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ABB Overview

September 24, 2014

150,000 employees

Present in 100+ countries
$42 billion in revenue (2013)
Formed in 1988

- Merger of Swiss (BBC 1891) and
Swedish (ASEA 1883) engineering
companies

= Publicly owned company with head
office in Switzerland
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ABB DM Power Control Solutions
Enabling the flow of power from generation to end use

Solar

Wind

Energy Storage
Conversion

Voltage & VAr

Management

Power Quality
Products

EV Charging
Stations

Inverters

Converters

l "
d

|

3 - ‘. - ‘!-/

|8 [ &4 e 4 -

'; I . {gl [ r

| :' e | k& .'
L [P TR
e FC/DF Wind Energy Storage Statcom AC Regular &
Solar Inverters AVC & UPS-|
o Converters 9 Inverters o Devices e eDC Fast Charging
Power Rating: Power Rating: Power Rating: Power Rating: Power Rating: Power Rating:
250W - 1.5MW 30kW — 6MW 50kW- 30MW 100kVAr - 30MVAr 125kVA - 20MVA 50 kW
TG
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Full Spectrum of Solar Inverters for North America
From 250 W to 1.5 MW

ULTRA
- 750, 1170, 1560 kW

E |
]I TRIO
EI - 20 - 30 kW
B UNO
e -2-12 kW

MICRO

o -0.25, 0.3 kKW
Residential | I I I -

I I I I
1 kW 10 kW 100 kW 1 MW
AL IDED
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ABB'’s Solar Inverter Office Location
US HQ located in Phoenix, AZ

US Solar Headguarters

Utility-scale solar inverters
EV charging stations

= Traction equipment
1ISO 9001:2008

Core Functions

e 5 - Sales & Marketing
Product Management

. t - Project Management
Testing / Manufacturing

- After-Sales Support & Service

AL DD
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Introduction

- Ancillary services & PV Inverters

- More and more PV inverters are becoming a part of the Power
System infrastructure

- System reliability is critical for both customers and operators
- PV Inverters should be able to survive contingencies

- PV Inverters to act as “good citizens” and support when situation
demands



Current Features
Frequency Regulation
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- DROOP characteristics: No response to dead band. Linear response relation thereafter

= Over frequency: Adjustable limits and reduction in active power as a gradient function

= Under frequency: Adjustable limits and increase in active power as a gradient function of a preset overhead

= Static/Dynamic active power curtailment: Command based



Current Features
Voltage Regulation

0 . . P-Q Capability Curve:
4% Reactive Droop; ULTRA-1100-TL-OUTD-2
+/- 1% Voltage Deadband P=100 kW ig T
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EH 100 -Qmax /——"' ""‘\\Qmax
e gg " Pn=1000kW /
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Current Features
Voltage Regulation

Constant Q mode

\:\\_\ ——Pin [kW]
\W‘:\_\ Pout [kW]
*\—\\_\_\ = Q [kvar]

\_\ \_\M —S [kVA]
=\_\
\_\

Power (kW/KVA/KVAR)

Reactive current
Alr/In [%]

Voltage limitation by
ahsorption of reactive power

Voltage drophise

dead band \ /’ (under-excited operation)

Voltage support by \\%\

injection of reactive power \\
(over-excited operation) \\\\

2

||||||||
-50% -40% -30% -20% - | % 20% 30% 40% 50%
Alr/in !

K_LVRT = m =2 :

AU = grid voltage drop (rise) during the fault
K_LVRT = reactive current droop factor

AU, %]
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Background

- Extending DG reactive power support on full-time basis: background and benefits

- Case study: “Cavriglia 1” PV plant — simulation at HV/MV substation level based
on hourly measured data

- Extending inverter operation on “full-time” basis — challenges and solutions

= Utility inverter performance with daytime mixed mode and nighttime reactive
power mode



Full-time DG reactive power support
Background and benefits

FERRANTI EFFECT

. AV 7
Vi — ) |
1 £ f_\r'a x‘frﬂ_\‘
A > —AN— L Vi Qc>Qp 2 V>V,
7 | Line parameters |
# = = Conventional approach :
— :«} — - * DAYTIME: switched compensating capacitors
-~ = « NIGHTTIME: under-excited operation of
Load . .
Shunt parameters conventional generating plants, reduced number of
connection points of the HV network
— 2 — 2
Q=X x1 Qe =VE/Xc New approach:

PV plants with dedicated feeder used as integral part
* During daytime | is large, so the inductive effectof  of the reactive power control scheme
cable prevails over the capacitive effect:
» Modified inverter control strategy to allow permanent
« During nighttime 1 is small, so the capacitive effect of connection to the grid.
cable is bigger than the inductive effect « Full-time reactive power support from inverter (semi-
NIGHTTIME: Q,<<Q¢ circular capability)

AL ED ED
pm»



Case study 1
Cavriglia- Italy

Bus1

HV Network
S. Barbara
Voltage
Levels
Trafo S. Giovanni Verde ° B o7«
M 15k
Bus Verde u

Line1 Dﬁ

Eq. Load Verde

PV

B
=Sl

POLITECNICO

x} DI MILANO

Cavriglia1|i§

“Cavriglia1” PV plant:

-10 MW PV Plant connected to dedicated MV feeder
-6km MV cable line 2x3x400mm?

