Demand Response Research

Le Xie

Electric Power and Power Electronics Group

Texas A&M University

(le.xie@tamu.edu)

Acknowledgement

- Collaborators
 - P. R. Kumar, M. Ilic, S. Shakkottai, S. Puller, P. Varaiya, A. Halder, NDR Sarma
- Students
 - J. An, H. Ming, X. Geng, Y. Li, Y. Zhou, A. Thatte, H. Zhong, K. Ma
- Sponsors
 - Power Systems Engineering Research Center
 - National Science Foundation

Electric Reliability Council of Texas (ERCOT) 2016

Peak demand: 69,877 MW (August 10, 2015)
 Wind capacity: > 16,000 MW (*highest* of any state in the U.S.)
 Wind generation record: 13,883 MW (12/20/2015), ~45% of load at that time

Exploiting Demand Side Flexibility

- Modeling DR in Wholesale Markets [1][2]
- Market Revenue Inadequacy with DR [3]
- New ISO Design to Account for Stochastic Dynamic DR [4]
- Internet-of-things inspired Energy Coupon DR
 [5]
- Privacy-preserving retail services while exploiting DR [6]

Quantifying Actual Demand Response in ERCOT

- ERCOT provided us with customer-level data for each "large" C&I customer:
 - Customer location
 - Information on whether retail contract uses timevarying prices (TVP)
 - TVP includes e.g. real-time pricing, critical peak pricing. Excludes simple time-of-use
 - Consumption (every 15-min for summer of 2008-2010)
 - 8537 customers (23% of ERCOT load)
 - 1250 are exposed to time-varying wholesale prices

Econometric Approach: Elasticity Estimation

 Econometric estimation generates "substitution matrix" Largest Firms 0.000 elasticity -0.005 -0.010 dq**Own-price elasticities** -0.015 πda -0.020 $\varepsilon =$ $d\pi$ $q \, \mathrm{d}\pi$ -0.025 -0.030 π -0.035 -0.040

L. Xie, S. Puller, M. Ilic, and S. Oren, "Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources," *PSERC Final Report M-26*, Aug 2013.

0 1 2 3 4 5 6 7

8 9

10 11 12 13 14 15

Hour of the Day

16 17 18 19 20 21 22 23

A Closer Look from an Engineering Perspective

- Nonlinearity (Two-regime)
 - Very small response when price is low-to-moderate
 - Observable response when price is very high (P > 95%quantile)
- (Almost Consistent) Delay in response
 - Maximum DR response occurs up to several intervals after price spike

J. An, P. R. Kumar, L. Xie, "On Transfer Function Modeling of Price Responsive Demand: An Empirical Study," IEEE PESGM 2015.

Problem Formulation

 Given an ARX Model of Demand Q(t) with respect to price P(t) and Q(t)

$$Q(t) = (\sum_{i=1}^{m} \hat{\alpha}_i z^{-i})Q(t) + (\sum_{i=1}^{n} \hat{\beta}_i z^{-i})f(P(t)) + \epsilon_t$$

- Estimate parameters $\hat{\alpha}$ and $\hat{\beta}$, and characterize the residual ϵ_t
 - Moderate price regime
 - Peak price regime: f(P(t)) may be nonlinear

TF Model of a Commercial Load under High Price Regime (P>95%-quantile)

J. An, P. R. Kumar, L. Xie, "On Transfer Function Modeling of Price Responsive Demand: An Empirical Study," *IEEE PESGM 2015*.

DR for Providing Flexibility

Key References

- [1] L. Xie, S. Puller, M. Ilic, and S. Oren, "Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources," PSERC Final Report M-26, Aug 2013.
- [2] J. An, P. R. Kumar, L. Xie, "On Transfer Function Modeling of Price Responsive Demand: An Empirical Study," IEEE PESGM 2015.
- [3] H. Ming and L. Xie, "Revenue Adequacy of Wholesale ElectricityMarkets with Demand Response Providers," IEEE PESGM 2016
- [4] R. Singh, P. R. Kumar, and L. Xie, "Decentralized Control via Dynamic Stochastic Prices: The Independent System Operator Problem," submitted to IEEE Tran. On Automatic Control
- [5] H. Zhong, L. Xie, and Q. Xia "Coupon Incentive-based Demand Response: Theory and Case Study, " IEEE Transactions on Power Systems Vol. 28, No. 2, pp. 1266 - 1276, May 2013.
- [6] A. Halder, X. Geng, G. Sharma, L. Xie, and P.R. Kumar, "A Control System Framework for Privacy Preserving Demand Response of Thermal Inertial Loads," IEEE SmartGridComm 2015

Thank You!

