ERCOT ETWG Meeting Austin, TX April 30, 2014

### Solar Power Production Forecasting: Overview of Methods and Input Data Needs

JOHN ZACK AWS TRUEPOWER, LLC 185 Jordan Rd Troy, NY 12180

463 NEW KARNER ROAD | ALBANY, NY 12205 awstruepower.com | info@awstruepower.com



# **Overview**

- Background: The Nature of the Solar Power Forecasting Problem
- Background: How Forecasts are Produced
- Input Data Needs and Impact
- Example of Data Requirements to Support Solar Forecasting (CAISO)
- Forecast Performance Benchmark
- Summary



#### Solar Power Forecast Challenge Factors that Affect Solar Power

- Global Solar Irradiance (~90%),
- Temperature (~10%),
- Wind (<1%)
- Type of Plant
  - Determines exact impact of all three factors
  - Categories of plants: (1) PV, (2) Concentrating PV, (3) Solar thermal (also concentrating)
  - PV is sensitive to Global Irradiance
  - Concentrating types (thermal and PV) are sensitive to Direct Normal Irradiance (DNI)
  - Also significant sensitivity variations within basic technology categories



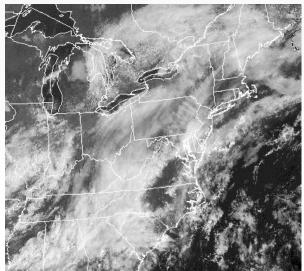











#### Solar Power Forecast Challenge Environmental Factors that Affect Solar Irradiance

- Sun Angle
  - most significant but completely predictable

#### Cloud Cover

- cause of the most variance (~90%)
- largest meteorological challenge to forecasts
- Haze, Dust and Smoke Particles
  - up to 10 % of variance
- Humidity levels (Water Vapor)
  - about 1 % of variability
- Components of Irradiance (diffuse, direct) are affected differently by these factors



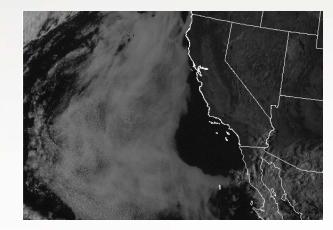


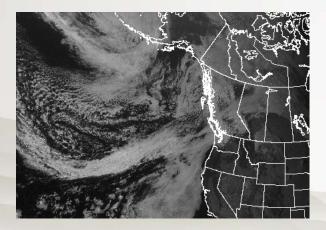


### The Challenge – Making the Best Forecast for Various Time Scales



#### **Minutes Ahead**


- Cumulus clouds, small-scale cloud structures, fog
- Rapid and erratic evolution; very short lifetimes
- Mostly not observed by current sensor network


#### **Hours Ahead**

- Frontal bands, mesoscale bands, fog, thunderstorms
- Rapidly changing, short lifetimes

Challenges

Current sensors detect existence and some structure





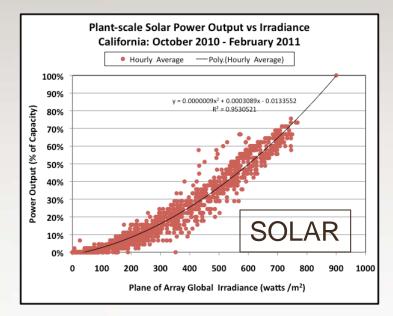
#### **Days Ahead**

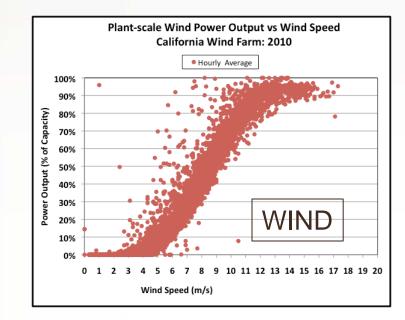
- "Lows and Highs", frontal systems
- Slowly evolving, long lifetimes
- Well observed with current sensor network



