

REAL TIME DYNAMICS MONITORING SYSTEM (RTDMS[®]) AND PHASOR GRID DYNAMICS ANALYZER (PGDA)

USER TRAINING FOR ERCOT

SEPTEMBER 16-17, 2014

*Electric Power Group. Built upon GRID-3P platform, U.S. Patent 7,233,843, and U.S. Patent 8,060259. All rights reserved.

RTDMS and PGDA User Training Training Agenda – Day 2

RTDMS Alarms, Events, Configuration	Kevin Chen
RTDMS Advanced Monitoring and Metrics	Kevin Chen
Hands-on Guided Training Exercises	Wayne Schmus / Prashant Palayam
Lunch Break	
PGDA TrainingOverview of PGDACase Studies	Wayne Schmus / Prashant Palayam
Q&A, Proficiency Evaluation	

RTDMS Alarms, Events and Configuration

What will be covered:

- Monitor alarms in RTDMS Visualization Client
- Retrieve historical alarms
- User marked events

RTDMS Server Alarm/Event

Value violates threshold – Alarm

- Individual threshold for different PMUs and levels/severity
- Individual time window for different PMUs and levels/severity

Rate of change violates threshold – Event

- Individual rate of change threshold for different PMU
- Individual time window for different PMUs

Event also Known as Transient Event

Alarm/Event Matrices and Severity Types

	Metric	Low 4	Low 1	High 1	High 4	Time window
	Frequency	٧	v	v	v	v
Threshold Violation Alarms	Voltage (Magnitude)	٧	v	٧	٧	v
	Current (Magnitude)	٧	v	٧	٧	v
	Angle Difference	٧	v	v	v	v
	Active Power	٧	v	v	v	v
	Reactive Power	٧	v	v	v	v
	Damping	٧	v			
	Voltage Sensitivity (Magnitude and Angle)	٧	v	٧	٧	v
	Metric	Rate of change threshold			Time window	
	Frequency	v		v		
Transient "Event" Alarms	Voltage (Magnitude)		ſ	I		v
	Angle Difference		١	I		v

Alarm Implementation in RTDMS

- Alarms Trigger:
 - Threshold (59.95 Hz)
 - Rate of Change (40 MHz/S)
 - Time delay (2 Seconds):

Alarm level: 2 levels, 4 levels and 8 levels

Alarm Implementation in RTDMS Example: 4-Level Threshold Frequency Alarm

Threshold	Frequency	Alarm Color
Low 2	59.90 Hz	
Low 1	59.95 Hz	\bigcirc
Normal	60.00 Hz	
High 1	60.05 Hz	
High 2	60.10 Hz	

How to use Incident Indicator

How to use Incident Indicator

Use of Alarms in Real-Time Operations

Incident Indicator (2)		1.000	10100				₩ ₽
MetricName		OSIAN	ISONE	OSIM	MĽd	AVT	FRCC
Frequency	•						
Voltage Angle & Magnitude	٠	•	•	•	•	•	•
Angle Difference			0				•
MW	•	0	•				
MVAR	•	•	•	•			
Sensitivity	•	•	•	•	•	•	
Oscillation	۲	•	•	•			
Damping	•	0	0				
Composite	0	•	•	•	•	•	•

- Early Warning of Grid Stress (Increasing Phase Angle differences)
- Pinpoint Incident
 Location (First
 Mover PMU frequency, voltage etc.)
- Assess Incident Severity (3 Metrics alarm)
- Assess Vulnerability to Cascade (Multiple Alarms in Large or Multiple Footprints)

Use of Alarms in Real-Time Operations

Incident Indicator (2)			THE R.Y.				• A
MetricName		OSIYN	ISONE	MISO	MC	TVA	FRCC
Frequency							
Voltage Angle & Magnitude			•	•	•	•	•
Angle Difference							•
MW							
MVAR	•	•		•			
Sensitivity	•	•	•	•	•	•	
Oscillation	•		•	•			•
Damping	•	0					
Composite	•	0	•	•		•	•

