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Micro-synchrophasor network concept:
Create visibility for distribution circuits behind the substation to
support active management and integration of distributed resources
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Synchrophasors compare voltage phase angle at different locations
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Power injection to the grid is greater where voltage phase angle is farther advanced.
Power flows from Unit 1 toward Unit 2.



Synchrophasors compare voltage phase angle at different locations
by cross-referencing simultaneous measurements, using same clock
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Phasor Measurement Units and Synchrophasor
Data Flows in the North American Power Grid
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Why PMUs mostly on transmission,
not distribution systems to date?

- Historically, no need (but this is changing):

- unidirectional power flow, from substation to load

- unquestioned stability of distribution system

- Cost / value proposition

- More challenging measurements: fractions of a degree

Im

Total Vector Error

Transmission PMU performance
~ 1% TVE is not precise enough
for distribution:

error of sin! 0.01 = 0.6°

is greater than signal




lllustration: Measured phase shift along 12kV distribution circuit

voltage phase angle difference between
_ 10~ PVarray and substation

current injected by PV array (does
3007 not equal total line current)
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Signal of interest is on the order of 0.01 - 0.1°
too small for typical transmission PMUs to resolve detailed power flow

behind the substation at 60 Hz 1 cycle ~ 0.016 sec
0.1°~ 4.6 us



Distribution systems are tricky...
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this nice approximation doesn’t
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Linear approximations derived from DistFlow equations for radial feeders th ree-phase imbalance!
by Dan Arnold, Roel Dobbe and Michael Sankur, UCB

...and this doesn’t even include



Challenges for distribution synchrophasors
as compared to transmission:

e smaller voltage angle differences

* more noise in measurements

— very small signal-to-noise ratio

« different X/R ratios (inductance/resistance of distribution lines)

—> common approximations relating voltage phasors to
impedances and power flows are not okay

* unbalanced three-phase systems
e distribution network models tend to have poor fidelity
 few measuring points compared to network nodes

* lack of access and tools to integrate with other data, e.g. smart meters

— hard to do a full “state estimation”

California Institute for
Energy and Environment



Distribution Synchrophasor Applications

Event identification: use uPMU measurements to detect and explain
disturbance events. Relies on precision time stamps and high-resolution time-
series measurements, more than on accurate absolute or comparative multi-
location measurements at a single point in time:

* Automatic event detection and notification. Scan uyPMU database and issue
notifications when anomalies occur, e.g. voltage sags; many options for
defining thresholds.

* Event classification. Categorize events, e.g. distinguish locally-caused vs.

transmission-level voltage sags by comparing synchronized measurements from
different locations.

* High impedance fault detection. Distinguish between faults and load changes,

e.g. arc flashes and motor starts, by comparing synchronized measurements
from different locations.

» Statistical event characterization and learning. Analysis based on large
numbers of rapid queries, made possible by logarithmic search process.

California Institute for
Energy and Environment



Distribution Synchrophasor Applications

Distribution State Estimation: use uPMU measurements in conjunction
with other available data (SCADA, AMI) to estimate the state variables
(voltage phasors) throughout an entire distribution network, including
unmonitored nodes.

Topology detection: use uPPMU measurements to assess the connectivity
or topology (open/closed state of switches) of a distribution network.

Fault Location: use uPMU measurements to precisely locate faults.
Requires validated model with impedances; sensitive to number and
placement of uPMUs, and hinges on PT/CT calibration.

Cyber-Security: use pyPMU measurements to detect conditions that
are inconsistent with system status as expected or reported elsewhere,
to reveal tampering with data or physical equipment.

California Institute for
Energy and Environment



Distribution Synchrophasor Applications

Model validation: use ultra-precise uPMU measurements to confirm, deny,
or correct existing models of real-world distribution networks.

* Phase (ABC) connectivity identification. Relatively straightforward; main
challenge is accounting for multiple delta-wye transformers between
measurement points absent reliable model data.

