

Cockrell School of Engineering

Real-Time Co-Optimization: Interdependent Reserve Types for Primary Frequency Response

Manuel Garcia Advisor: Professor Ross Baldick August 14, 2019

- 1. Motivation and Background

Real-Time Co-Optimization in ERCOT

ERCOT Market Changes

- 1. Introduce real-time co-optimization¹
 - Security-constrained economic dispatch considers reserve
- 2. Redefining reserve types providing primary frequency control^{2 and 3}
 - Primary Frequency Responsive (PFR) reserve: droop control
 - Response is proportional to frequency deviation
 - Fast Frequency Responsive (FFR) reserve: responds within a few cycles
 - Intended for batteries or load shedding
 - **Full and instant response to some frequency threshold violation**

[1] ERCOT. NPRR 863: Creation of Primary Frequency Response Service Product and Revisions to Responsive Reserve. Tech. rep. ERCOT, Jan. 2018. URL: http://www.ercot.com/mktrules/issues/reports/nprr.

[2]Stephen Reedy. Simulation of Real-Time Co-Optimization of Energy and Ancillary Services for Operating Year 2017. Tech. rep. Potomac Economics, June 2018, p. 8. URL:

http://www.ercot.com/content/wcm/lists/144930/IMM_Simulation_of_Real-Time_Co-optimization_for_2017.pdf. [3]ERCOT. Study of the Operational Improvements and Other Benefits Associated with the Implementation of Real-Time Co-optimization of Energy and Ancillary Services. Tech. rep. ERCOT, June 2018, p. 10. URL: http://www.ercot.com/content/wcm/lists/144930/Study_of_the_Benefits_of_Real-Time_Co-optimization_FINAL.pdf.

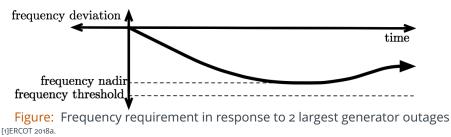
Interaction of Reserve Types

Sufficient Condition for Adequate Reserve Procurement

- Can be included in co-optimization problem
 - Pricing implications for each product
- Condition couples three contributors to arresting frequency
 - 1) Inertia, 2) PFR reserve, and 3) FFR reserve

What is Adequate Reserve Procurement?

System can accommodate simultaneous outage of 2 largest generators¹
 Maintain frequency above threshold at which firm load is shed¹



Motivation and Background

- 1. Motivation and Background
- Modeling Three Contributors to Arresting Frequency
- Sufficient Condition for Adequate Reserve Procurement
- 4. Co-Optimization Problem

Modeling Three Contributors to Arresting Frequency

Modeling Three Contributors to Arresting Frequency

Inertia

Swing Equation

Assume uniform system frequency and simple system dynamics

$$\frac{df(t)}{dt} = \frac{1}{M} (\mathbf{1}^{\dagger} m(t) - e(t)), \tag{1}$$

<u>Notation</u>

 $f(t) \in \mathbb{R}$: system frequency $M \in \mathbb{R}$: system-wide inertia $e(t) \in \mathbb{R}$: electrical power demand $m(t) \in \mathbb{R}^n$: mechanical power input from turbine governors n: number of generators 1: vector of ones

Primary Frequency Responsive (PFR) Reserve

Governor Response (Droop Response) to Large Outage⁴

Ramp in mechanical power supply $m_i(t)$ Intended to conservatively approximate droop control

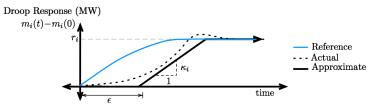


Figure: Turbine governor response to generator outage. <u>Notation</u>

 $f_1 \in \mathbb{R}$: lower frequency dead-band threshold ($f_1 = 59.9833 \text{ Hz}$)¹

 $\epsilon \in \mathbb{R}$: time delay after reaching dead-band

 $\kappa_i \in \mathbb{R}$: constant ramp rate for generator i

 $r_i \in \mathbb{R}$: PFR reserve quantity for generator i

[1]ERCOT 2018a.

[4]Héctor Chávez, Ross Baldick, and Sandip Sharma. Governor rate-constrained OPF for primary frequency control adequacy. In: IEEE Transactions on Power Systems 29.3 (2014), pp. 1473–1480.

