

REAL TIME DYNAMICS MONITORING SYSTEM (RTDMS[®]) AND PHASOR GRID DYNAMICS ANALYZER (PGDA)

USER TRAINING FOR ERCOT

SEPTEMBER 16-17, 2014

[®]Electric Power Group. Built upon GRID-3P platform, US Patent 7,233,843, US Patent 8,060,259, and US Patent 8,401,710. All rights reserved.

THE ERCOT PMU PROJECT

Bill Blevins

ERCOT Operations

Sept 2014

- Awarded to CCET Texas 501(c)6 non-profit formed in 2005
- CCET Members and Mission: 21 corporate members and 5 university cooperators. Mission - enhance the safety, reliability, security, and efficiency of the Texas electric transmission and distribution system through research, development and commercialization of emerging technologies (http://www.electrictechnologycenter.com)
- Awarded Jan 4, 2010: DE-OE-0000194; Value \$27 million (DOE 50%); 17 participants; 3 Components – Synchrophasors, Smart Meter Texas Portal, and Smart Grid Community of the Future; 3 phases – Planning, Design, Demonstration
- Title: Discovery Across Texas: Technology Solutions for Wind Integration in ERCOT
- Goal: Demonstrate a synergistic approach to managing fluctuations in wind power (currently 8 GW increasing to 18 GW) in the ERCOT transmission grid through better system monitoring capabilities, enhanced operator visualization, and improved load management
- Synchrophasor Project Participants: ERCOT, TOs, Electric Power Group Lead for Synchrophasor portion of the project

CURRENT STATUS OF THE SYNCHROPHASOR NETWORK

• Total 94 PMUs (Locations : 40 locations) - AEP: 54 3 PMU – ONCOR: 17 8 PMU 11 PMU – Sharyland: 5 - LCRA:18 (Coming soon) 8 PMU 🛨 6 PMU ** 2 PMU 2 PMU 4 PMU - 4 PMU - 3 PMU - 5 PMU 2 PMU 🕁 2 PMU 5 PMU × * 2 PMU 2 PMU 2 PMU

THE SYNCHROPHASOR DATA COMMUNICATION NETWORK

ERCOT ROS SYNCHROPHASOR TASK FORCE

							Search >
ERCOI				News Ca	reers Fee	ds FAQ	Contact Us
About ERCOT	Services	Committees and Groups	Market Rules	Market l	nformation	Grid Informat	ion
Home > Committees and (Groups > ROS :	PMTF					
Meeting Calendar	PHAS	OR MEASUREMEN	NT TASK FO	ORCE			
Board of Directors	The purp	oose of the PMTF is to form	nalize a framew	ork of requ	irements ar	nd criteria asso	ociated
TAC	appropri	with the provision of phasor measurement data to ERCOT infough the initiation of appropriate Protocol and Guide changes after consideration of the capabilities of the technology, the expected and required uses of the data, and the relevant policy considerations.					
COPS	consider						
PRS	- Contact	Information					
RMS	Chair: K	Chair: Kristian Koellner					
ROS	Vice Cha	ir: Bill Blevins					
BSWG	Send an	Send an email to this group: pmtf@lists.ercot.com					
CIPWG	(Subscri	be 🗗 to this email list.)					
DWG	Schedu	led Meetings and Meet	ting Details 🗰				
NDSWG	Ja	nuary 08, 2014	February 05	, 2014	Mar	rch 07, 2014	
NRWG	— Ap	oril 09, 2014	May 14, 201	4	Jun	e 04, 2014	
0140		ne 11, 2014	October 01	4 2014	Aug	ober 20 2014	
DWG	D	ecember 03, 2014	0000001 01,	2014	000	0001 20, 2014	
PDCWG	(Subscri	be to calendar and receive	e meeting updat	tes. Get he	ln	lendar subscri	ntion.)
PLWG					.p =		,
PDWG	Key Do	cuments					
SPWG	ERCOT P	ERCOT PMTF 2014 Roster (03/18/2014, xls, 45 KB) Phasor Measurement Task Force Scope ROS Approved March 6 2014					
SSWG	Phasor I						
VRTF	(03/06/20	014, doc, 46 KB)					
WMS	(03/18/2	(03/18/2014, doc, 52 KB)					
Other Groups	— All informa	ition is posted as Public in accor	dance with the ERC	OT Websites	Content Manag	gement Corporate	Standard.
Inactive Groups	Archive	5					
Market Participants	2013 Arc	chives					
© 2005 Electric Reliability C	ouncil of Texas,	Inc. All rights reserved.	Feedback	Site Map	Glossary	Terms of Use	Privacy