- Early Warning of Grid Stress (Increasing Phase Angle differences)
- Pinpoint Incident Location (First Mover PMU - frequency, voltage etc.)
- Assess Incident Severity (3 Metrics alarm)
- Assess Vulnerability to Cascade (Multiple Alarms in Large or Multiple Footprints)

Use of Alarms in Real-Time Operations

Incident Indicator (2)		0.00	→ ₽
MetricName	EI	ISONE MISO PJM	TVA FRCC
Frequency			
Voltage Angle & Magnitude		•	$\bullet \bullet$
Angle Difference		0 🔴 🛑	
MW			
MVAR			
Sensitivity			
Oscillation			
Damping			
Composite			

- Early Warning of Grid Stress (Increasing Phase Angle differences)
- Pinpoint Incident Location (First Mover PMU - frequency, voltage etc.)
- Assess Incident Severity (3 Metrics alarm)
- Assess Vulnerability to Cascade (Multiple Alarms in Large or Multiple Footprints)

RTDMS Client Alarm Grid View

Alarms	8										
										1	
		Signal Name	SignalType Name T	Start TimeStamp	Alarm Type	Unit	Current TimeStamp T	Current Value	Threshold	Peak TimeStamp T	Peak Value
		MP FORBES 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	
		MHEBPNTN 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	
		MHEBLAV2 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	-
		MHEBKSY 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	
	•	AA 05BREED 04.Frequency	Frequency	11/30/2012 04:28:27 PM	Low Frequency	mHz	11/30/2012 04:28:30 PM	44.0072	59.95	11/30/2012 04:28:30 PM	
•		AA 05BREED 01.Frequency	Frequency	11/30/2012 04:28:27 PM	Low Frequency	mHz	11/30/2012 04:28:28 PM	34.0049	59.95	11/30/2012 04:28:28 PM	
		IPL PETERSBU 01.L345PETERTHOM1	Voltage	11/28/2012 11:05:03 PM	Low Voltage	pu	11/30/2012 04:28:33 PM	.0000	0.90	11/30/2012 04:28:33 PM	
		IPL HANNAIPL 01.L345TANNEHANN	Voltage	11/28/2012 11:05:03 PM	Low Voltage	pu	11/30/2012 04:28:33 PM	.0000	0.90	11/30/2012 04:28:33 PM	
		MHEBGRANDSS 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	
		MHEBDSY5 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	
		IPL GUION 01.L345WHITEGUIO1V:	Voltage	11/28/2012 11:05:03 PM	Low Voltage	pu	11/30/2012 04:28:33 PM	.0000	0.90	11/30/2012 04:28:33 PM	
		IPL 16PRITCH 01.L138132-24 3V1	Voltage	11/28/2012 11:05:03 PM	Low Voltage	pu	11/30/2012 04:28:33 PM	.0000	0.90	11/30/2012 04:28:33 PM	
		HE WORTHING 01.L345WORTHMEF	Voltage	11/28/2012 11:05:03 PM	Low Voltage	ри	11/30/2012 04:28:33 PM	.0000	0.90	11/30/2012 04:28:33 PM	
		MHEBDSY 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	
		AA 05FOSTOR 02.Frequency	Frequency	11/30/2012 04:28:05 PM	High Frequency	mHz	11/30/2012 04:28:33 PM	65.5360	60.05	11/30/2012 04:28:05 PM	
		AA 05FOSTOR 02.Frequency	Frequency	11/30/2012 04:28:05 PM	High High Frequency	mHz	11/30/2012 04:28:33 PM	65.5360	60.10	11/30/2012 04:28:05 PM	
		ITC PLACID 01.Frequency	Frequency	11/28/2012 11:05:03 PM	Low Low Frequency	mHz	11/30/2012 04:28:33 PM	.0000	59.90	11/30/2012 04:28:33 PM	-
4											