Modeling Three Contributors to Arresting Frequency

Fast Frequency Responsive (FFR) Reserve

Battery Response (or Load-Shedding) to a Large Outage

Instantaneous jump in electrical power demand e(t) Deploys all available reserve b

- Larger frequency dead-band $f_2 < f_1$
- Neglect any delay in response after reaching dead-band
- Neglect time taken to fully deploy reserve b_j
 - Must fully deploy within 0.5s in ERCOT⁵

<u>Notation</u>

$f_2 \in \mathbb{R}$: lower frequency dead-band threshold ($f_2 = 59.8$ Hz) $b_i \in \mathbb{R}$: FFR reserve quantity for battery j

[5]Cong Liu and Pengwei Du. Participation of load resources in day-ahead market to provide primary-frequency response reserve. In: IEEE Transactions on Power Systems 33.5 (2018), pp. 5041–5051.

System-Wide Frequency Response Model

Plot Description

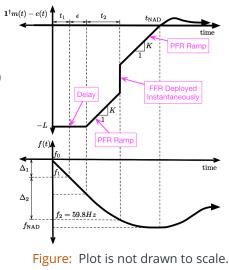
Top plot: Power imbalance Bottom plot: Freq. resp.

Swing Eqn.:
$$\frac{df(t)}{dt} = \frac{1}{M} (\mathbf{1}^{\dagger} m(t) - e(t))$$

Sequence of Events

- Generator outage of size L
 - ERCOT: L=2750MW (2 largest generators)
- Frequency hits PFR dead-band f_1
 - ERCOT: $f_1 = 59.9833$ Hz (Droop Deadband)
- PFR ramp begins after delay ϵ
 - Assume constant ramp rate *K* until power balance is met

Modeling Three Contributors to Arresting Frequency



System-Wide Frequency Response Model

Plot Description

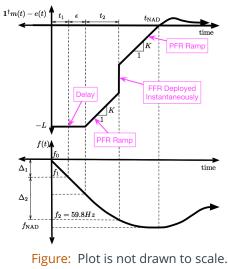
Top plot: Power imbalance Bottom plot: Freq. resp.

Swing Eqn.:
$$\frac{df(t)}{dt} = \frac{1}{M} (\mathbf{1}^{\dagger} m(t) - e(t))$$

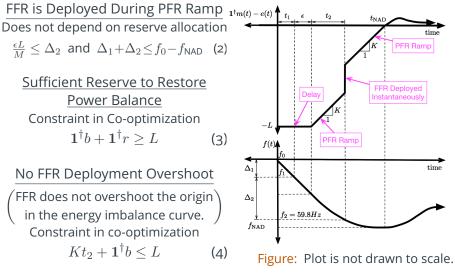
Continued Sequence of Events

- ERCOT: $f_2 = 59.8 \text{ Hz}$
- ▶ FFR deployed instananeously
 - Total FFR reserve denoted $\mathbf{1}^{\dagger}b$
- PFR ramp continues
- Power is balanced before f_{\min}
 - ERCOT: $f_{\min} = 59.4 \text{ Hz}$

Modeling Three Contributors to Arresting Frequency



Frequency Response Assumptions



Modeling Three Contributors to Arresting Frequency

time

FR Ramp

FFR Deploved

Sufficient Condition for Adequate Reserve Procurement

Sufficient Condition for Adequate Reserve Procurement

Sufficient Condition for Satisfying Frequency Threshold

Proposition 2 (Sufficient Condition for Adequate Reserve)

Under assumptions (2), (3), and (4), the frequency nadir satisfies the frequency threshold $f_{NAD} \ge f_{min}$ if the following holds:

$$r_i \le \kappa_i h(M, 1^{\dagger}b) \ \forall i \in [1, \dots, n]$$
 (5)

where the limit function $h(M, \tilde{b})$ is as follows:

$$h(M,\tilde{b}) := \frac{2M(\Delta_2 + \Delta_3 - \frac{1}{M}\epsilon L)^2(L-\tilde{b})}{\left(\tilde{b}\sqrt{\Delta_3} - \sqrt{(\Delta_2 + \Delta_3 - \frac{1}{M}\epsilon L)L^2 - (\Delta_2 - \frac{1}{M}\epsilon L)\tilde{b}^2}\right)^2}$$
(6)

Proof: Omitted

Notation Reminder

- $r_i \in \mathbb{R}$: PFR reserve quantity for generator i
- $b_j \in \mathbb{R}$: FFR Reserve for battery j
- $M \in \mathbb{R}$: system inertia
- $\kappa_i \in \mathbb{R}$: constant ramp rate for generator i

