactions on Power Systems 29.3 (2014), pp. 1473-1480.
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Fast Frequency Responsive (FFR) Reserve

Battery Response (or Load-Shedding) to a Large Outage

Instantaneous jump in electrical power demand e(t)
Deploys all available reserve b

» Larger frequency dead-band f, < f1
» Neglect any delay in response after reaching dead-band

> Neglect time taken to fully deploy reserve b;
e Must fully deploy within 0.5s in ERCOT?

Notation

f2 € R: lower frequency dead-band threshold (f2 = 59.8 Hz)
b; € R: FFR reserve quantity for battery j

[5]1Cong Liu and Pengwei Du. Participation of load resources in day-ahead market to provide primary-frequency response reserve.
In: IEEE Transactions on Power Systems 33.5 (2018), pp. 5041-5051.
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System-Wide Frequency Response Model

Plot Description tim(t) —e(t)

Top plot: Power imbalance
Bottom plot: Freq. resp. . ST
Swing Eqn.: df(t) & (XTm(t) — e(t)) ’
poiay] A |incantaneovsy
Sequence of Events k|

» Generator outage of size L > R:
e ERCOT: L=2750MW £t amp
(2 largest generators)

M time
» Frequency hits PFR dead-band f; T \
e ERCOT: fi = 59.9833Hz I

(Droop Deadband) fo="59.8Hz

fNap  fooe TN

» PFRramp begins after delay e !
e Assume constant ramp rate K

until power balance is met
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System-Wide Frequency Response Model

Plot Description 1m0}y 4 ,
] _: NAD/\=.>
Top plot: Power imbalance ‘ : time
Bottom plot: Freq. resp. , Vs " ; A
Swing Eqn.: df(t) & (XTm(t) — e(t)) |
poay] A |istamaneoisly
Continued Sequence of Events ki |
—L |
: 0 PFR Ramp i
» Frequency hits FFR dead-band f» N . -
e ERCOT: f» = 59.8 Hz ] fz/\ =
» FFR deployed instananeously Al '
e Total FFR reserve denoted 175 £ 598Hz '
» PFRramp continues A
y
» Power is balanced before fmin . )
e ERCOT: fon = 59.4 Hz Figure: Plot is not drawn to scale.

Modeling Three Contributors to Arresting Frequency August 14, 2019 9/17



The University of Texas at Austin

Cockrell School of Engineering

Frequency Response Assumptions
FFR is Deployed During PFR Ramp .4 )

Does not depend on reserve allocation = /\ﬁﬁe’
L < Ay and Ay+A0< fo—famo (2) /ﬁ‘éz

Sufficient Reserve to Restore — S
Power Balance peiay

Constraint in Co-optimization . K
1'p+1fr>1 (3) oy G

No FFR Deployment Overshoot

FFR does not overshoot the origin
in the energy imbalance curve.
Constraint in co-optimization

Kty +1f0 < L (4)

fa=59.8Hz

Figure: Plotis not drawn to scale.
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Sufficient Condition for Satisfying Frequency Threshold

Proposition 2 (Sufficient Condition for Adequate Reserve)

Under assumptions (2), (3), and (4),
the frequency nadir satisfies the frequency threshold fyap > fmin
if the following holds:
ri < rih(M,110) Wi € [1,...,n]
where the limit function A (M, b) is as follows:
~ _ 1 2 7
h,(M7 b) — 2M(A2+A3 MGL) (L b)

(WAT—\/ (A2‘|'A3T\1/16L)L2—(A27\1/16L)52> ’

(6)

Proof: Omitted
Notation Reminder
r; € R: PFR reserve quantity for generator 4
b; € R: FFR Reserve for battery j
M € R: system inertia
ki € R: constant ramp rate for generator 4

Sufficient Condition for Adequate Reserve Procurement
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Rate-Based Reserve Requirement

Rate-Based PFR Limit Definition of limit function
(Non-convex constraint)

i < kih(M,17b) Vi€ [1,...,n]

h( g).: 2M (Ax+As—FreL)?(L—b)
T VB (Bt D) LBy e L)F?)

= 350
L . 3 ——M=10GWs
The limit increases with: isoo— —— M=50GWs
. . = \=100GW!
» inertia M & 250 | — mo150GWs
=t M=200GWs
» FFRreserve 17p % 200/
€3]
> ramp rate s; = 150
< 100 |
=
= 50——_//
E
3 o0 : ‘
0 500 1000 1500 2_000 2500

Total Available FFR Reserve b

Figure: Function h(M,b) with ERCOT parameters.
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Co-Optimization with Reserve Sufficiency Condition

Summary
Real-time market
FFR represents batteries
Reserve costs are included

Constraints
(7a): Power Balance
(7b): Line Limits
(7¢): PFR headroom
(7d): PFR Offer
(7e): FFR Offer
(7f): Assumption (3)
(78): Sufficient condition (5)

Co-Optimization Problem

bERimrgﬂiR%,reRi c(p)ter(r)+ea(b) (7)
st:1(p—d)=0 (7a)
H(p—d)<T (7b)

prr<p (70)

r<r (7d)

b<b (7€)

L<1fr+1 (79

i < kih(M,17b) Vi € [1,n] (78)

Omitted Constraint

Assumption (4) is omitted, inherently
assume little offered FFR
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Conclusions and Future Work

Conclusions
> Presented a reserve requirement that accounts for

e turbine governor ramping ability
e total system inertia
e coupling between FFR reserve and PFR reserve

» Rate-based PFR reserve limit is inherently non-linear

Future Work
» Interaction with the 20% HSL limit.
e Should the 20% HSL limit be tightened?
Interaction with Operating Reserve Demand Curves (ORDCs)
Obtain accurate dynamic models to determine ramp rates «;

Approximating rate-based PFR reserve limit

e linear approximations
e Piecewise linear approximation with integer variables

vyy
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