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Electric Reliability Council of Texas 
(ERCOT) 2016

Peak demand: 69,877 MW (August 10, 2015)
Wind capacity: > 16,000 MW (highest of any state in the U.S.)
Wind generation record: 13,883 MW (12/20/2015), ~45% of load at that 
time

3http://ercot.com/content/news/presentations/2016/ERCOT_Quick_Facts



Exploiting Demand Side Flexibility
• Modeling DR in Wholesale Markets [1][2]
• Market Revenue Inadequacy with DR [3]
• New ISO Design to Account for Stochastic 

Dynamic DR [4]
• Internet-of-things inspired Energy Coupon DR 

[5]
• Privacy-preserving retail services while 

exploiting DR [6]
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Quantifying Actual Demand Response in ERCOT
• ERCOT provided us with customer-level data 

for each “large” C&I customer:
• Customer location 
• Information on whether retail contract uses time-

varying prices (TVP)
• TVP includes e.g. real-time pricing, critical peak pricing.  Excludes simple time-of-use

• Consumption (every 15-min for summer of 2008-
2010)

• 8537 customers (23% of ERCOT load)
• 1250 are exposed to time-varying wholesale prices
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Econometric Approach: Elasticity 
Estimation

• Econometric estimation generates 
“substitution matrix” of own- and cross-
elasticity 
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L. Xie, S. Puller, M. Ilic, and S. Oren, “Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable 
Resources,” PSERC Final Report M-26, Aug 2013. 



A Closer Look from an Engineering Perspective
• Nonlinearity (Two-regime)

• Very small response when 
price is low-to-moderate

• Observable response when 
price is very high (P > 95%-
quantile)

• (Almost Consistent) Delay in 
response
• Maximum DR response 

occurs up to several intervals 
after price spike
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J. An, P. R. Kumar, L. Xie, “On Transfer Function Modeling of Price Responsive Demand: An Empirical Study,” IEEE PESGM 2015.



Problem Formulation
• Given an ARX Model of Demand Q(t) with 

respect to price P(t) and Q(t)

• Estimate parameters     and    , and characterize 
the residual  
• Moderate price regime
• Peak price regime: f(P(t)) may be nonlinear
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TF Model of a Commercial Load under High 
Price Regime (P>95%-quantile)
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Correlation: 72%

Delay effect of demand response 
w.r.t. price spikes (60 min)

J. An, P. R. Kumar, L. Xie, “On Transfer Function Modeling of Price Responsive Demand: An Empirical Study,” IEEE 
PESGM 2015.



DR for Providing Flexibility
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How smart is your smart thermostat

6/14/2016 Articles: Who Will Control Your Thermostat?
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Who Will Control Your Thermostat?
By Joseph Somsel

"There is nothing wrong with your thermostat. Do not attempt to adjust the temperature. We are controlling your power

consumption. If we wish to make it hotter, we will turn off your air conditioner. If we wish to make it cooler, we will turn off your

heater.  For the next millennium, sit quietly and we will control your home temperature. We repeat, there is nothing wrong with your

thermostat. You are about to participate in a great adventure. You are about to experience the awe and mystery which reaches from

the inner mind to... SACRAMENTO!"*

Building codes and engineering standards are generally good things.  Updating and improving codes and standards better protect us
against earthquakes, for example, as we better understand the weak points and failure modes of existing construction techniques. 
Requirements that ensure proper handling of sanitary wastes can be largely credited with the increased life spans in industrialized
countries through the reduction of communicable diseases.

In California, we have 236 pages of state-mandated standards for building energy efficiency, known as Title 24.  This prescribes
methods for calculating the sizes of your home windows, the capacities of your air conditioner and heater, the thickness of the
insulation in your attic.  A small cottage industry has sprung up to perform these engineering calculations that are required for any
new commercial or residential construction or major change to existing structures.  While I've never personally been involved in
this branch of retail professional engineering, I've had colleagues who would moonlight doing Title 24 calcs. It is now just part of
the mandated paperwork involved in the construction business these days in California.

A new revision to Title 24 is in the works for 2008[2] and it includes a number of improvements and enhancements that are largely
good sense items and should be non-controversial.  For example a new swimming pool will probably need larger diameter pipes
between the pool, the filter and the pump than was former practice.  This will reduce the fluid friction losses that your pump must
overcome and hence reduce the pump's consumption of electricity, albeit at a minor increase in first cost for the larger pipes and
fittings.  Another good idea is a requirement for lighter colored shingles, the "Cool Roof Initiative."  That is intended to reduce heat
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Deadband → Liveband
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Architecture



Privacy preserving sensing of total power



Simulation for 500 homes + ERCOT DA price



How can the LSE price a contract



Summary
1. Privacy preserving aggregate sensing

2. Individual comfort guarantees

3. Contract cost ∝ QoS

4. Mathematically optimal, no ad-hoc fix

Wishlist
1. Hardware implementation of thermostatic control

2. Pilot project to implement the architecture
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System Model 

¨  LSE pays a variable price in 
the energy market. 