Sufficient Condition for Adequate Reserve Procurement

Rate-Based Reserve Requirement

$\begin{array}{ll} & \underline{\text{Rate-Based PFR Limit}} \\ (\text{Non-convex constraint}) \end{array} & \underline{\text{Definition of limit function}} \\ r_i \leq \kappa_i h(M, 1^{\dagger}b) \ \forall i \in [1, \dots, n] \end{array} & h(M, \tilde{b}) := \frac{2M(\Delta_2 + \Delta_3 - \frac{1}{M}\epsilon L)^2(L - \tilde{b})}{\left(\tilde{b} \sqrt{\Delta_3} \sqrt{(\Delta_2 + \Delta_3 - \frac{1}{M}\epsilon L)L^2 - (\Delta_2 - \frac{1}{M}\epsilon L)\tilde{b}^2} \right)^2} \end{array}$

The limit increases with: inertia *M*

- FFR reserve $\mathbf{1}^{\dagger}b$
- Final rate κ_i

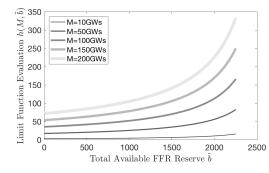


Figure: Function $h(M, \tilde{b})$ with ERCOT parameters.

- 4. Co-Optimization Problem

Co-Optimization with Reserve Sufficiency Condition

Summary Real-time market	$\min_{b\in\mathbb{R}^n_+,p\in\mathbb{R}^n_+,r\in\mathbb{R}^n_+} c(p)+c_1(r)+c_2(b)$	(7)
FFR represents batteries	$st: 1^{\dagger}(p-d) = 0$	(7a)
Reserve costs are included	$H(p-d) \le \bar{T}$	(7b)
Constraints	$p+r \leq \bar{p}$	(7c)
 (7a): Power Balance (7b): Line Limits (7c): PFR headroom (7d): PFR Offer (7e): FFR Offer (7f): Assumption (3) (7g): Sufficient condition (5) 	$r \leq \bar{r}$	(7d)
	$b \leq ar{b}$	(7e)
	$L \leq 1^{\dagger}r + 1^{\dagger}b$	(7f)
	$r_i \le \kappa_i h(M, 1^{\dagger} b) \ \forall i \in [1, n]$	(7g)
	Omitted Constraint	
	Assumption (4) is omitted, inherently assume little offered FFR	

Co-Optimization with Reserve Sufficiency Condition

Summary Real-time market	$\min_{b \in \mathbb{R}^n_+, p \in \mathbb{R}^n_+, r \in \mathbb{R}^n_+} c(p) + c_1(r) + c_2(b)$	(7)
FFR represents batteries	$st: 1^{\dagger}(p-d) = 0$	(7a)
Reserve costs are included	$H(p-d) \le \bar{T}$	(7b)
Constraints	$p+r \leq \bar{p}$	(7c)
(7a): Power Balance (7b): Line Limits	$r \leq \bar{r}$	(7d)
	$b \leq \overline{b}$	(7e)
(7c): PFR headroom	$L \le 1^{\dagger}r + 1^{\dagger}b$	(7f)
(7d): PFR Offer (7e): FFR Offer (7f): Assumption (3) (<mark>7g</mark>): Sufficient condition (5)	$r_i \leq \kappa_i h(M, 1^{\dagger}b) \ \forall i \in [1, n]$	(<mark>7g</mark>)
	Omitted Constraint	
	Assumption (4) is omitted, inherently assume little offered FFR	

Conclusions and Future Work

Conclusions

- Presented a reserve requirement that accounts for
 - turbine governor ramping ability
 - total system inertia
 - coupling between FFR reserve and PFR reserve
- Rate-based PFR reserve limit is inherently non-linear

Future Work

- Interaction with the 20% HSI limit.
 - Should the 20% HSL limit be tightened?
- Interaction with Operating Reserve Demand Curves (ORDCs)
- Obtain accurate dynamic models to determine ramp rates κ_i
- Approximating rate-based PFR reserve limit
 - linear approximations
 - Piecewise linear approximation with integer variables

Co-Optimization Problem

The University of Texas at Austin Cockrell School of Engineering

The University of Texas at Austin Cockrell School of Engineering

The University of Texas at Austin Cockrell School of Engineering