

Advancements in Overhead Conductor technology: Engineered Emissivity

Conductor Temperature/Line Ratings

Ratings can be increased with higher emisivity and lower absorptivity

Explanation of Emissivity and Absorptivity

From a utility's facility rating methodology*

The *Infrared Emissivity* coefficient represents the ratio of radiant energy emitted by the conductor surface to the infrared radiant energy emitted by a blackbody at the same temperature, and <u>can vary between about 0.2 to about 0.9</u>. As a conductor ages, the infrared emissivity, or ability of the conductor to radiate heat energy to its surroundings increases, which increases the MVA rating of the conductor.

The <u>Solar Absorptivity</u> coefficient represents the fraction of incident solar radiant energy that is absorbed by the conductor surface. The solar absorptivity coefficient <u>varies between about 0.2 to about 0.9</u>, with higher values indicating that more solar energy is being absorbed by the conductor. As a conductor ages, the solar absorptivity, or the amount of solar energy absorbed by the conductor increases, which decreases the MVA rating of the conductor.

selection of these two variables can be highly subjective.

E3X changes these variables to fixed values, eliminating uncertainty

*downloaded from OATI webOASISSM

New vs. Aged Conductors

New aluminum conductor

Aged aluminum conductor

How many years will it take for conductor to "darken" to assumed value? Will today's conductors ever reach this level?

Atmospheric Pollution Reduction 1970-2010 Conductors from existing studies were installed pre-1970

Limited number of more recent conductors tested show lower emissivity

What value of Emissivity is used today? (For standard lines not using E3X conductors)

A sample of emissivity values used for line rating by EEI members: 0.4,0.5,0.7,0.8,0.9 Which value is Correct?

		approx.		
	Years in	year		
Location	service	installed	Reference	Emissivity
Washington, DC	0.8	1971	PJM/NASA	0.46
Washington, DC	8	1964	PJM/NASA	0.74
Washington, DC	36	1936	PJM/NASA	0.85
San Francisco	40	1916	Taylor, House	0.91
Philadelphia	21	1935	Taylor, House	0.89
Chicago	25	1931	Taylor, House	0.89
San Francisco	43	1913	Taylor, House	0.88
New York	23	1933	Taylor, House	0.80
Tennessee	38	1918	Taylor, House	0.77
New Jersey	15	1993	EPRI	0.63
Austin, TX	32	1982	EPRI	0.45
San Bernadino	32	1924	Taylor, House	0.38

Values derived by Aluminum Company of America in study cited in IEEE 738 and by EPRI using their Emissivity Testing Instrument and by NASA in for 1973 PJM conductor rating task force Shape of aging curves are estimates for illustration purposes only

General Cable

Surface Modified Overhead Conductor Temperature Rise Test

Impact of different surface conditions on ratings

What if 2309 amps put onto E3X Conductor? 195 °C

Introducing

High Emissivity (0.9), Low Absorptivity (0.2)

Results in cooler operating conductor for given load

Applied in the factory to the outside of the conductor

Thin (1/2 mil) coating

Environmentally stable

Hard, Durable, Abrasion and Heat Resistant, Flexible

Can only be removed by removing underlying aluminum

💎 General Cable

Commonly Used ERCOT conductors

	Total Solar Ra Azir	Frequency: diated Heat: nuth of Line: Atmosphere:	60 95.4 0 Clear	Hz W/ft² °	Ambient Ten Cross wind V Wind Angle : Northern La Elevation: Month and I Time of Day	mperature: Velocity: titude: Day of Year:	40 2.00 90 32 600 July 1 2:00 PM	°C ft/s ° ft	
	795.0 kcm	795.0 kcmil 20/7 Drake/ACSS/TW/MA2			959.6 kcmil 22/7 Suwannee/ACSS/TW/MA2				
Temp	Resistance	Ampacity			Resistance	Ampacity			
С	Ω/kft	New (shiny)	E=0.5/A=0.5	E3X	Ω/kft	New (shiny)	E=0.5/A=0.5	E3X	
20	00 0.03622	1415	1550	1759	0.03006	1595	1753		1996
	1590.0 kcm	1590.0 kcmil 42/19 Falcon/ACSS/TW/MA2				1926.9 kcmil 42/19 Cumberland/ACSS/TW/MA2			
Тетр	Resistance	Ampacity			Resistance	ŀ	Ampacity		
С	Ω/kft	New (shinv)	E=0.5/A=0.5	E3X	Ω/kft	New (shiny)	E=0.5/A=0.5	E3X	

2695 0.01620

2125

2352

200 0.01955

2664

3065

2398

E3X Technology improves any aluminum conductor

Added Capability

E3X adds capacity to standard bare aluminum conductors such as ACSR and ACSS, increasing operational flexibility and reducing the need for one-off solutions

More Ratings Certainty

- E3X lowers risk of clearance violations and damage to lines from overheating by converting uncertain ratings variables to fixed values
 - -Changes assumed emissivity values to fixed emissivity values
 - -Changes assumed absorptivity values to fixed absorptivity values

E3X Testing:

from the lab to field trials to utility deployment

Performance	 Temperature Reduction (vs. New, Non-Specular, and Aged) Ampacity Oak Ridge National Laboratory Temperature Reduction vs. Coating Coverage
Physical Durability	 Adhesion Thermal Stability Sheave Roller Galloping Aeolian Vibration Tension Cycling
Environmental Durability	 Weatherometer 85/85 Heat/Humidity Water Immersion Low pH High pH Salt Water
Electrical Performance	• Corona / Wet Corona
Field Testing	Utility Installations
Trans Powr [®]	💎 General Cable

Sample of testing performed: **Oak Ridge National Laboratory**

 Conductor was installed at Oak Ridge National Laboratory's PCAT (Powerline Conductor Accelerated **Test Facility) in October 2014**

PCAT – Powerline Conductor Accelerated Test

Sample Test Results at Oak Ridge National Laboratory

Sample Test Results at **Oak Ridge National Laboratory**

Ambient Temp (°C)	Wind Velocity (ft/s)	Drake ACSS/MA2 (°C)	Drake ACSS/MA2/E3X (°C)	Temperature Reduction (°C)	Sag Differential (ft)*
9	1.1 - 3.6	90	72	18	0.5
8	0 - 4.7	119	90	29	0.7
8	4.4 - 5.7	125	94	31	0.9
6	0.2 - 3.2	166	125	41	1.5
6	0.4 - 4.8	200	150	50	1.6
4	N/A	240	174	66	2.25
2	2.1 - 2.2	275	190	85	2.85

* 600 ft span

E3X Technology: Increased Capacity, Lower Risk

Summary

- –Adds capacity and flexibility to accommodate uncertainty in a fast changing transmission landscape
- -Reduces risk in transmission line ratings by changing assumed variables to fixed values
- -Lowers project costs by enabling conductors to operate safely at higher rated ampacities
- -Reduces O&M costs by increasing capabilities of products already used everyday.
- –Proven in the lab, the field, and with utility installations

Thank You!

Joe Coffey **General Cable Director Transmission** 303 284 8025 jcoffey@generalcable.com