¨  AC usage of about 3 kWh per 
home at 5:00-6:00 PM. 

¨  Nudge users into changing 
their usage pattern by offering 
Energy Coupons? 

¨  When do we offer coupons?   

Energy Coupon: A Mean Field Game Perspective on

Demand Response in Smart Grids

Paper #173

ABSTRACT
We consider the problem of a Load Serving Entity (LSE) try-
ing to reduce its exposure to electricity market volatility by
incentivizing demand response in a Smart Grid setting. We
focus on the day-ahead electricity market, wherein the LSE
has a good estimate of the statistics of the wholesale price
of electricity at di↵erent hours in the next day, and wishes
its customers to move a part of their power consumption to
times of low mean and variance in price. Based on the time
of usage, the LSE awards a di↵erential number of “Energy
Coupons” to each customer in proportion to the customer’s
electricity usage at that time. A lottery is held periodically
in which the coupons held by all the customers are used as
lottery tickets.

Our study takes the form of a Mean Field Game, wherein
each customer models the number of coupons that each of
its opponents possesses via a distribution, and plays a best
response pattern of electricity usage by trading o↵ the util-
ity of winning at the lottery versus the discomfort su↵ered
by changing its usage pattern. The system is at a Mean
Field Equilibrium (MFE) if the number of coupons that the
customer receives is itself a sample drawn from the assumed
distribution. We show the existence of an MFE, and charac-
terize the mean field customer policy as having a multiple-
threshold structure in which customers who have won too
frequently or infrequently have low incentives to participate.
We then numerically study the system with a candidate ap-
plication of air conditioning during the summer months in
the state of Texas. Besides verifying our analytical results,
we show that the LSE can potentially attain quite substan-
tial savings using our scheme. Our techniques can also be
applied to resource sharing problems in other societal net-
works such as transportation or communication.

1. INTRODUCTION
There has recently been much interest in understanding soci-
etal networks, consisting of interconnected communication,
transportation, energy and other networks that are impor-

tant to the functioning of society. These systems usually
have a shared resource component, and participants have to
periodically take decisions on when and how much to utilize
such resources. Research into these networks often takes the
form of behavioral studies on decision making by the par-
ticipants, and whether it is possible to provide incentives to
modify their behavior in such a way that the society as a
whole benefits [1, 2].
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Figure 1: Day-ahead electricity market prices in dol-
lars per MWh on an hourly basis between 12 AM
to 12 PM, measured between June–August, 2013 in
Austin, TX. Standard deviations above and below
the mean are indicated separately.

Our candidate application in this paper is that of a Load
Serving Entity (LSE) (e.g., a utility company) trying to re-
duce its exposure to daily electricity market volatility by in-
centivizing demand response in a Smart Grid setting. The
reason for our choice is the ready availability of data and re-
liable models for the cost and payo↵ structure that enables a
realistic study. For instance, consider Figure 1, which shows
the (wholesale) price of electricity at di↵erent hours of day
during the summer months in Texas. The data was obtained
from the Electric Reliability Council of Texas (ERCOT) [3],
an organization that manages the deregulated wholesale en-
ergy market in the state. The price shows considerable vari-
ation during the day, and peaks at about 5 PM, which is the
time at which maximum demand occurs. A major source
of this demand in Texas is air conditioning, which in each
home is of the order of 30 kWh per day [4]. Incentivizing

¨  What kind of incentive scheme to motivate adoption? 
¨  How much savings to the LSE? 
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¨  Home air conditioning is a 
major part of electricity 
usage in Texas. 

¨  Typical 2500 sq ft home 
consumes of the order of 30 
kWh per day, and about 12 
kWh in the peak period. 

¨  Can we incentivize users to 
move some energy 
consumption from the peak 
period to off-peak? 

Simulation: Texas Homes 

Table 1: Parameters for a Residential AC Unit

Parameter Value
C, Thermal Capacitance 10 kWh/�C
R, Thermal Resistance 2 �C/kW

P, Rated Electrical Power 14 kW
⌘, Coe�cient of Performance 2.5
⌧
r

, Temperature Setpoint 22.5 �C
�, Temperature Deadband 0.3 �C

In order to determine the energy usage for AC in our typi-
cal home, we need to have an estimate of how the ambient
temperature varies over a day in Texas during the summer
months. These values are available in the Pecan Street data
set, and we plot the average values over three months for
Austin, TX in Figure 3.
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Figure 3: Average ambient temperature from June–
August, 2013 in Austin, TX. Measurements are
taken every 15 minutes from 12 AM to 12 PM.

Next, we calculate the ON-OFF pattern of our typical air
conditioner based on the ambient temperature variation over
the course of the day. We do this by simulating the con-
troller in (19) with the appropriate ambient temperature
values taken from Figure 3. The pattern is presented in Fig-
ure 4. We see that there is higher energy usage during the
hotter times of the day, as is to be expected. This also cor-
responds to the peak in wholesale electricity prices shown
for the same period in Figure 1. The total energy used each
day corresponding to our 4 ton AC (= 14 kW; see Table 1)
is 30.42 kWh.