# **Solar vs. Wind Forecasting**

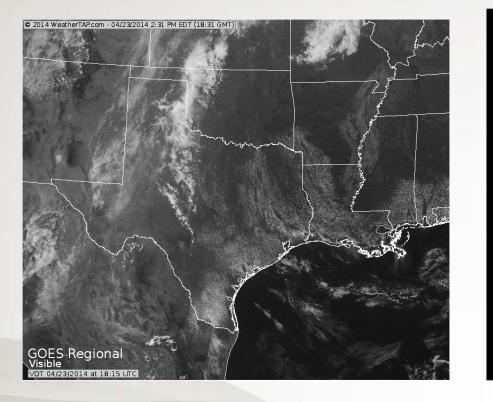
#### Location Attributes

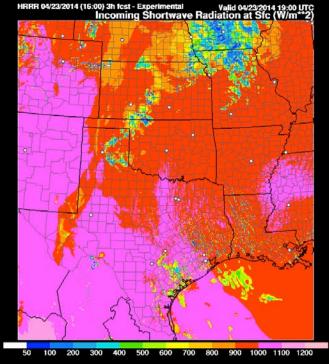

- Utility-scale solar plants are sited in sunny areas
  - Less variable than an average site
- Wind plants are sited in windy areas
  - More variable than an average site


#### Power System Attributes

- Solar generation has a quasi-linear relationship to irradiance
- Wind generation is a function of wind speed cubed between start-up speed and rated capacity

#### Forecast Input Data


- Dominant factor is cloud coverage and density which can be spatially observed via satellite and sky-cams
- Wind speeds patterns can't be as easily observed








How Solar Power Forecasts are Produced





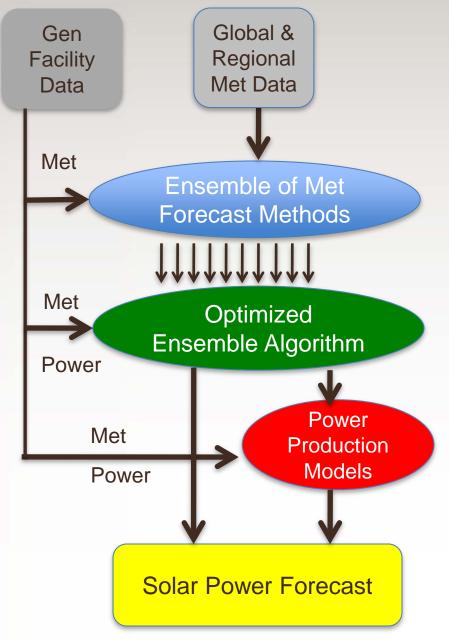


# **State-of-the-Art Solar Forecast System**

#### Input Data

- Global and regional meteorological data
- Data from gen facilities and nearby sites

#### Ensemble of Forecast Methods


- Statistical and physics-based models
- Wide range of characteristics (update frequency, input data requirements, performance by look-ahead time etc.)

#### Optimized Ensemble Algorithm

- Statistically combines individual forecasts according to relative historical performance
- Produces deterministic and/or probabilistic met forecast

#### Power Production Model

- Translates met forecast to power forecast
- Statistical or physics-based





# **Solar Forecasting Methods**



Cloud-tracking via sky camera

Geospatial statistics: time-lagged spatial relationships

Cloud-tracking via satellite images

Rapid Update NWP with MOS (Ensemble)

Regional NWP with MOS (Ensemble)

Global NWP with MOS (Ensemble)