- Alarm View records and alerts abnormal situations in the system
- Alarms can be grouped or filtered w.r.t. alarm type, priority, etc.
- Alarms can be acknowledged by authorized users

Composite Alarms

AlarmCompositeExpressionDlg	? X
Alarms	
Voltage Current Frequency System Frequency Angle Difference Power Corridor	
Map Voltage Alarm to Composite Alarms	
Alarm Name	
48 CALIFORNIA4.CALIFORNIA4_VM.L4	
49 CALIFORNIAS.CALIFORNIAS_VM.H1	
50 CALIFORNIAS.CALIFORNIAS_VM.H2	
51 CALIFORNIAS.CALIFORNIAS_VM.H3	
52 CALIFORNIAS.CALIFORNIAS_VM.H4	
53 CALIFORNIA5.CALIFORNIA5_VM.L1	
54 CALIFORNIA5.CALIFORNIA5_VM.L2	
55 CALIFORNIA5.CALIFORNIA5_VM.L3	
56 CALIFORNIA5.CALIFORNIA5_VM.L4	
57 CANADA1_CANADA1_VM.H1	
	_
Operation	
AND OD NOT Add "/ V Demons // V Demons All // V	Toda Depart
	Reset
Composite Expression	
CALIFORNIA3.Frequency.L3 AND CALIFORNIA5.Frequency.L3 AND CALIFORNIA5.CALIFORNIA5_VM.L1	
,	
Show Enabled Alarm Only	OK Cancel

- User-defined logical combination of multiple conditions (AND, OR, NOT)
- Example: Voltage Sensitivity at KilleenSwitch AND Airline to KilleenSwitch Phase Angle Difference

Retrieve Historical Alarms

©Electric Power Group. 2014. All rights reserved.

Locate alarm on maps

On-the-fly alarm trending from Alarm Grid

Electric Power Group

Adapter Speed: 60 Samples / Second

©Electric Power Group. 2014. All rights reserved.

How to Mark Events From RTDMS Client

- User to select time range to mark as event
- Ability to retrieve marked event and replay

How to Mark Events From RTDMS Client

8	Event Mark	er			والمحم							x
2	AlarmTy	/peName	Start	TimeStamp	End T	ïmeStar	np	Threshold	ł	Peak Tir	neStamp	Peal
۰	Aa	~	- 1	~			~	-		-	v	=
۲.	H1 Angle	Difference Transi	06/17/	2013 10:35 PM	06/17/2	2013 10	:40 PM		Play Event	t Data	7 PM	
									Refresh Li	st		
↓												•
		Properties					_					
					_ .			D 1 1	0.00			
		Event Ty	pe:	HI Angle Differ	ence Transi	Ľ,		Priority:	Critical		Ľ.	
		Start Timestar	np: *	06/17/2013 10):35 PM		End Time	stamp: *	06/17/2013 10	:40 PM		
		Duration(see	conds):			300		Console:				
			Area:	TVA								
		Details										
		Peak	Value:	0		C	Comments:		This is a critica	l event.		
		Peak Time	stamp:	06/17/2013 10):37 PM							
		The	scholdu	0								
		Inte	esnoia:	0								
$\left(\right)$												$\mathbf{)}$

- User to select time range to mark as event
- Ability to retrieve marked event and replay

Automated Event Analyzer

- Performs incident detection, incident classification, and incident location estimation
- Including oscillation, islanding, generation trip, load shedding events
- Summary of event facts to operators via 'Yellow pop ups'
- Ability to bring up detailed diagnostics and the relevant metrics to operators at a glance

Electric Power Group

Example – Line Trip Detection

Electric Power Group

©Electric Power Group. 2014. All rights reserved.

Example – Line Trip Detection

©Electric Power Group. 2014. All rights reserved.