HOW SYNCHROPHASOR DATA IS BEING USED IN ERCOT

- Post-Event analysis
 - Frequency analysis

- System Oscillations

Start Time: 26-Jun-2013 23:09:40 CDT End Time: 26-Jun-2013 23:13:22 CDT

Generator model validation/tuning

- Post Event Analysis
 - Re-create the oscillations as captured by the PMU
 - Identify the cause and solutions to mitigate the oscillations
- Benchmark study using PMU data

Proposed solution based on simulation studies

SEPT 16, 2014

Introduction to RTDMS

INTRODUCTION TO RTDMS

- DASHBOARD
- ALARM PANEL
- HIGH RESOLUTION FREQUENCY DISPLAY
- MULTIPLE LAYERS
 - Geographical Map
 - \circ Transmission Lines
 - \circ Weather
 - Angle Differences
 - Frequency
- CLUTTER MANAGEMENT
- AUTOMATIC EVENT ANALYZER

RTDMS[®] © Electric Power Group 2014. All rights reserved

RTDMS and PGDA User Training Training Agenda – Day 1

Training Kickoff and ERCOT Project Overview	Bill Blevins
EPG Team Introductions	Wayne Schmus
 Using Synchrophasor Technology Fundamentals Metrics Real-Time Operation Use Cases 	Wayne Schmus
RTDMS Platform Overview	Kevin Chen
Navigating RTDMS	Iknoor Singh
Hands-on Guided Training Exercises	Wayne Schmus / Kevin Chen

The Electric Power Group Team

Wayne Schmus, P.E. Sr. Principal Engineer

Kevin Chen, P.E. Sr. Engineer RTDMS Product Manager

Prashant Palayam Sr. Engineer PGDA Product Manager

Iknoor Singh Engineer

Pankaj Mishra Training Coordinator

RTDMS and PGDA User Training Day 1

Using Synchrophasor Technology in Real-Time Operations

Using Synchrophasor Technology in Real-Time Operations

- What will be covered:
 - Synchrophasor Technology Infrastructure
 - Using Synchrophasor Technology in Control Rooms -Monitor, Diagnose and Act
 - Major Blackout Events Lessons Learned
 - How Synchrophasor Technology can Help Operators in Real-Time

Synchrophasor Technology Infrastructure

Flow of Information

Synchrophasor Technology Infrastructure

Time Synchronized High Resolution Measurements and Wide Area Visualization

- 1. Measurement (CT, PT)
- 2. Conversion to phasor quantities - PMU
- 3. Data Aggregation and Time Alignment
- 4. Data Transport
- 5. Wide Area Visualization

Courtesy: Adapted from EIPP presentation

Key Attributes of Synchrophasors

- 1. High Resolution 30-60 measurements/second
 - ✓ Dynamics (Modes, Sensitivities etc.); Improved Observability (MRI Vs. X-Ray)
 - ✓ Event Signatures
- 2. Time Synchronized– GPS based UTC time stamped
 - ✓ Wide Area View in Real Time
 - ✓ Phase Angle Differences
 - ✓ Inter Area Dynamics
- 3. Vector (Angle + Magnitude)
 - ✓ Phase Angle measurements

Phasor vs. SCADA Measurements

Phasor technology is NOT a replacement for SCADA.

Rather, it complements existing SCADA systems.