S. Barbara primary substation:
-25MVA HV/MV Transformer 127kV / 15kV; V-:=12.15%
-MT side: 13 lines (186.2 Km total line )
-short circuit impedence of equivalent HV Grid are:
Zd =0.76 +j4.47 ohm
Z0 =1.45+)9.32 ohm
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Case study 1
Base scenario

10.00 |- — — — 7 — — — -

H B 1 | | 16-22 it
{ind W Rl i I A B N Tl 1 P and Q Power flow
| /\ | y | .
N /U\ i %\I/‘ ***** -r +on HV/MV transformer in Santa
\j j\ / {7 N \\ﬁ/vz Barbara primary substation
e R S N B _J(:; (observation period: 16-22 July, 2012)

x-Axis: TimeSw eep: time in h
HV Netw ork: Active Pow er in MW
------------------------- HV Netw ork: Reactive Pow er in Mvar

2oor HV Power Factor profile
During daytime TERNA
covers only
reactive power load demands

PV plant production
(data acquired using plant
monitoring system)

I
40 00 ¥ X [
PV Cavriglial: Active Power in MW
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Case study 1
Scenario 1-Dedicated feeder Q compensation

8.00 T T

Simulated P-Q load profile of PV
plant “Cavriglia 1”:

reactive power modulated at the
level required to mantain cos(¢)=1
on the dedicated feeder

6.00

4.00

2.00

|

|

| |
| N Y I .

I

\ Q = 250kVAR ¢~y Y\ — *The PV plant and its dedicated
_________________________ Py ol Rescine Pow et 1 i feeder behaves like a ideal
180T R —— E - generator at cos(p)=1
| | | |
! f |
\J}[‘j‘f“} 71’“}‘[“1? {N% 77777777777 No relevance for local voltage
osa -t =TT e . control at the substation.
0_30L4f,,,,,,;,,;E,,,L%_,,,;’s 777777 L,,;:L,,::, fffff ff%%——':’gﬁ—j‘_— ————— ii— 77777777777 J
ERUERER AR AR AR A PFi Benefit shall be seen at HV
oo 1RSI SRR - R RS R |- R - - system level with neutralization of
| f f | | f | . the effect of a multitude of
o PV Cavriglial: Powi?ggctor o o o 1 20 CapaC|t|Ve I|neS

= Inverter only plots
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Case study 1
Scenario 2- Constant Cos(p) at HV/MV Transformer

Simulated P-Q load profile of PV

i p |+ plant “Cavriglia 1”:
S N BE B . Q | reactive power modulated at the
| | . . . .
6.00—/ ] L1 f 41+ 1 level required to maintain a fixed
| |
, 33MVAR | PF at HV/MV transformer (0.9)
30“] ] W\Cos(¢)=0.93 B
v/ I\ AN ! +During daytime the plant supply
| | . -
1 | LSMVAR = | also reactive capacitive power to
3.00 L —L .
o PV Cavriglial: Active Pow er in MW 10 100 . 20000 th e g rld
------------------------- PV Cavriglial: Reactive Pow er in Mvar
P [ [ — +During night time the plant is
y ~ ‘ i working as an inductive load
‘ %WW 7”%777 —jh_” 77777777777 } P/Pn [%]
i | A
— BRI ———— :
i ' | 110%
I { | I [ P it P
J“ 771?7745577774;!7 N 7:;‘:7 77777777777 J‘ /’, \\\
| L] \ B | o N,
! S e——_PF DayTime?,
| | | ’ working \\
} } } i point (peak) )
-0.30 L I . I : 1
0.00 40.00 120.00 160.00 [ 200.00 | 1 - o
PV Cavriglial: Pow er Factor ey A A > Q/Pn [%]
-Qmax Nighttime Qmax
working point

(peak)

= Inverter only plots
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Case study
Scenario 2- Constant Cos(p) at HV/MV Transformer

New HV/MV Transformer power flow:
Cos¢ controlled Run time cos(¢)= 0.9: low inductive load
profile during day-time

-High inductive profile during night-time
-Direct partecipation to the Voltage
control on HV Grid (global view)

10.00

250 ‘ Base case Cos(o) ctrl case
s esueemmeny Variable cos(¢) . Constant cos(y)
HV Netw ork Reacive Pow er n W Q High reactive power " High reactive power
1000 - - I at low load at high load
7.50 ——— F— —‘g—————‘f \ -4 )
i ‘ ‘, Benefits
500 \j‘\f‘” \[ : i [%\ DAY: auto production and consumption of
250 \jkji ) ’ "d H reactive power during daytime at MV node
] 3 " level: no HV grid engaged.
1 NIGHT: HV grid support (global view) to

-2.50

0.00 40.00 120.00

il TsSweopteinn | | reduce the typical capacitive behavior of
etw ork: Active Pow er in MW
HV Netw ork: Reactive Pow er in Mvar the u nloaded System .