How to use event analyzer

Alarms and Event: Hands-on Tutorial

- Monitor alarms in RTDMS Visualization Client
 - Incident Indicator: monitor, mouse-over function, double click function
 - Alarm Grid: monitor, ad hoc trending, filter, group
- Event marker
 - Mark an event; replay marked event

Recap – Monitor Alarms

- Pinpoint location of problem
- Drill down to detailed information

Recap – Pop Up Trend Chart from Alarm Grid

RTDMS and PGDA User Training Day 2

RTDMS Advanced Monitoring

Advanced monitoring

- What will be covered:
 - Voltage sensitivity and angle sensitivity
 - Mode meter oscillation monitoring
 - Composite alarms
 - Automated event analyzer

Voltage Sensitivity in RTDMS

Definition	Change in voltage as a function of power flow on a line / path
Metric	kV/100 MW change Suggested Limit – 4kV/100 MW for 500kV system
Benefit	Early warning of deteriorating voltage condition
Matric Value	Sensitivity increases as system approaches the Nose Point
	Sensitivity increases if an adjacent line/path trips

A Typical Power/Voltage Curve

Angle Sensitivity in RTDMS

Definition	Change in angle as a function of power flow on a line / path
Metric	Degrees/100 MW change Suggested Limit – 2.5 Degrees/100 MW
Benefit	Early warning of deteriorating angle stability
	Sensitivity increase as we approach the P MAX – maximum power that can be transmitted
wietric value	Sensitivity increases if an adjacent line / path trips

Power – Angle Curve & Sensitivity

Voltage Sensitivity Monitoring

- Monitor Voltage Stability at the desired PMU w.r.t changes in power flow on a Path
- Provide operators real-time assessment of the Power Voltage curve and a calculation of change in voltage per 100 MW in power flow
- Calculate linear fit to determine sensitivity value from slope

Monitoring Modal Oscillations in Power Systems

- What are system oscillations in power systems?
- Why is monitoring oscillations important?
- What is good damping, and why is it important to monitor?
- Ambient and disturbance induced transient oscillations
- What are the oscillation frequencies and what causes the oscillations to occur?
- What can happen if the damping reduces or becomes negative and oscillations start to increase?

Monitoring Modal Oscillations in Power Systems

- The components of a complex power system are always oscillating with respect to each other
- Under normal conditions, the system oscillations are at low level, damped and controlled. These are known as ambient oscillations
- Oscillations can be induced by faults or other disturbances in the system. These have high power transfers and high energy, but generally damp fast
- Oscillations can be observed in power flows, frequencies or angles of the oscillating systems
- Oscillations, if not damped, lead to instability and system collapse , e.g., 1996
 WECC break-up

Characterizing Oscillations Frequency and Damping

Higher Damping ⇔ Greater Dynamic Stability (i.e., Desirable Situation)

Oscillations Event Example:

CAISO Radially Connected Geothermal Generator Oscillation

Frequency	Diagnosis	Action			
0.8 Hz	Poorly tuned generator governor controller	Advise generator owner to tune governor controller			

Screenshot of RTDMS – Real Time Dynamics Monitoring System

5

55.0

35.0

Oscillations Event Example: ERCOT Wind Generator Oscillation

Frequency	Diagnosis	Action			
2.0 Hz	Improper voltage controller setting	Identify generation causing oscillations, advise to adjust regulator settings			

Screenshot of RTDMS - Real Time Dynamics Monitoring System

352.10

354.50

Oscillations Event Example: ERCOT Wind Generator Trip

Frequency	Diagnosis	Action			
3.7 Hz	Improper voltage controller setting caused undamped oscillations and generation tripping following parallel line maintenance outage	Identify generation causing oscillations, advise to adjust regulator settings			

Screenshot of RTDMS - Real Time Dynamics Monitoring System

1.10

Oscillations Event Example: WECC PDCI Oscillations 2008

Frequency	Diagnosis	Action
4.6 Hz	Inadequate voltage support for DC Line power order setting	Reduce DC Line power order setting