Input Data from Generation Facility: Needs and Impact

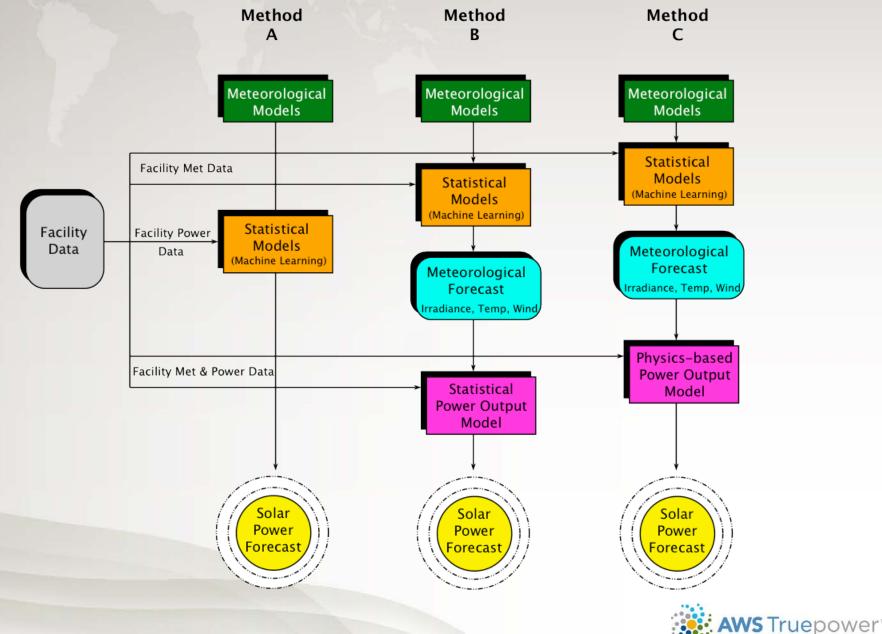




©2014 AWS Truepower, LLC

## Desired Facility Data Needs: Static

- **1.** Facility type (PV or thermal)
- 2. Facility location (lat/lon of facility corners)
- 3. Description of all onsite met data collection point
  - Location
  - Sensor types
- 4. Generation Capacity (DC and AC)
- 5. Panel and installation specifications by panel group
  - Panel manufacturer
  - Panel model
  - Number of panels
  - Panel power rating
  - Number of inverters
  - Fixed tilt specifications (azimuth and altitude angle)
  - Tracker specifications (none, single axis, dual axis, manufacturer, model)
  - Height of panels above ground
  - Concentrating PV (yes/no)




## Desired Facility Data Dynamic

- **1.** Power Production (MW)
- 2. Availability AC (MW)
- 3. Availability DC (MW)
- 4. Irradiance (watts/m<sup>2</sup>)
  - Global Plane of Array (POA)
  - Global Horizontal (GHI)
  - Direct Normal (concentrating solar facilities only)
- 5. Back-panel Temperature (°C)
- 6. Tracking Status: Azimuth and Elevation (degrees)
- 7. Air Temperature (°C)
- 8. Wind Speed and Direction (m/s, degrees)
- 9. Relative Humidity (%)
- 10. Pressure (mb or kPa)



### Facility Data Impact: How It Is Typically Used



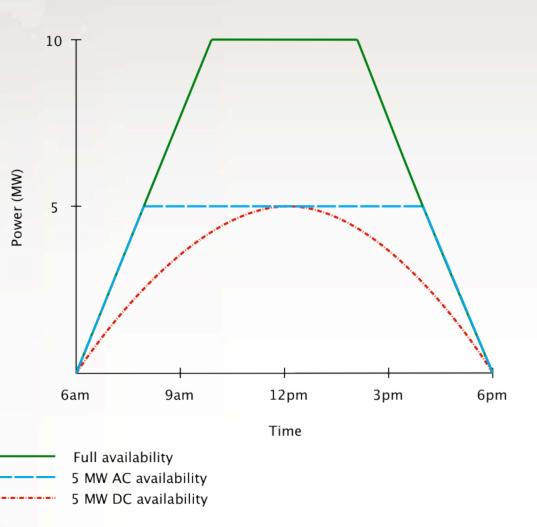
Where science delivers performance.