Le Xie Le.xie@tamu.edu www.ece.tamu.edu/~lxie

Demand Response via Privacy Preserving Thermal Inertial Load Management by an LSE

Abhishek Halder

Department of Electrical and Computer Engineering Texas A&M University College Station, TX 77843

Joint work with X. Geng, F.A.C.C. Fontes, P.R. Kumar, and L. Xie

How smart is your smart thermostat

January 4, 2008 Who Will Control Your Thermostat? By Joseph Somsel

"We repeat, there is nothing wrong with your thermostat. You are about to participate in a great adventure. You are about to experience the awe and mystery which reaches from the inner mind to ... SACRAMENTO!" temperature

$\textbf{Deadband} \rightarrow \textbf{Liveband}$

Privacy preserving sensing of total power

Simulation for 500 homes + ERCOT DA price

How can the LSE price a contract

Summary

- 1. Privacy preserving aggregate sensing
- 2. Individual comfort guarantees
- 3. Contract $\cos x \propto QoS$
- 4. Mathematically optimal, no ad-hoc fix

Wishlist

- 1. Hardware implementation of thermostatic control
- 2. Pilot project to implement the architecture

EnergyCoupon: Demand Response in Retail Markets

Dr. Srinivas Shakkottai Dr. Le Xie Dept. of Electrical & Computer Engineering Texas A&M University

- 2
- LSE pays a variable price in the energy market.
- AC usage of about 3 kWh per home at 5:00-6:00 PM.
- Nudge users into changing their usage pattern by offering Energy Coupons?

COMPUTER

ENGINEERING & SYSTEMS GROUP

- $\hfill\square$ When do we offer coupons?
- □ What kind of incentive scheme to motivate adoption?
- □ How much savings to the LSE?

Simulation: Texas Homes

- Home air conditioning is a major part of electricity usage in Texas.
- Typical 2500 sq ft home
 consumes of the order of 30
 kWh per day, and about 12
 kWh in the peak period.
- Can we incentivize users to
 move some energy
 consumption from the peak
 period to off-peak?

Index	Period	Energy	ON Time	No. of units
1	3-4 PM	0.45	4	0.8
2	4-5 PM	3.4	30	6
3	5-6 PM	3.85	34	6.8
4	6-7 PM	0	0	0
5	7-8 PM	3.57	31.5	6.3

Simulation: Texas Homes

Hazard to LSE measured as mean plus standard deviation in price.

- Coupons assigned
 heuristically to promote
 consumption in off peak.
- Reasonable set of action vectors chosen
- Cost is the difference in mean plus standard deviation of home temperature.

Index	Period	Hazard/MWh	Coupons/unit
1	3-4 PM	\$61.2	15 if $x_1 > 0.8$; 1 otherwise
2	4-5 PM	\$120.2	1
3	5-6 PM	\$154.2	0
4	6-7 PM	\$101.3	2
5	7-8 PM	\$54.05	30 if $x_5 > 6.3$; 1 otherwise

Index	Action Vector	Cost	Coupons
0	(0, 0, 6, 0, 0)	0.05	13.92
1	(1, 0, 0, 0, 5)	1.719	243.92
2	(2, 0, 0, 0, 4)	1.547	233.92
3	(3, 0, 0, 1, 2)	0.934	187.92
4	(4, 0, 0, 1, 1)	0.874	177.92
5	$\left(3,0,0,2,1 ight)$	0.525	151.92

20

30

40

50

reward

60

70

80

COMPUTER

NGINEERING &

- to the LSE for 50 homes
 - is \$116 per week.
- □ System could be self sustaining.

- \Box 50 simulated homes.
- □ Price data from ERCOT: Summer 2014
- □ Weather Data: Variation in daily temperature.
- □ Rational customer model.
- Conservative actions (only move energy from 5:00 PM - 7:00 PM; less than 1 degree temperature variation).
- □ Simulation run over 12 weeks.
- □ Average savings to LSE is about \$85 per week.

J. Li, B. Xia, X. Geng, H. Ming, S. Shakkottai, V. Subramanian and L. Xie, "Energy Coupon: A Mean Field Game Perspective on Demand Response in Smart Grids, ACM SIGMETRICS'15.

8

Ο

 \Box

 \triangleleft

Image: Image

Next game is this Friday. (Submit your coupons before midnight.)

- □ 10 Homes in Houston Texas.
- \Box Trial is in its second week currently.
- Provide users with candidate thermostat settings to maximize their rewards.
- Response has been very positive, both on the incentive scheme, as well as on home usage data.
- Users appreciate receiving home electricity usage statistics and comparisons with other homes.

Demand response of the order of 5 to 6 kWh per residential customer (~ 0.5 MWh with 100 users) appears to be feasible in a sustainable manner.

Wish List

10

- Partner with LSE(s) to conduct trial at a larger scale.
- Obtain data on response to differentiated pricing:
 - What is the usage when peak/off peak pricing is used?
 - Obtain data on response to block pricing.

11

Thank you!