ATTRIBUTE	SCADA	PMU	
Resolution	1 sample every 2-4 seconds (Steady State Observability)	10-60 samples per second (Dynamic/Transient Observability)	
Measured Quantities	Magnitude Only	Magnitude & Phase Angle	
Time Synchronization	Νο	Yes	
Focus	Local utility monitoring & control	Wide area monitoring & control	

Observability – SCADA vs. PMUs

QUESTION: Detection of Frequency Differences Across the Interconnection

SCADA Observability

ANSWER: SCADA - Frequency appears to be similar at all locations – no oscillation PMU's Frequency measurements from different locations show variations – indicates inter-area dynamics or oscillations

Synchrophasor Fundamental – Voltage Phasor

What Is A Voltage Phasor?

Adding the axes and labels, we have a time graph of a voltage phasor. A sinusoidal function whose magnitude V₁, frequency (ω), and phase (δ_1) are fixed at a given time.

V₁ Voltage Magnitude δ_1 Voltage Angle $\omega = \frac{1}{2\pi t}$ Frequency

Voltage Phasor in Polar Format

This is the same voltage phasor, but shown in polar coordinates. It is typically rotating counter-clockwise at 60 cycles per second.

It has magnitude V₁, a time reference T=0 at 0°, and a voltage phase angle δ_1

Phasor Representation

Voltage Phasor Example

Example

This voltage phasor has a magnitude of 236 kV, at an angle of 45° referenced to 0°.

Voltage Phasor Recap

The following are properties of a voltage phasor:

- A. Magnitude
- **B.** Phase Angle
- C. Time Reference
- **D. Frequency**
- E. Location of the Measurement

Voltage angle cannot be measured by SCADA in real-time.

Voltage Angles Determine Power Flow Direction

- AC Power System: Power flows from a point of high voltage angle to a point of low voltage angle
- Voltage Angles across a network change when something happens (e.g. line outage, generation trip, or load change)
- Voltage Angle difference across a network is an indicator of stress

Why Voltage Angles Are Important

August 14, 2003: Eastern Interconnection Blackout

Major Blackout Events - Lessons Learned

August 10, 1996: WECC Blackout

- Hot Summer Day
- Problem started in Idaho, propagated to Oregon, and led to system collapse into four islands within <u>two hours</u>

TOTAL WECC IMPACTS			
Load Lost	30,489 MW		
Generation Lost	27,269 MW		
Customers Affected	7.49 Million		
Outage Time	Up to 9 Hours		

Synchrophasor technology provides wide-area visibility to monitor diverging phase angles to enable operators to take timely action.

Major Blackout Events - Lessons Learned

August 14, 2003: Eastern Interconnection Blackout

 Problem started in Ohio, and over several hours, propagated into Canada and New York

OUTAGE IMPACTS			
Load Lost	61,800 MW		
Generation Lost	55,000 MW (508 Units)		
Customers Affected	50 Million		
Outage Time	Few hours up to 2 weeks		

Synchrophasor technology provides wide-area visibility to monitor diverging phase angles to enable operators to take timely action.

Note:

Angles are based on data from blackout investigation. Angle reference is Browns Ferry.

- Multiple Issues leading up to the blackouts
- Lack of <u>Wide Area</u> Situational Awareness
- Lack of <u>Time Synchronized</u> data
- Lack of <u>Unified Displays</u> and monitoring tools
- Inability to monitor <u>Grid Dynamics</u>

Using Synchrophasor Technology in Control Rooms Monitor, Diagnose and Act

Operator's Mission: Keep the lights on!

How Synchrophasor Technology Can Help Operators in Real-Time Operations

- Wide Area View Situational Awareness
- Phase Angle Difference
- Voltage Sensitivities
- Damping and Oscillation
- Synchrophasor Technology Enables Operators to:
 - Monitor Grid Dynamics
 - Integrate Renewables
 - Improve Asset Utilization
 - Prevent Blackouts
 - Enable Faster Recovery

How Synchrophasor Technology can Help Operators in Real-Time Operations

- Wide Area View Situational Awareness
- Phase Angle Difference
- Voltage Sensitivities
- Damping and Oscillation
- Synchrophasor Technology Enables Operators to:
 - Monitor Grid Dynamics
 - Integrate Renewables
 - Improve Asset Utilization
 - Prevent Blackouts
 - Enable Faster Recovery