Data

©2014 AWS Truepower, LLC

### Facility Data Impact: Power Production

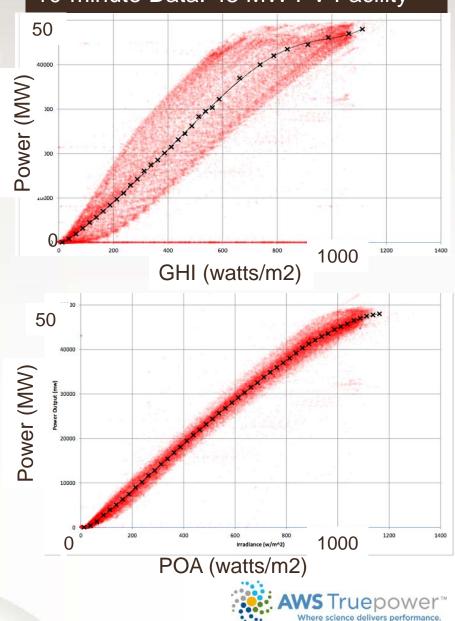
- Power production data provides 80% 95% of the forecast performance value in most situations
  - In a simple and idealized configuration this can provide almost all of the value
- Other data becomes important when a facility departs from simple, idealized conditions
  - Overcapacity configuration (DC Cap > AC Cap)
  - Maintenance-related or availability-related issues
  - Single or dual axis tracking
  - Large temperature variations
  - Performance-degrading weather conditions
    - Soiling or dust accumulation
    - o Snow and ice
    - High winds




## Facility Data Impact: AC/DC Availability

#### • Some facilities are constructed with overcapacity

- Panel (DC) capacity is greater than the inverter (AC) capacity
- Allows facility to maintain rated capacity at lower irradiance levels
- In this case AC (inverter) availability and DC (panel) availability produce different generation profiles
- Important to have both AC and DC availability info in these cases


Site with 10 MW AC Capacity and 15 MW DC Capacity





## Facility Data Impact: Irradiance

- Irradiance data enables performance-degrading conditions to be more precisely modeled
  - Panel temperature
  - Variations in operations- or maintenance-related performance
  - Soiling & dust accumulation
  - Snow and ice
- Global plane-of-array (POA) irradiance is preferred for non-concentrating facilities
  - Global Horizontal Irradiance (GHI) is an acceptable alternative
- Direct Normal Irradiance (DNI) is needed only for concentrating facility types



#### 10-minute Data: 48 MW PV Facility

### Facility Data Impact: Back-panel Temperature

- Variations in panel (cell) temperature can account for 5% to 10% of the power production variations over a year
- Can have significant variations within a solar array
- This variability is usually modeled using the back panel temperature
- Air temperature and wind speed (ventilation) can be a proxy





### Facility Data Impact: Tracking Status

- Tracking strategy is typically well defined and can be easily modeled....
- ....if the operations always adhere to the strategy
- A number of factors can cause a facility to depart from the operational strategy
  - High winds
  - Ice and snow
  - Mechanical issues
- Tracking status data (azimuth and elevation) are useful to monitor and account for the deviations







### Facility Data Impact: Other Weather Variables

- Air Temperature
- Relative Humidity
- Wind Speed (array height)
- Wind Direction (array height)
- Rain Gauge or Precip Sensor
- Pressure
- Three types of value:
  - Modeling & forecasting panel temperature
  - Diagnosis and modeling of anomalous conditions
    - Snow/ice accumulation and melting
    - o Soiling /dust accumulation
    - Impact of high winds on operating procedures
  - Can be used as input into geospatial statistics models and rapid update NWP for regional forecast benefits





### Example of Site Specification Data Required to Support Solar Power Forecasting CAISO EIRP: Site Specification Data - Part 1