Screenshot of RTDMS - Real Time Dynamics Monitoring System

Oscillation Stability Analysis & Monitoring

- Detects oscillations of interest based on event analysis and system characteristics in each interconnection
- Monitors modal frequency, energy, damping, mode shape in real-time

Mode Meter Trend Chart

- Displays the oscillation frequency of the dominant mode in the system
- Displays damping of the obtained modal frequency
- Displays estimated energy in the modal frequency

Scatter Chart Mode and Damping

- This chart tracks the value of modal frequency and damping for the most recent and historical data
- This chart enables to observe the trend of different modes over a period of time.

Gauge View Mode and Damping

- Damping Gauge View provides a real time gauge indication of damping percentage for user selected modes.
- A damping less than 3% is generally considered too low as indicated by the red band, while a damping in 3-5% range is considered moderately low as indicated by the yellow band

Advanced Monitoring Hands-on Tutorial

- Use Mode Meter Damping Trend Chart
- Use Mode Meter Damping Gauge

Composite Alarms

- User-defined composite alarms (logical combination of multiple conditions)
- Integration of external alarms
- Alarm logs & events are recorded into event files for offline analysis

Automated Event Analyzer

- Performs incident detection, incident classification, and incident location estimation in real-time
- Including islanding, generation trip, load shedding, and line outage events
- Summary of event facts to operators via 'Yellow pop ups'
- Ability to bring up detailed diagnostics and the relevant metrics to operators at a glance

Example: Islanding Detection

Example: Islanding Detection

RTDMS and PGDA User Training Day 2

Alarms and Events

RTDMS Server Alarm/Event

- Value violates threshold Alarm
 - Individual threshold for different PMUs and levels/severity
 - Individual **time window** for different PMUs and levels/severity
 - General ignorable gap for all alarms
- Rate of change violates threshold Event
 - Individual rate of change threshold for different PMU
 - Individual **time window** for different PMUs
 - General ignorable gap for all events
- Event also Known as Transient Event

Alarm/Event Matrices and Severity Types

Threshold Violation Alarms	Metric	Low Low	Low	High	High High	Time window
	Frequency	٧	٧	٧	v	v
	Voltage (Magnitude)	٧	٧	٧	v	v
	Current (Magnitude)	٧	٧	٧	v	v
	Angle Difference	٧	v	v	v	v
	Active Power	v	v	v	v	v
	Reactive Power	v	v	v	v	v
	Damping	٧	v			
	Voltage Sensitivity (Magnitude and Angle)	٧	v	v	v	v
Transient "Event" Alarms	Metric	Rate of change threshold				Time window
	Frequency	V				v
	Voltage (Magnitude)	V				v
	Angle Difference	v				v

Example: Frequency Alarm Configuration

Threshold Violation Alarm threshold

- Low 2 [59.90 Hz]
- Low 1 [59.95 Hz]
- Normal [60.00 Hz]
- High 1 [60.05 Hz]
- High 2 [60.10 Hz]

Threshold Alarm duration – Avoid too many alarms

• Default: 2 seconds

Ignorable Gaps – Avoid alarm fragmentation

• Default: 1 second

Frequency Event Configuration Example

Event Threshold

• Frequency rate of change: 40.00 mHz/sec

Event Duration (Time Window) – Avoid too many event

• Minimum: 2 seconds

Ignorable Gaps – Avoid event fragmentation

• Default: 1 second

RTDMS and PGDA User Training Day 2

Hands-on Guided Training Exercises Case Studies of ERCOT Interconnection

RTDMS and PGDA User Training Day 2

Case Study # 5

Analysis of An Event

Presented By

Wayne Schmus

Prashant Palayam

Event Analysis

- August 2013: Wind Farm oscillation
 - Power Point Presentation Summary
 - RTDMS Demo

ERCOT Transmission Network

Monitoring, Event Detection and Diagnose with RTDMS

Monitoring, event detection and post event analysis with RTDMS are accomplished by carrying out the following process:

1. Situational Awareness Dashboard (Real-Time Wide Area Monitoring)

2. Detect Emerging Problem

3. Diagnose the Situation

4. Assess System Vulnerability

5. Event Summary

Problem Detected: Interconnection Frequency

Observation: Interconnection Frequency signal shows oscillations, with low damping alarms.