= Utility Plots
A DD
FAIDID



Night time performance:

Scenariol & 2

PV Line feeder compensation

Cos(o) control at HV level

| z N 0 - Y
network 6,00 network
5,00 pal
Voltage levels / Voltage levels
S.Barkm o7y E 4100 / S. Barbara —
e 15KV l:'3’00 s 15KV
pi a'2,00
a) 1 / <1.5%/kVAr | Q1 N
Ne’;@/ork ' (o) ﬂ 1’00 / Ne’:A\AX)rk - cosw *
busbar /’ \ Q[kVAR] busbar
Q=0 ] | 0,00 ! ! ! ! ! ! ! ! Dedicated feeder
ea cos® ag|
: ® P P PR R D PP AP
i i S Al AN P T e QL “ e
P.;Q Iil P;Q, M
PV plant PV plant
\ : - . . \ :
Significant network contribution at minimum cost
a2 ) a4 '
PV Line feeder compensation / 250k VAr Cos(o) control at HV level / 1.5MVAr
= Active power consumption during reactive = Negligible active power consumption
power compensation is negligible. » More intensive use of inverter capability
» Low impact on PV plant lifecycle costs to achieve desired Cos(o) profile
= 10MW PV - 1x 390kVA module operate » Compensation scheme shall count for
overnight to compensate feeder capacitance O&M and inverter replacement costs.
\_ . \ /
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Case study 2
PV plant Badger — Plant level support

Bus1

Voltage
Levels

12.47 kV
69 kV

e o P o

PV Badger1

“Badger 1 Solar” PV Plant:

-15 MW PV plant connected to dedicated MV feeder

-SEL-735 PQM meter

Primary Substation:
-15MVA HV/MV transformer 69kV / 12.47kV;




Plant Controller

st
| ENABLE

—

pause...

Set Ramp

v A

2nd:

Rate

—

pause...

Badger 1 Solar

St Operatlg
Mode

M CONTROLS

MW) Mode

Enabling AVR Mode

(50 Set Nominal Voltage
2nd: BEAGTHEIRG VN 3rd:

oV

ENABLE

Q (VAR) Mode

Set Inv. Power Output

0

MW (APS) 10.27 MW
MW (PQM) 10.237 MW

%
RESET (

Set Inv. VAR Output

0%

Controls

0.000

Set Voltage PU

12.805 kV

12.815 kV

J51.Badger1.AC_Interconnect. APS_Meter

KVAR (APS) -470 KVAR —
— ( f‘) RESET ygﬂs_gs
KVAR (PQM) -498 KVAR Volts_BC
e Volts_CA

12.827 kV

Qutstation
Refresh

re 0

<
B 13{ = 154 o L tsoo £
2 |E g =
= £
2 a8
12d 104 : : - : : . -2 -1000
15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 _In (e Res?t
20 May 2014 is not working, this
N Trace | Latest Value Ruler Yalue I button will reset

I¥ o JS1.Badgerl.AC_Interconnect.APS_Meter.Volts_AB
I¥ o J51.Badgerl.AC_Interconnect.APS_Meter Yolts_BC
I¥ o JSI.Badgerl.AC_Interconnect.APS_Meter Yolts_CA
I¥ o JS1.Badgerl.AC_Interconnect.APS_Meter k¥AR
I¥ ¢ JSI.Badgerl.AC_Interconnect.APS_Meter. MVA

S| I¥ & JS1.Badgerl.AC_Interconnect.APS_Meter.PF

05/20{2014 18:29:44 12.8
05/20{2014 18:30:00 12.81
05202014 18:30:00 12,82
05202014 18:30:00 -480
05/20/2014 18:30:00 10.42
05/20{2014 07:17:39 0.99

ALL commands

Return to
Unity

— N TR

Source: Juwi Solar Inc.
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Nighttime Support

A =< x
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Night Time VAR Capability
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| R

Source: Juwi Solar Inc.
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Voltage DROOP Support

131

12.47kV Bus Voltage

gug
Eun !
i /
128 ‘[
125 f
Mﬂq}
12-10 r :
Time (sec)

10

Source: Juwi Solar Inc.

Bus voltage transient response to 4% voltage step change
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Reactive Power (MVAR)

e

Q (MVAR
: [ Fa
—

"o 2 4 6 8
Time (sec)

10

Source: Juwi Solar Inc.

MVAR output change in response to 4% voltage step change



Case Study 2
Credits
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Conclusions and further developments

« A set of load flow simulations based on actual P/Q transit at a HV-MV substation
with significant PV capacity connected via a dedicated line feeder was performed

to identify possible reactive power control scenarios with relevance at local (MV) as
well as at the system level (HV)

- PV system reactive power demands for 2 different control schemes have been

calculated, providing realistic set-points as a reference for assessing the impact on
iInverter performance

- The effectiveness of the PV Inverter to offer VAR control at night was showcased

= Inverters have been tested in the exemplary VAR control modes, confirming the

ability to meet the required grid support tasks at minimum cost and with marginal
impact over system performance

= Field testing results confirm inverter performance
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