| Site Name & Physical Address                                                                                      |               |      |                                         |               |          |      |                |               |
|-------------------------------------------------------------------------------------------------------------------|---------------|------|-----------------------------------------|---------------|----------|------|----------------|---------------|
| CAISO RES_ID                                                                                                      |               |      |                                         |               |          |      |                |               |
| Plant Type                                                                                                        | PV or Thermal |      | If thermal,<br>supplemental<br>heating? |               | Y/N      |      |                |               |
| Plant Location<br>Use as many points<br>as necessary to<br>describe the site                                      | Corner 1      |      | Corner 2                                |               | Corner 3 |      | Corner 4       |               |
|                                                                                                                   | Lat           | Long | Lat                                     | Long          | Lat      | Long | Lat            | Long          |
| Meteorological<br>Station Location<br>Provide the<br>location of all met<br>data collection<br>point at the site. | Met 1         |      | Equipment Type                          |               | Met 2    |      | Equipment Type |               |
| Met Information                                                                                                   | ID            | Lat  | Long                                    | Height<br>Agl | ID       | Lat  | Long           | Height<br>Agl |
| Generation<br>Capacity                                                                                            | DC            |      |                                         |               | AC       |      |                |               |

Table Q-5 CAISO Solar Site Required Information Form



### Example of Site Specification Data Required to Support Solar Power Forecasting CAISO EIRP: Site Specification Data - Part 2

|                     | a 1     |         |         |     |      |
|---------------------|---------|---------|---------|-----|------|
|                     | Group 1 | Group 2 | Group 3 | Lat | Long |
| Panel               |         |         |         |     |      |
| Manufacturer        |         |         |         |     |      |
| Panel Model         |         |         |         |     |      |
| Number of Panels    |         |         |         |     |      |
| Panel Power Rating  |         |         |         |     |      |
| Number of           |         |         |         |     |      |
| inverters           |         |         |         |     |      |
| Inverter ratings    |         |         |         |     |      |
| Tracking (Yes or    |         |         |         |     |      |
| No)                 |         |         |         |     |      |
| Single or Dual Axis |         |         |         |     |      |
| Tracking            |         |         |         |     |      |
| Tracker             |         |         |         |     | +    |
| Manufacturer        |         |         |         |     |      |
| Tracker Model       |         |         |         |     |      |
| Wind Protection     |         |         |         |     |      |
| (Speed in m/s for   |         |         |         |     |      |
| storage)            |         |         |         |     |      |
| Altitude Angle of   |         |         |         |     |      |
| Panels              |         |         |         |     |      |
| Azimuth Angle of    |         |         |         |     | 1    |
| Fixed Panels        |         |         |         |     |      |
| Height of Panels    |         |         |         |     | 1    |
| Above Ground        |         |         |         |     |      |
| Level               |         |         |         |     |      |
| Concentrating PV    |         |         |         |     | 1    |
| (Yes or No)         |         |         |         |     |      |



### Example of Meteorological Measurements Required to Support Solar Power Forecasting CAISO EIRP: Met Data Specs

| Element                                                        | Device(s) Needed                             | Units   | Accuracy  |
|----------------------------------------------------------------|----------------------------------------------|---------|-----------|
| Wind Speed<br>(Meter / Second)                                 | Anemometer, wind vane<br>and wind mast       | m/s     | ± 2m/s    |
| Wind Direction<br>(Degrees - Zero North<br>90CW)               | Anemometer, wind vane<br>and wind mast       | Degrees | ± 5°      |
| Air Temperature<br>(Degrees Celsius)                           | Temperature probe & shield for ambient temp  | °C      | ± 1°      |
| Barometric Pressure<br>(hecto Pascals)                         | Barometer                                    | hPA     | ± 60 hPa  |
| Back Panel Temperature<br>(Degree C)                           | Temperature probe for back panel temperature | °C      | ± 1°      |
| Plane of Array Irradiance<br>Watts\Meter Sq.                   | Pyranometer or<br>Equivalent                 | W/m²    | ± 25 W/m² |
| Global Horizontal<br>Irradiance<br>Watts\Meter Sq.             | Pyranometer or<br>Equivalent                 | W/m²    | ± 25 W/m² |
| Direct Irradiance Pyranometer or<br>Watts\Meter Sq. Equivalent |                                              | W/m²    | ± 25 W/m² |