Event Diagnosis: Frequency Metric

Observation: Large Frequency oscillation can be identified closed to Hamilton PMU.

Event Diagnosis: Frequency Metric

Observation: Zoom in frequency signal on PMU 25.

Assessing Vulnerability: Voltage Metric

Observation : High frequency voltage oscillation can be identified at PMU 25.

Assessing Vulnerability: Mode

Observation : Low damping observed for mode 1 @ 5.5Hz.

Assessing Vulnerability: Thumbnail Display

Analysis Summary

What happened?

- High frequency oscillation around 3.3Hz
- The oscillation exist for 3.5 Minutes
- PMU 25 is the source of oscillations

Where did it happen?

Panhandle region

Is the system at risk after the event?

- Initial damping was low
- But oscillations damped out eventually

- 1. Situational Awareness Dashboard (Real-Time Wide Area Monitoring)
- 2. Detect Emerging Problem
- 3. Diagnose the Situation
- 4. Assess System Vulnerability
- 5. Event Summary

RTDMS and PGDA User Training Day 2

Case Study # 6 - 8

Analysis of An Event – Student Hands-on Exercise

Presented By

Wayne Schmus

Prashant Palayam

Monitoring, Event Detection and Diagnose with RTDMS

Monitoring, event detection and post event analysis with RTDMS are accomplished by carrying out the following process:

1. Situational Awareness Dashboard (Real-Time Wide Area Monitoring)

2. Detect Emerging Problem

3. Diagnose the Situation

4. Assess System Vulnerability

5. Event Summary

RTDMS and PGDA User Training Day 2

Customizing RTDMS Displays

Customizing RTDMS Displays

- What will be covered:
 - Using Profiles, Displays, and Views
 - Understanding Map Views and Layers
 - Other Views available in RTDMS:
 - Trend Views
 - Bar Chart Views
 - Numerical Views
 - Scatter Plot Views
 - Polar Chart Views

Using RTDMS – Hands-on Tutorial

- Create/Edit New Profile
- Create/Edit New Display
- Create/Edit Basic View
 - Map View
 - Base map layer
 - Phase angle difference layer
 - Voltage magnitude layer
 - Frequency layer
 - How to use Layer manager
 - Trend Chart View
 - Frequency
 - How to use trend chart
 - Bar Chart View
 - Voltage Magnitude
 - How to use bar chat
 - Numerical View
 - System Frequency
 - How to use numerical view

Using RTDMS – Hands-on Tutorial

Create, edit and navigate displays with multiple views

- Map View
- Voltage Trend
- Voltage Magnitude Bar Chart

Change Display Layout

- Dock/Undock Views
- Using the "Float" feature
- Reposition Views within a Display

Quiz

- Angle line chart view in your display
- Voltage angle signals:
- Angle reference:
- Dock it to the right of your display
- Chart title: Selected Voltage Angle (in green)
- Y-axis: Degree
- Manual scale to: [-180, +180]

RTDMS and PGDA User Training Day 2

PGDA Training

Thank You!

Wayne Schmus

schmus@electricpowergroup.com

Heng (Kevin) Chen

chen@electricpowergroup.com

Prashant Palayam

palayam@electricpowergroup.com

Iknoor Singh

singh@electricpowergroup.com

Pankaj Mishra

mishra@electricpowergroup.com

Sandeep Dua

dua@electricpowergroup.com

Electric Power Group

201 S. Lake Ave., Ste. 400 Pasadena, CA 91101 626-685-2015