Power Flow Model - 8 Bus System

System Stable

Load: 6600 MW (Buses B, D, E, F, G and H)

- Generation: 6600 MW (Buses A, C and D)
- Key Phase Angle Paths:

PHASE ANGLE	BASE
A-G	10°
A-E	7°
A-D	6°

Power Flow Model - 8 Bus System Base Case – Event – Mitigation

- Generation: 6600 MW (Buses A, C and D)
- Key Phase Angle Path Changes:

PHASE ANGLE	BASE	LINE TRIP	
A-G	10°	45°	
A-E	7°	16°	
A-D	6°	24°	

Event: Line Trip (A-G)

Power Flow Model - 8 Bus System Base Case – Event – Mitigation

*Gen A adjusted to balance network load

Issues:

- A-G Angle at 45°
- Assume 30° needed to close CB

Options for Redispatch:

ACTION	SENSITIVITY X°/100MW
Reduce G Load	2.60°
Reduce H Load	1.85°
Reduce D Load and/or Increase D Gen	1.28°
Increase C Generation	1.10°

REQUIRED ACTION:

Reduce angle across A-G to 30° to permit CB closing

Power Flow Model - 8 Bus System Line Trip – Mitigation Options and Effectiveness

Effectiveness of Mitigation Options In Reducing A-G Angle

How Synchrophasor Technology can Help Operators in Real-Time Operations

- Wide Area View Situational Awareness
- Phase Angle Difference
- Voltage Sensitivities
- Damping and Oscillation
- Synchrophasor Technology Enables Operators to:
 - Monitor Grid Dynamics
 - Integrate Renewables
 - Improve Asset Utilization
 - Prevent Blackouts
 - Enable Faster Recovery

Oscillation Frequencies What do they mean for operations?

Characterizing Oscillations Frequency and Damping

Oscillatory Frequency & Damping Interpretation

Example - Wind Farm Oscillation

- Oscillation Detection
- Diagnostics
- Mitigation

Wind Farm Oscillation Detection & Mitigation

 Oscillations first observed on RTDMS when it was turned on by an analyst

Rewind/Replay to Determine the Start

Oscillation started 6:14 p.m. the previous evening
Not detected/observed on SCADA/EMS for over 14 hours

Not Observable on SCADA

Comparison between voltage signal from the event as captured by SCADA vs. PMU data

- Observability of oscillations in real-time
- Oscillation damping and frequency tracking in real-time

Determine Mode Characteristics in Real Time

Most Likely a Local Control Problem

	Oscillation Frequency	Typical Cause		
	0.01 – 0.15 Hz	Speed Governor		
	0.15 – 1.00 Hz	Inter - Area		
	1.00 – 5.00 Hz	Local Control	4	
	5.00 – 14.0 Hz	HDVC / FACTS* Controller		
	• 3.3 Hz oscillations fall und	er "local control" causes		

- Indicated local wind farm near the PMU
- Helped identify the "root cause".

* FACTS: <u>Flexible AC Transmission System</u>

Wind Farm Oscillation Event Visualization in RTDMS

WIND FARM OSCILLATION EVENT VISUALIZATION IN RTDMS

RTDMS® © Electric Power Group 2014. All rights reserved

Recap - How Synchrophasor Technology can Help Operators in Real-Time Operations

- Wide Area View Situational Awareness
- Phase Angle Difference
- Voltage Sensitivities
- Damping and Oscillation
- Synchrophasor Technology Enables Operators to:
 - Monitor Grid Dynamics
 - Integrate Renewables
 - Improve Asset Utilization
 - Prevent Blackouts
 - Enable Faster Recovery

RTDMS in ERCOT Control Center Overview

©Electric Power Group. 2014. All rights reserved.

