

Creating the Dynamic Grid

How controlling the flow of electrons changes nearly everything

December 2014

A Challenging Environment

© 2014 Smart Wire Grid, Inc.

Smart Wire Grid (2)

Uncertainty: What Lies Ahead?

From Terry Boston's August 2014 CIGRE presentation

What Our Clients Tell Us:

- AEP CEO: EPA carbon rules may cause 'cascading outages' on the grid Load flow studies reveal problems with the EPA's 2020 cornerstone assumptions
- The future changes in generation and load are increasingly difficult to forecast, introducing much uncertainty in transmission need
- Unrealistic expectations around restoration of service after extreme weather events
- It is becoming more difficult to manage the stress level of the transmission team

© 2014 Smart Wire Grid, Inc.

Smart Wire Grid (3)

Smart Wire Grid's Solution

A Revolutionary, Low-cost Approach to Power Control that:

Before SWG

Simplified planning scenario predicts future overload

With SWG's PowerLine Guardian

Power is pushed to alternate lines with spare capacity, resolving overload

With SWG's Router Technology

Power is pulled onto lines with spare capacity, resolving overload

Smart Wire Grid (4)

© 2014 Smart Wire Grid, Inc.

Creating A Flexible, Resilient Grid: The Power of SWG

© 2014 Smart Wire Grid, Inc.

Smart Wire Grid (5)

Plant Retirement Support Case Study

- A customer recently came to us after learning of an imminent closure of a thermal electric power plant.
- With a scarce timeline their options were limited and less than ideal.

Step 1: Replace energy production and meet capacity requirements

- 1. Import more power
- 2. Keep open another plant that was scheduled to close
- 3. Run peaker plant at higher capacity factors (as baseload)
- 4. Cut exports
- 5. Increased demand response

Step 2: Enable delivery

- 1. Add transmission capacity: New line construction & reconductoring
- 2. Re-rating: Raise the towers, dynamic line rating
- 3. Open a line (weakens grid but may provide Band-Aid)
- 4. Radializing network topology (losing a line involves losing load, but in a controlled/constrained area)
- 5. New or expanded RAS/SPS that will shed load

Evaluation of Alternatives

#	Power Replacement Option	Reason / Mitigation	Lead Time	Viable?	w/swg?
1	Extend the life of Plant R	Requires reconductoring of overloaded 115 kV lines	3 years		
2	Extend the life of Plant T	Emissions limits	N/A		
3	Extend the life of Plant Q + import more power from North	Plant Q provides necessary voltage support, requires upgrades, provides expensive power	1 year		(SWG not required for viability)
4	Extend the life of Plant S	Legal battles with unwilling owner	Unknown		
5	Run Peaker M at higher CF + import more power from South	Peaker M provides expensive power. Will require RAS. Increased runtime creates concerns for plant dependability	Immediate		(SWG eliminates RAS, reduces peaker dependency)
6	Run Peaker N at higher CF	Emissions limits, requires reconductoring of overloaded 230 kV lines	3 years		•
7	Import more power from East	Requires reconductoring of 230 kV line that has clearance issues (no planned outages possible)	6 years		
8	Import more power from North	Unlikely to secure power and transmission contracts	3 years		
9	Import more power from West	Insufficient transfer capability	10 years		

© 2014 Smart Wire Grid, Inc.

Viable Alternatives

SWG solves downstream problems, increasing the number of viable solutions

#	Power Replacement Option	Reason / Mitigation	Capital Cost Estimate (w/o SWG)	Capital Cost Estimate (w/SWG)	PVRR Estimate (w/o SWG)	PVRR Estimate (w/SWG)	Additional Value
1	Extend the life of Plant R	Requires reconductoring of overloaded 115 kV lines	N/A	\$106 MM		\$206MM	 Plant R is in an attractive location and a viable next best alternative when avoiding reconductoring with SWG
3	Extend the life of Plant Q + import more power from North	Plant Q provides necessary voltage support, requires upgrades, provides expensive power	\$200 MM	N/A	\$350MM	N/A	 Uncertainty surrounding ability to obtain permit for upgrades May be challenging to secure experienced plant operators
5	Run Peaker M at higher CF + import more power from South	Peaker M provides expensive power. Will require RAS. Increased runtime creates concerns for plant dependability	\$5 MM	\$11 MM	\$350MM	\$250MM	 Reliability risk of running the peaker beyond design capacity factor Political risk associated with increased pollution and emissions violations
7	Import more power from East	Requires reconductoring of 230 kV line that has clearance issues (no planned outages possible)	N/A	\$10 MM		\$110MM	 Easiest solution to implement Highest confidence in execution Fewest additional planning issues to resolve

© 2014 Smart Wire Grid, Inc.

Smart Wire Grid Partners & Customers

SWG technology was developed by utilities and is quickly gaining credibility in an industry that relies on demonstrated reliability

Customers

"The great aspect of the DSR is that it affords us a fast, flexible and economical solution to rebuilding or reconductoring a transmission line." — Chase Battaglio, PM Southern Company

Partners

- Smart Wire products were incubated at NEETRAC, the R&D & testing facility for large USA utilities. Its members serve >60+% of all US load.
- A NEETRAC utility user group generated the product requirements.
- ARPA-E award winner.

Technology

- Strong core licensed patent coverage plus additional 11 proprietary filings.
- Integrated into transmission planning software.
- ISO-9001 certified manufacturing facility.

Advisory Board

Tom Voss, SWG Chairman Former CEO, Ameren

Anjan Bose Regents Professor, WSU IEEE Fellow

Smart Wire Grid (9)

The Path to a Dynamic Grid

Additional Information

Gregg Rotenberg

President

<u>GreggR@smartwiregrid.com</u>
+510 335 2475

Smart Wire Grid, Inc.

1300 Clay Street, Suite 840
Oakland, CA 94612-1428
United States of America
smartwiregrid.com