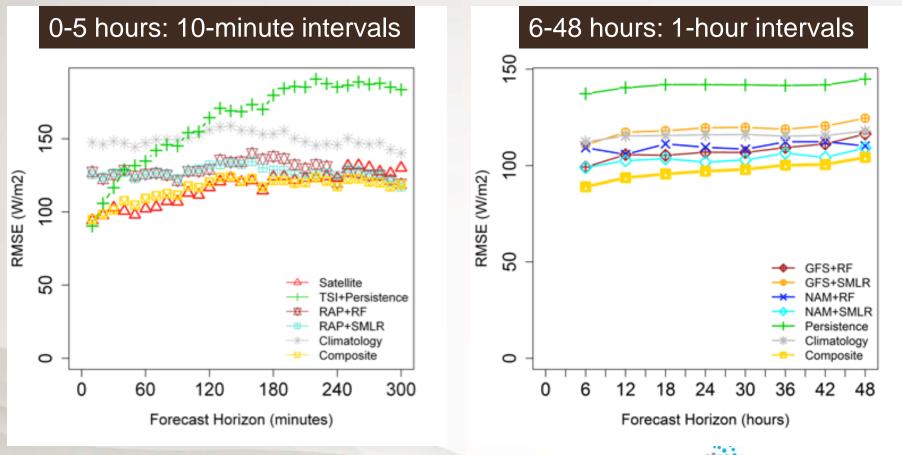
Table Q-3 Solar Eligible Intermittent Resources Telemetry Data Points



### Example of Meteorological Measurements Required to Support Solar Power Forecasting CAISO EIRP: Irradiance Measurements

|                                                                     | Direct<br>Irradiance<br>(DIRD) | Global<br>Horizontal<br>Irradiance<br>(GHIRD) | Global<br>Irradiance/ Plane<br>of Array<br>(PAIRD) | Back Panel<br>Temperature<br>(BPTEMP) |
|---------------------------------------------------------------------|--------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------|
| Flat-Plate PV<br>(fixed / horizontal /<br>flat roof)                |                                |                                               | R                                                  | R                                     |
| Flat-Plate PV (fixed<br>angle / azimuth<br>tracking)                |                                |                                               | R                                                  | R                                     |
| Flat-Plate PV<br>(DNI zenith &<br>azimuth tracking)                 | R                              |                                               | R                                                  | R                                     |
| Flat-Panel Solar<br>(thermal fixed<br>angle mounted)                |                                |                                               | R                                                  | R                                     |
| Flat-Panel Thermal<br>Collector (azimuth<br>tracking)               |                                |                                               | R                                                  | R                                     |
| Low Concentrating<br>PV (LCPV)                                      | R                              | R                                             |                                                    |                                       |
| High Concentrating<br>PV (HCPV)                                     | R                              | R                                             |                                                    |                                       |
| Concentrated Solar<br>Thermal (solar<br>through zenith<br>tracking) | R                              | R                                             |                                                    |                                       |
| Heliostat Power<br>(tracking focusing<br>mirrors)                   | R                              | R                                             |                                                    |                                       |
| Greenhouse Power<br>Tower (hot air<br>convection<br>turbine)        |                                |                                               | R                                                  |                                       |
| Stirling Engine<br>(concentrated solar                              | R                              | R                                             |                                                    |                                       |

Table Q-4 Irradiance and Back Plane Required Measurements




# Solar Forecast Performance: A Recent Benchmark



## Solar Forecast Performance Benchmark

- Analyzed performance of GHI forecasts from a range of methods for a solar generation facility on the CAISO system
- Performance evaluated for the year 2012 daylight hours only
- RMSE of 100 watts/m<sup>2</sup> for GHI is approximately an RMSE of 10% of capacity for solar power production forecasts



## Summary

- State-of-the-art forecasts are generated with an ensemble of statistical, pattern-recognition and physics-based forecast tools and a variety of input data types
- Considering all potential facility site data, power production data provides 80% to 95% of the value for solar power forecast performance
- Availability, irradiance and back-panel temperature provide much of the remaining value
- Type of irradiance data required depends on the solar generation technology employed at a facility
- Met measurements can provide large value in certain situations such as cases of snow, ice and dust accumulation

