

# **Lubbock Load Integration Study**

**RPG Meeting** 

December 15, 2015

## Introduction

- Lubbock Power & Light (LP&L) is considering connecting to the ERCOT Grid as early as 2019 (<u>http://www.lpandl.com/energy-</u> <u>services/2019/</u>)
- LP&L performed their own study & identified preferred options
- PUCT instructed ERCOT to study the integration of LP&L into the ERCOT Grid
- Objective to identify transmission facilities that will be required to integrate the LP&L load and transmission network into the ERCOT Grid and satisfy ERCOT and NERC Transmission Planning reliability standards in the most cost effective way possible
- ERCOT study will be informed by but not necessarily limited to preferred options identified in LP&L study

### Assumptions

- □ ERCOT will study expected 2021 Summer Peak Conditions
- Study region will include LP&L, Panhandle, and West, Far-West and North Weather Zones
- LP&L load integration study will take into account the ERCOT N-1-1 contingency and other N-1 maintenance outage conditions

## Study Case

#### □ Steady-State

- Constructed from the final 15RTP 2021 Summer Peak Case developed for WFW
- □ Transmission Projects expected to be in-service within the study region by 2021 at the time of the study will be added to the case
- Generator additions that meet Planning Guide Section 6.9 criteria at time of study will be added to the case
- □ North Weather Zone loads will be set to the higher of the SSWG or the ERCOT 90<sup>TH</sup> Percentile forecast per the 2015 RTP scope
- Load outside of North, West and Far-West Weather Zones will be scaled down as necessary to balance any load-generator imbalance

# Study Case (cont.)

#### Dynamics

Constructed from most recently approved DWG 2021 Summer Peak case (Base case approved in May 2015) and DWG 2018 High Wind Low Load (Base case approved in September 2015)

#### Production Cost

□ Final 2021 UPLAN model from 2015 RTP will be used for economic analysis

#### □ LP&L model data requested

LP&L will provide their network data (steady state, dynamics & economics) and LP&L contingencies

## **Contingencies and Criteria**

#### □ Steady-State Reliability Analysis

Contingencies

TPL-001-4 and ERCOT Planning Criteria (<u>http://www.ercot.com/content/wcm/current\_guides/53526/04\_05011</u> <u>5.doc</u>):

**P**0

□ P1 and P7

□ P3: G-1 + P1\*/P7 (G-1 worst case only)

□ P6: X-1 + P1/P7 (X-1 is 345 kV Auto outages)

□ P2, P4, and P5

□ Thermal and voltage Criteria:

□ Will be consistent with 2015 RTP assumptions

## Study Procedure

#### □ Step 1 Steady-State Analysis

□ Iterate on these steps until no unresolved violations are present:

- Model potential interconnection options
- □ Set SCOPF dispatch (wind limited per RTP Guides)
- Run all contingencies to identify unresolved reliability violations

#### □ Step 2 Dynamic Stability Analysis

- Test short-listed options for compliance with Dynamics requirements of NERC TPL and ERCOT Planning Criteria
- Perform SSR Frequency Scan on the short-listed options
- Determine Panhandle Transfer Limits for short-listed options

## Study Procedure (cont.)

#### □ Step 3 Economic Analysis

Compare economics for short-listed options based on project capital cost and production costs (lowest net costs)

#### □ Step 4 Sensitivity

- □ Additional analysis to test future LP&L load growth/integration
- Cost-Benefit analysis for the recommended options accounting for avoided costs for future upgrades deemed not required by virtue of the LP&L integration, if any

## **Tentative Schedule**

Dec. 2016

□ Stakeholders comment on the LP&L scope document

 Please send any comment to ERCOT at <u>ggnanam@ercot.com</u> before Dec. 25, 2015

ERCOT/LP&L study cases preparation

□ January – Feb. 2016

Conduct reliability analysis and evaluate LP&L integration options

□ March – April 2016

Conduct economic analysis and other sensitivity studies

□ May 2016

□ Prepare final report for PUCT and present to RPG

• Regular updates will be provided at monthly RPG meetings



Scope for LP&L Load Integration Study