

2016 RTP Update

February 16, 2016 RPG Meeting

Hydro Unit Dispatch Assumption

For maximum dispatch level of hydro units, ERCOT will use the CDR methodology for the 2016 RTP as originally recommended by PLWG

PUBLIC

Case Summary

(Unit: MW)

	Study Year			
	2018	2019	2021	2022
Generation* (wind at 15th percentile)	83,125	82,280	82,668	82,668
Load (NCP total)**	84,801	86,041	88,218	89,246
Estimated Loss	1,790	1,841	1,975	2,071
Reserve	2,800	2,800	2,800	2,800
Delta ⁺	(6,266)	(8,402)	(10,325)	(11,449)

* Generation: Maximum dispatchable generation

** Load numbers have been updated since the last RTP update

⁺ Delta = Generation – Load – Loss – Reserve

Note, the numbers in the table are approximate values and subject to change

Example of Summer Peak Case Preparation

As presented in the Jan RPG meeting, maximum dispatch level of wind generation outside of study region will be increased to meet load, loss, and reserve requirements. Maximum dispatch is the Wind Peak Average Capacity Percentage for summer used in the December 2015 CDR

(Linit: M\A/)

	Max dispatchable wind in the study weather zones	Max dispatchable wind in the non- study weather zones*	Dispatchable Reserve
West	140	663	523
Far West	79	372	293
North	153	688	535
North Central	13	221	208
South	483	1,747	1,264
South Central	19	102	83
Total	887	3,793	2,906

* 55% of true capacity for coastal wind, 12% for non-coastal wind

Example:

- Study Year: 2018 Summer Peak
- Study Zones: South/South Central
- Delta: 6,226 MW
- To make the base case solvable,
 - 1. Increase total wind capacity by

1,559 MW in the non-study

weather zones, 2. Adjust load in

the non-study weather zones by

approximately 4,707 MW

Question