For comparison, we use the Pecan Street data set to provide
the measured daily average energy usage for AC during the
same period for 4 homes that have parameters in the same
ballpark as our typical home. These values are shown in
Table 2.The table shows the close match of our home model
with real AC usage patterns.

7.2 Actions and Costs
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Figure 4: Simulated ON/OFF state of AC over a
24 hour period in a home and the corresponding in-
terior temperature. The interior temperature falls
when the AC comes on, and rises when it is o↵.

Table 2: Daily AC Usage for Four Homes

ID Square feet Age AC (tons) Energy (kWh)
93 2934 20 5 28.2
545 2345 6 3.5 41.5
4767 2710 5 4 31.7
3967 2521 5 3.5 37.8

The customer action space in our problem consists of choos-
ing when to turn ON and OFF the AC, and is uncountably
infinitely large. We need to pick a reasonable discrete subset
of the action space for our study. We find from the home
model that 13.6 kWh of energy is consumed during the in-
terval of 3� 8 PM. The amount of energy used in each hour
during this period in kWh and the corresponding ON time
in minutes for the AC are shown in the first four columns of
Table 3.

Table 3: Peak-Price Period Consumption

Index Period Energy ON Time No. of units
1 3� 4 PM 2.1 9 4.5
2 4� 5 PM 0.93 4 2
3 5� 6 PM 3.03 13 6.25
4 6� 7 PM 3.03 13 6.5
5 7� 8 PM 2.8 12 6

From Figure 1 it is clear that the consumption during max-
imum price period 3 (5 � 6 PM) has the maximum impact
on the overall energy cost of the LSE. The LSE would like
to incentivize the shift of some of this usage, without exces-
sively a↵ecting the internal home temperature. We assume
that the actions available to the customer involve transfer-
ring energy from period 3 to the cheaper periods indexed
by 1, 2, 4 and 5. Energy transfer implies increasing the AC
ON time, and we choose a transfer unit of 2 minutes. For
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¨  Hazard to LSE measured 
as mean plus standard 
deviation in price. 

¨  Coupons assigned 
heuristically to promote 
consumption in off peak. 

¨  Reasonable set of action 
vectors chosen 

¨  Cost is the difference in 
mean plus standard 
deviation of home 
temperature. 

Simulation: Texas Homes 
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¨  Win: Reward $x 
¨  Lose: -$1 
¨  Stay in the system for an 

average of 50 lotteries. 
¨  Prospect utility 

representing response to 
lotteries. 

¨  Net reduction in hazard 
to the LSE for 50 homes 
is $116 per week. 

¨  System could be self 
sustaining. 

Simulation: Texas Homes 

Li et al.: Mean Field Games in Nudge Systems for Societal Networks
Article submitted to Operations Research; manuscript no. 23
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MFE illustrates that even as small as 1�C change of the setpoint of AC each day over several homes

can yield significant benefits.

3.5. Reward, Saving and Profit

We assumed in the above simulations that the customer expects to win at least $1 on average by

participating, and hence the decrease in surplus due to losing at the lottery is l = 1, while the

increase in surplus due to winning is w = 40� 1 = 39 (since the reward for winning the lottery is

$40). We saw that the total net reduction (savings to the LSE) over 50 homes is $78 each week,

and hence $40 reward is sustainable.
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¨  50 simulated homes. 
¨  Price data from ERCOT: Summer 2014 
¨  Weather Data: Variation in daily temperature. 
¨  Rational customer model. 
¨  Conservative actions (only move energy from 5:00 PM 

– 7:00 PM; less than 1 degree temperature variation). 

¨  Simulation run over 12 weeks. 
¨  Average savings to LSE is about $85 per week. 

J. Li, B. Xia, X. Geng, H. Ming, S. Shakkottai, V. Subramanian and L. Xie, “Energy 
Coupon: A Mean Field Game Perspective on Demand Response in Smart Grids, 
ACM SIGMETRICS’15.  

Data Analytics 
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System Architecture 

Smartmeter 
Texas ERCOT Data Weather Data 

SQL Database 

Peak Time   
Estimate 

Tips and Usage 
Statistics 

Lottery 

Coupon 
Generation 

Baseline Estimate 
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Android App 
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¨  10 Homes in Houston Texas. 
¨  Trial is in its second week currently. 
¨  Provide users with candidate thermostat settings to 

maximize their rewards. 
¨  Response has been very positive, both on the incentive 

scheme, as well as on home usage data. 

¨  Users appreciate receiving home electricity usage 
statistics and comparisons with other homes. 

 

Trial Details 
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Concluding Remarks 

¨  Demand response of the order of 5 to 6 kWh per 
residential customer (~ 0.5 MWh with 100 users) 
appears to be feasible in a sustainable manner.  

¨  Wish List 

¤ Partner with LSE(s) to conduct trial at a larger scale. 
¤ Obtain data on response to differentiated pricing:  

n What is the usage when peak/off peak pricing is used? 
n Obtain data on response to block pricing. 
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Thank you! 


