

Dynamic Stability Assessment of High Penetration of Renewable Generation in the ERCOT Grid - Year 2031

ERCOT Transmission Planning

RPG Meeting November 14, 2017

Objective

- Conduct a dynamic stability assessment of high renewable penetration in areas far from major load centers
- To identify system challenges from a stability perspective and evaluate potential solutions
- To facilitate communication and understanding of long-term system needs among stakeholders
- Not intended to recommend specific upgrade projects

Study Scenario

- ERCOT 2016 LTSA Year 2031 Current Trends is used as a reference to develop the dynamic stability study scenario for high penetration of renewable generation connected to the transmission grid
- Initial Base Case Development (stressed system condition)
 - Transmission Topology is consistent with ERCOT 2016 LTSA Year 2031
 Current Trends
 - System Load: 42.2 GW (includes self-serve load)
 - Renewable Generation Dispatch: 27.8 GW (~66% of total load)
 - System Inertia (from on-line synchronous generators) : 117 GW-sec (more units decommitted compared to 2016 LTSA)

Initial Base Case Overview

Tested Contingencies

- Include 345 kV single or double circuits outages in West, Far West, and Panhandle areas with almost 100% inverter-based generation penetration in these areas.
- Include both single-line-to-ground (SLG) and threephase-to-ground (3PH) faults
- Criteria: NERC and ERCOT Planning Criteria

Steady State (Load Flow) Observations

- Large reactive losses due to the long distance and high power transfer from renewable generation to the load centers
- Static reactive devices are required to maintain acceptable voltage response with tested contingencies

Dynamic Flat Start

- Flat Start Expectation
 - Flat response under no disturbance
 - Acceptable response under ring-down test (a perturbation to the system without tripping grid components)
- Generic dynamic models are applied to represent projected solar generation in the 2016 LTSA.

Flat Start Observations: No Disturbance Test

- Numerical instability and low system strength challenges
- Flat Start was obtained in the study area

Flat Start Observations: Ring Down Test

- Initial Ring Down Test
 - Unacceptable

 Synchronous condensers were added to obtain acceptable response

Dynamic Stability Assessment Observations

- More condensers were added for the tested 345 kV outages
- Unacceptable responses include:

Undamped oscillations

Angular Instability and Voltage Collapse

Synchronous Condenser Observations

- Provide system strength and reactive support
- Subject to typical stability challenges, like angular stability and intra/inter area oscillations

Preliminary Findings

- Acceptable steady state condition may not guarantee stable response in normal operations
 - Low system strength in the West, Far West, and Panhandle could cause controller instability
- When considering synchronous condensers to provide voltage and strength support, system stability (e.g. intra/inter-area oscillation) must be checked
 - Other upgrade options (e.g. adding new circuits) may be necessary to provide system improvement without introducing additional stability challenges

Next Steps

- Evaluate the impact of controller sensitivity
- Assess the impact of other upgrade options
- Complete the study and report by early 2018

ercot 🦻