* Line segment impedance calculation. Based on measured current and
voltage phasors at each end of the segment. Trivial in principle (V = 1Z) yet
challenging in practice due to three-phase asymmetry and PT/CT errors
that are large compared to changes along a line segment.

* Device models. Understand dynamic behaviors of inverters and machines,
including unintended interactions and possible control instabilities.

California Institute for
Energy and Environment



Distribution Synchrophasor Applications

Distributed Generation (DG) and Load Characterization:

use uPMUs to measure and understand time variation among DG and
loads, and how DG affects distribution networks:

Disaggregate DG from load, behind net meter

Detect reverse power flow. Phase angle reveals direction of current.
Note that current does not cross zero when real power flow reverses,
due to the presence of reactive power.

Load Characterization. Assess load volatility and voltage dependence
with high-resolution measurements and correlations.

Assess DER impacts on feeder voltage magnitude and volatility.
Opportunity to apply statistical methods.

DG feeder hosting capacity estimation. Support planning studies
through model validation to better predict DG impacts.

California Institute for
Energy and Environment



Distribution Synchrophasor Applications

Phasor-Based Control: use uPMU measurements to determine desired
P and Q injections or consumption by controllable devices.

Control objectives may include, for example:

voltage profile management

loss minimization

ancillary services coordination

balancing generation and load on a microgrid
microgrid islanding decisions based on grid behavior

assisted network reconfiguration by phasor matching across
switch

California Institute for
Energy and Environment



Micro-synchrophasors for RAA ..
Distribution Systems \'1| I}\ﬁ @

Three-year, $4.4 M ARPA-E OPEN 2012 project (2013-2016) to

develop a network of high-precision phasor measurement units (LPMUs)
and high-speed database (BtrDB)

explore applications of uPMU data for distribution systems to improve
operations, increase reliability, and enable integration of renewables and
other distributed resources

evaluate the requirements for uPMU data to support specific diagnostic
and control applications
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Micro-synchrophasors for LA A
Distribution Systems \1l I)\Ii @

18-month, $2M Plus-Up extension project 2017-2018

Collaboration with three commercialization partners with different
application foci:

smar Smarter Grid Solutions: Planning, diagnostics &
gr| mitigation for high-penetration PV distribution
Doosan Grid Tech (formerly 1EnergySystems):
DOOSAN Information infrastructure for distribution monitoring
and control

: . PingThings: Stream analysis software for real-time
P! ngTh I ngs grid data, T&D disturbance event detection and
analysis

~
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Power Standards Lab uPMU
(developed through ARPA-E)

* built on PQube3 power quality recorder

e capable of power quality mode with 512 samples per cycle

* time stamping to nanosecond precision, microsecond accuracy with GPS
* measures voltage & current, magnitude & angle (12 channels)

e 100V ~ 690V input

120 samples per second in PMU mode (each channel)

* local data buffering + batching (2 min), backup storage

e connectivity via Ethernet, 4G wireless

phasor
measurements
reported 120/sec

instrument sampling
rate 512/cycle

GPS time stamp:
differential absolute
SCADA
clock 010 1o 1cycle  measurements
accuracy
| | | | | | | | | |
109 106 103 1 =
time scale in sec

www.powerstandards.com
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ARPA-E pnPMU Project

Field installations:
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Berkeley Tree Database (BTrDB)

Field Datacenter / Cloud Clients
LOCaI ------
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Analytics with 3rd
party tools

ARPA-E research project configuration:
40+ pPMUs sending 120 Hz data via
Ethernet or 3G/4G wireless, 12 streams
per device (voltage and current
magnitude & phase angle)

Michael Andersen, UC Berkeley
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Berkeley Tree Database (BTrDB) resolves the downsides
of storing and utilizing large, high-resolution time-series
data streams

* no need to compromise between data continuity, resolution, ease
of access

» extremely fast searches (~¥200 ms for individual samples within
months of 120-Hz data)