RTDMS Use at ERCOT for Real-Time Operations

- Wide Area View Situational Awareness
- Phase Angle Difference
- Voltage Sensitivities
- Damping and Oscillation
- RTDMS Uses:
 - Monitor Grid Dynamics
 - Integrate Renewables
 - Improve Asset Utilization
 - Prevent Blackouts
 - Enable Faster Recovery

Operator Use of RTDMS

- Wide area monitoring normal state
- Event detection alarms
- Diagnose event situation
- Assess system vulnerability

How to Use RTDMS during Event in Real-Time Operations

ub Second Data Time: 09/08/2014 06:56.32.633 PM PDT

dapter Speed: 30 Samples / Second

© Electric Power Group 2012. All rights reserved. 🚺 [🚳

RTDMS Key Applications

- 1. Wide Area Situational Awareness (Dashboard)
- 2. Automated Event Analyzer
- 3. Phase Angle and Grid Stress Monitoring
- 4. Voltage Stability Monitoring
- 5. Angular Stability Analysis & Monitoring
- 6. Flow Gate and Inter-area Power Transfer
- 7. Frequency Stability Monitoring
- 8. Oscillation Stability Analysis & Monitoring
- 9. Oscillation Detection
- 10. Intelligent Alarms
- 11. RTDMS Daily Reports / Summary Reports/ Online Reports

ERCOT Synchrophasor System Architecture and RTDMS Visualization

Training on RTDMS Visualization

- Dashboard: Unified displays and metrics
- Navigation: Drill down and root cause assessment
- Visualization: Maps, charts, tables of key metrics
- Alarm: System conditions, query and acknowledgment
- Playback: Event replay for diagnostics and training

RTDMS Client Visualization Hierarchy

What is a View?

- A view is a single frame or chart of visual representation
- Examples of views
 - Polar chart, Bar chart, Trend chart, Alarm panel, Map, etc.

What is a Display?

- A display is a combination of views that together, in a meaningful way to provide related information
- Displays may be variety of different types of "views" including charts, maps, incident indicators, alarm grid, etc.

The Dashboard is a special kind of display that combines geo-spatial, alarms, key metrics etc.

Displays are arranged as "tabs", in the display toolbar.

Visualization - Profiles, Displays and Views

One Or More Views Make Up A Display

Pre Configured ERCOT Displays in RTDMS (use this)

Loading the Training Profile

📷 Login to RTDMS						
Login	Role	Profile				
RT Login using RTDMS authe	DMS Login					
ISG Url:	192.168.2.10/rtdms_isg					
User Name:	rtdmsuser					
Password :	•••••					
Active Directory:						
	Login					

Username: rtdmsuser Password: rtdms1234

RTDMS and PGDA User Training Day 1

Navigating RTDMS

Navigating RTDMS

- What will be covered:
 - Dashboard
 - Displays
 - Frequency Monitoring
 - Voltage Angle Difference Monitoring
 - Voltage Magnitude Monitoring
 - Power Flow Monitoring (Active & Reactive)
 - Thumbnails
 - Layout Options
- Navigation Actions
 - Change display layout
 - Close and open displays, dock

Dashboard

- Map Wide Area View
- System Frequency
- Incident Indicator
- Alarm Panel Auto Hidden
- Click Frequency Tab to Switch to Frequency Display

Frequency Display

- PMU Frequency near Generation and Load Center
- PMU Frequency near Wind Farm
- Click Voltage Tab to Switch to Voltage Display

Voltage Display

- Voltage Magnitude Grouped by Voltage Levels
- Voltage Magnitude in Per Unit Grouped by Region
- Click Voltage Angle Tab to Switch to Voltage Angle Display

Voltage Angle Display

- Polar Chart Phasor Representation of Voltage Angles to Common Angle Reference
- Trend Charts Grouped by Region
- Click Angle Difference Tab to Switch to Angle Difference Display

Angle Difference Display

- Polar Chart Phasor Representation of Angle Differences
- Trend Chart Phase Angle Differences across Key Flow Gates and Angle Pairs
- Click Power Tab to Switch to Power Display

Power Display

- Monitor actual MW and MVAR flows along a transmission line or across a flowgate
- Track flows with respect to predefined thresholds

Power Flows

- Monitor actual MW and MVAR flows along a transmission line or across a flowgate
- Track flows with respect to predefined thresholds

RTDMS Display Layout Options

Tile Style

Dock Style

Multi-Monitor

Navigating RTDMS – Hands-on Tutorial

- Navigate through the Dashboard
 - Map view, incident indicator, system frequency trend, numerical value
- Navigate Multi-view display for monitoring
 - Example Voltage Monitoring:
 - Map View, voltage trend, voltage magnitude bar chart, voltage polar chart
- Change display layout
- Close and open a display

Understanding RTDMS Views

©Electric Power Group. 2014. All rights reserved.

