
# **CNP Jones Creek Project**

- ERCOT Independent Review Update

RPG Meeting October 21, 2014

# **Map of the Study Area**



### **Background**

#### 721 MW load addition at Quintana substation

#### CNP proposed solution

- Build a new 345/138 kV substation (Jones Creek Substation)
- Install TWO new 800 MVA / 1000 MVA 345/138 kV autotransformers at the Jones Creek Substation
- Loop the 345 kV Dow-STP circuit 18 into the Jones Creek Substation
- Loop the 138 kV Freeport-Velasco circuit 59 into the Jones Creek Substation
- Reconfigure circuits in the Freeport area: creating 138 kV Velasco-SURFSI-Freeport-Jones Creek circuit 59, 138 kV Velasco-QNTANA-Jones Creek circuit 48, and 138 kV Velasco-Jones Creek circuit 59;
- Reconfigure 138 kV Velasco-Franklins Camp circuit 02 to create 138 kV Jones Creek-Franklins Camp circuit 02;
- Upgrade 138 kV circuits in Freeport area to 838 MVA / 894 MVA rating
- Install a new 138 kV 120 MVAR capacitor bank at the Jones Creek Substation

## **Study Model**

#### Base Case

The 2018 Reliability final Case from the 2013 RTP

#### Transmission Changes applied to Base Case

- Adjust load level to reflect the 2014 SSWG load forecast for the year of 2019 (CNP TSP area ~ 23078 MW)
- Dow 345/138 autotransformer: install a second 345/138 kV autotransformer at the Dow-Velasco substation, and a second autotransformer lead to Velasco substation
- Oyster Creek substation: add 138 kV Oyster Creek substation with 109 MW load, 82 MW generator, and 40 MVAR capacitor bank
- 721 MW new load addition at Quintana substation

# **Reliability Analysis of Base Case**

### N-1 Contingency Analysis

Contingency definitions in 2013 RTP's 2018 Reliability Case

| Contingency                                    | Overloaded Element                             | Overload under the Worst Contingency |
|------------------------------------------------|------------------------------------------------|--------------------------------------|
| Freeport – Quintana 138 kV<br>Circuit 47       | Quintana – Surfside Beach<br>138 kV Circuit 59 | 150%                                 |
| Quintana – Surfside Beach<br>138 kV Circuit 59 | Freeport – Quintana 138 kV<br>Circuit 47       | 148%                                 |

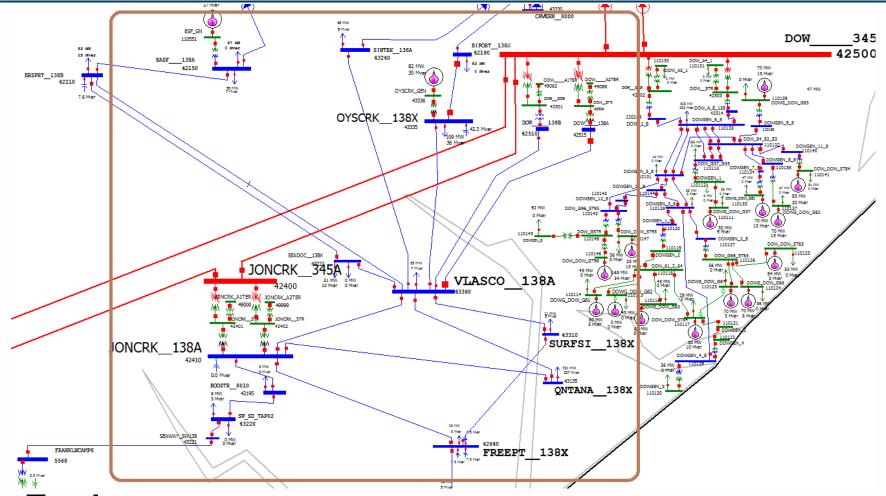
## **Reliability Analysis of Base Case**

### Selected X-1 & N-1 Contingency Analysis

- Outage of 345/138 kV autotransformer A1 at Dow-Velasco substation
- Followed by N-1 contingency analysis

| 2 <sup>nd</sup> Contingency (N-1)              | Overloaded Element                             | Rate B<br>(MVA) | Worst %<br>Loading |
|------------------------------------------------|------------------------------------------------|-----------------|--------------------|
| 345/138 kV autotransformer A2 in Dow-Velasco   | NA                                             | NA              | Unsolved           |
| Dow – Velasco 138 kV<br>Circuit 83             | NA                                             | NA              | Unsolved           |
| Freeport – Quintana 138 kV<br>Circuit 47       | Quintana – Surfside Beach<br>138 kV Circuit 59 | 562             | 153%               |
| Quintana – Surfside Beach<br>138 kV Circuit 59 | Freeport – Quintana 138 kV<br>Circuit 47       | 562             | 151%               |
| Retrieve – West<br>Columbia 138 kV Circuit 02  | Dow – Velasco 138 kV<br>Circuit 83             | 1000            | 109%               |

RPG: October 21, 2014


# **Project Option A (CNP Option 1)**

### Option A Upgrades

- New 138 kV ring bus substation (New Substation)
- New 138 kV single circuit line from Angleton Substation to New Substation (approximately 21 miles)
- New 138 kV single circuit line from West Columbia Substation to New Substation (approximately 21 miles)
- New 138 kV double circuit line from New Substation to Freeport Substation (approximately 5 miles)
- Expand Freeport Substation
- Capacitor banks at New Substation and Freeport Substation
- Total cost: \$ 125 million

ERCOI

# Project Option B (CNP Option 2) & C



#### Total cost

- Option B: \$ 80 million
- Option C: \$ 78 million (Option B without Cap bank @ Jones Creek)

## Reliability Analysis of Project Options

- Selected X-1 & N-1 Contingency Analysis
  - Outage of 345/138 kV autotransformer A1 at Jones Creek substation
  - Followed by N-1 contingency analysis
- Selected G-1 & N-1 Contingency Analysis
  - Two G-1 scenarios:
    - Outage of the 658MW unit in WAP generating station
    - Outage of the 1375MW unit in STP generating station
  - Followed by N-1 contingency analysis
- Selected N-1-1 Contingency Analysis
  - Outage of the STP Dow 345 kV circuit 27
  - Followed by N-1 contingency analysis
- With the selected project added, no overloads were found around the area of concern

## **Economic Analysis of Project Options**

#### Potential congestions in economical operation

- Base case: 2018 Economic case from the 2013 RTP
- Changes:
  - Dow 345/138 autotransformer
  - Oyster Creek substation
  - Load addition at Quintana substation
  - Selected project, e.g. Jones Creek substation
- UPLAN analysis was performed to study any the potential congestions under economical operation conditions
- Monthly congestion report were compared with the 2013 RTP results to see any new congestions caused by the new load and the selected project
- No new significant congestions were identified

RPG: October 21, 2014 10

### **Next Steps**

- Review additional feedback provided by Stakeholders
- Prepare the final report with ERCOT recommendation
- Present ERCOT recommendation to TAC and ERCOT Board of Directors endorsement