» performs online computation of data distillate streams (e.g. power,
frequency, rates of change, differences between quantities)

e data available for viewing in plotter and downloadable through API
for external analytic applications

e open source code available on github

California Institute for
Energy and Environment



Use case: Mitigating system vulnerability to disturbances

PMU data reveal dynamic response across transmission and distribution:

assess stability operating limits
identify exposure to large disturbances, e.g. geomagnetic (GMD)
diagnose local control issues, oscillations

understand implications of reduced system inertia with inverter-based
generation: the design basis has changed
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Transient event detection

Use case
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Use case: High-impedance fault detection

Current (A)
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High-precision measurements capture events
that do not trip protection, but may impact
safety and power quality

Cross-referencing time-aligned data streams

supports diagnostics to

- locate disturbance origin

- ascertain proper operation by distributed
resources and protection coordination

California Institute for
Energy and Environment



Use case: Diagnose cause of DG unit trips

Feeder voltage (V)

Substation voltage (V)
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Use case: Detect normal and mis-operation of equipment
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Secondary distribution voltage (V)

Use case: Detect normal and mis-operation of equipment
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Example:

Anomaly in tap change signature
gives early warning of transformer
aging or incipient failure
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Use cases: Feeder and load model validation
Reverse power flow detection

Example: ascertain impacts of voltage regulation with hi-pen DG

0.996 Phase A Tap Change Date : 201|5—09—28

O S O SO S S S S
;~0992 fffffffffff ffffffffffff ffffffffffff ************ 1.2% step down in
7§0~990~¢4A fffffffffff A S R voltage
§0988 ”””””” ”””””” ”””””” ”””””” Signiﬁcant drop in kW

0986] N R o o due to highly voltage

0984 § 3 i § 5 § § dependent load

20

high-penetration solar PV
feeder goes from net kW
import to backfeed

Substation Active Power [KW]
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Ciaran Roberts and Emma Stewart, Lawrence Berkeley National Lab
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Real Power

Use case: Disaggregating net metered DG from load

Customer-owned solar generation can mask an

unknown amount of load, creating vulnerabilities 7.5 MW PV Site
for the system (e.g. simultaneous DG trips, cold load '.'?:. '.1’:.
pickup). Te oy o
UPMU measurements on the utility side of the WPMU 1 | | e
meter offer an alternative to telemetry on customer . A A
premises or 3" party data, to create awareness for Substation Rest of Circuit
operators.
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Real Power

Use case: Disaggregating net metered DG from load

PV generation is estimated as a function of capacity,
irradiance data and aggregate power measurement.

Model runs in real time to approximate actual
performance of PV and identify masked load.

Test case: LBNL algorithm estimated actual PV
generation (red) using only aggregate data from

UPMU 1 and validated against direct PV
measurement from uPMU 2 (black); performed
within 6% RMSE over all sky conditions.
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Ciaran Roberts and Emma Stewart, Lawrence Berkeley National Lab



Conclusions and Next Steps

* Distribution-specific synchrophasors and powerful data
analysis toolkits are now becoming available

* Asingle monitoring network can create visibility and support
diverse use cases on the distribution system

* Large potential exists to leverage PMU data for intelligence

* Important use cases for uPMU-based tools center on
distributed resource integration

* Opportunities for collaboration include pilot projects with
ARPA-E Plus-Up partners

California Institute for
Energy and Environment
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Resources

Read the ARPA-E Project Impact Sheet at
http://beci.berkeley.edu/wp-content/uploads/2016/12/

UCB-External-Project-Impact-Sheet 11102016.pdf

Peruse live and archival uyPMU data at
http://plot.upmu.org and http://powerdata.lbl.gov/

Learn about uPMU hardware at
http://www.powersensorsltd.com/PQube3.php

Participate in the NASPI Distribution Task Team (DisTT)
WWW.Naspi.org

Go straight to the source for BTrDB at
https://github.com/SoftwareDefinedBuildings/btrdb

Contact me with questions at vonmeier@berkeley.edu

California Institute for
Energy and Environment