Understanding RTDMS Visualization

• What will be covered:

- What does each view mean
- Work with different views
- Edit views' properties

Working with Views

- Multi-layered Map Views
- Standard Views & Charts
 - Trend Charts
 - Polar Charts
 - Numerical
 - Incident Indicator

Other Visualizations Available

- Bar Graphs
- Contours
- User Definable Scatter Chart
- Double Y Axis Charts

Understanding Map Views

Map Layer Elements

- General order of map layers
 - Base map, e.g., topography, street view, etc.
 - Shape files, e.g., state boundaries, ISO boundaries, Transmission zones, Transmission lines, etc.
 - Measurements, e.g., frequency, voltage, power flow, etc.
 - Other, i.e., weather, fire, traffic, lightening, etc.

Managing Map Views

- Toggle on/off layers
- Adjust layer transparency
- Zoom Levels
- Clutter Management PMU Clustering

Map View (Voltage)

- Bird's-eye view of the high and low voltage regions
- The color of the Voltage Signals on the map reflects how close the voltage magnitude is to the alarm threshold value
 - Green Normal
 - Grey Invalid

Map View (Voltage Cluster)

- Voltage Magnitude (Clustered) view displays together the voltage measurements in closer geographic proximity
- Number on the cluster is the number of measurement points clustered
- Color of the cluster is determined by the worst voltage measurement (closer to threshold)

Understanding Views

- Trend Chart (Frequency)
- Trend Chart (Voltage)
- Voltage Magnitude and Angle Polar Chart
- Numerical Value
- Incident Indicator

Trend Chart (Frequency)

- Where the system is operating at
- Where the system has been

Trend Chart (Voltage)

- Tracking Voltage Magnitude over User Selected Time Window
- Absolute Value or Per Unit

Voltage Magnitude and Angle Polar Chart

- User selected reference phasor.
- The voltage magnitudes (represented by needle length) are displayed in per unit for easy comparison.
- A large swing in a phasor indicates a system disturbance.

Numerical Value

- 1-sec average data
- At a Glance
- Color Indication of Alarm Level
- The threshold values are also displayed below the numerical value

Incident Indicator

ERCOT Incident Indicator	ERCOT	West	Panhandle	East	Central	Valley	
Frequency							
Voltage Angle & Magnitude							
Angle Difference							
MW							
MVAR							
Sensitivity							
Oscillation							
Damping							
Composite							

- The Incident indicator groups the PMU measurements into corresponding jurisdiction areas
- The Incident indicator color change to red indicates problem in the corresponding area

Understanding RTDMS: Hands-On Tutorial

• Work with the Map View

- Base Map
- Infrastructure
- Show PMU
- Angle Difference, Voltage Magnitude and Frequency
- Zoom

Work with other views

- Trend Chart
- Polar chart
- Numerical Value, etc.

Change views' properties

• Axis, Title, Legend, Color

Recap – Multi-layer Maps

- Configurable Multi-layer support for Maps (base map layer, measurement layers, electrical infrastructure layers, shape file, environmental layers etc.)
- De-cluttering features in maps

Recap – Map Layer Manager

Pause and Replay Functions

- The Pause function can pause displays so that you can view the data in the displays' views as of the time they are paused. When you resume the displays, the views will adjust back to show real-time data
- The Replay function has 3 options:
 - Replay from RTDMS real-time database
 - Replay from Event Markers
 - Replay from COMTRADE files
- With the Replay function, the user can review the historical information as it was streamed during that time period

Pause Mode

How to pause display

Pause all displays in the profile.

Replay Mode

How to use Replay from RTDMS Database

©Electric Power Group. 2014. All rights reserved. 90

Electric Power Group

How to use Replay Function

How to use Replay from COMTRADE file

Understanding RTDMS: Hands-On Tutorial

Pause functions

- Pause an individual display; Pause all displays within the profile
- Resume paused displays
- Replay functions replay from RTDMS DB
 - Fast short term replay: change speed, rewind, forward
 - Replay historical data: set start & end time, looping
- Replay functions replay from COMTRADE file *

RTDMS and PGDA User Training Day 1

Hands-on Guided Training Exercises Case Studies of ERCOT Interconnection

Hands-On Guided Training Exercises Case Studies of ERCOT Interconnection

- What will be covered:
 - Training cases actual events to familiarize you how to use RTDMS

RTDMS and PGDA Training Cases Analysis Template

SYNCHROPHASOR CASE ANALYSIS DATA COLLECTOR									
CASE TITLE	DATE OF EVENT								
WHAT CHANGED	START TIME	<u>TYPE OF DISPLAY</u>	<u>PMU</u>	OBSERVATIONS*					

* OBSERVATIONS

Frequency : minimum, maximum, rates of descent and recovery, when back to normal Voltages: highest, lowest, rates of descent and recovery, grouping of pmus behaving similarly Voltage angle: largest changes, direction of change, grouping of pmus behaving similarly Line current: significant changes, overloads Oscillations: observed in frequency, voltage or current Start/stop times Oscillation frequency Damping (growing, sustained or decaying)

RTDMS and PGDA User Training Day 2

Case Study # 1 Analysis of An Event

Presented By

Wayne Schmus

Kevin Chen

Event Analysis

June 2013: Wind farm trip after storm

- Power Point Presentation Summary
- RTDMS Demo

ERCOT Transmission Network

Monitoring, Event Detection and Diagnose with RTDMS

Monitoring, event detection and post event analysis with RTDMS are accomplished by carrying out the following process:

1. Situational Awareness Dashboard (Real-Time Wide Area Monitoring)

2. Detect Emerging Problem

3. Diagnose the Situation

4. Assess System Vulnerability

5. Event Summary

Real-Time Situational Awareness Dashboard Pre-Event

Observation: System is operating at normal condition before the event.

Emerging Problem Detected: Interconnect Frequency

Observation: Frequency signals exceed thresholds and trigger alarms.

Event Diagnosis: Frequency Metric

Observation: Swing in Frequency in all regions of the system.

Assessing Vulnerability: Voltage Magnitude Metric

Observation: Voltage magnitudes in all regions sag during event, but recover quickly.

Assessing Vulnerability: Angle Difference Metric

Conclusion: Angle Differences across the system change in response to event.

Analysis Summary

What happened?

- Frequency drops to 59.902Hz
- Voltage dips but not severe
- Transient observed in frequency, voltage
- Power re-dispatched

Where did it happen?

- West side of the grid
- Is the system at risk after the event?
 - Frequency recovers back
 - No sustained low voltage

- 1. Situational Awareness Dashboard (Real-Time Wide Area Monitoring)
- 2. Detect Emerging Problem
- 3. Diagnose the Situation
- 4. Assess System Vulnerability
- 5. Event Summary

RTDMS and PGDA User Training Day 2

Case Study # 2 - 4

Analysis of An Event – Student Hands-on Exercise

Presented By

Wayne Schmus

Kevin Chen

Monitoring, Event Detection and Diagnose with RTDMS

Monitoring, event detection and post event analysis with RTDMS are accomplished by carrying out the following process:

1. Situational Awareness Dashboard (Real-Time Wide Area Monitoring)

2. Detect Emerging Problem

3. Diagnose the Situation

4. Assess System Vulnerability

5. Event Summary
Thank You!

Wayne Schmus

schmus@electricpowergroup.com

Heng (Kevin) Chen

chen@electricpowergroup.com

Prashant Palayam

palayam@electricpowergroup.com

Iknoor Singh

singh@electricpowergroup.com

Pankaj Mishra

mishra@electricpowergroup.com

Sandeep Dua

dua@electricpowergroup.com

Electric Power Group

201 S. Lake Ave., Ste. 400 Pasadena, CA 91101 626-685-2015

Backup Slides

RTDMS Platform Overview

Client Architecture

The RTDMS Platform

