

Date: April 1, 2014

To: ERCOT Board of Directors

From: Randa Stephenson, Technical Advisory Committee (TAC) Chair

Subject: Other Binding Document, Setting the Shadow Price Caps and Power

Balance Penalties in SCED

Issue for the ERCOT Board of Directors

ERCOT Board of Director Meeting Date: April 8, 2014

Item No.: 2.2.1

Issue:

ERCOT Protocols require ERCOT Board approval of the methodology for setting maximum Shadow Prices for network constraints and for the power balance constraint in the Other Binding Document, Setting the Shadow Price Caps and Power Balance Penalties in SCED.

Background/History:

Protocol Section 6.5.7.1.11, Transmission Network and Power Balance Constraint Management, states that:

ERCOT shall determine the methodology for setting maximum Shadow Prices for network constraints and for the power balance constraint. Following review and recommendation by TAC, the ERCOT Board shall review the recommendation and approve a final methodology.

On March 5, 2014, WMS recommended revisions to the Power Balance Penalty Curve in preparation for changes in the High System Wide Offer Cap to \$7,000 in 2014 and \$9,000 in 2015.

On March 27, 2014, TAC unanimously voted to recommend approval of the Other Binding Document, Setting the Shadow Price Caps and Power Balance Penalties in SCED, which incorporated the WMS revisions to the Power Balance Penalty Curve.

The revised ERCOT Business Practice, Setting the Shadow Price Caps and Power Balance Penalties in Security Constrained Economic Dispatch, to reflect the TAC recommendation to the Board is included as Attachment A.

Key Factors Influencing Issue:

WMS reviewed and recommended approval of revisions to the Power Balance Penalty Curve as described herein

TAC reviewed and recommended approval of the revisions to the Other Binding Document, Setting the Shadow Price Caps and Power Balance Penalties in SCED, as described herein.

Conclusion/Recommendation:

As more specifically described above, TAC respectfully recommends that the ERCOT Board approve the revised Other Binding Document, Setting the Shadow Price Caps and Power Balance Penalties in SCED as described in Attachment A.

ELECTRIC RELIABILITY COUNCIL OF TEXAS, INC. BOARD OF DIRECTORS RESOLUTION

WHEREAS, paragraph (4) of Protocol Section 6.5.7.1.11, Transmission Network and Power Balance Constraint Management, requires the Electric Reliability Council of Texas, Inc. (ERCOT) Board of Directors (Board) approval of a final methodology for setting maximum Shadow Prices for network constraints; and

WHEREAS, the ERCOT Board deems it desirable and in ERCOT's best interest to approve the revised ERCOT Business Practice, Setting the Shadow Price Caps and Power Balance Penalties in Security Constrained Economic Dispatch, as described in Attachment A;

THEREFORE, BE IT RESOLVED, that ERCOT is hereby approves the revised ERCOT Business Practice, Setting the Shadow Price Caps and Power Balance Penalties in Security Constrained Economic Dispatch, as described in Attachment A to be effective May 1, 2014.

CORPORATE SECRETARY'S CERTIFICATE

I, Vickie G. Leady, Assistant Corporate Secretary of ERCOT, do hereby certify that, at its April 8, 2014 meeting, the ERCOT Board passed a motion approving the above Resolution by
IN WITNESS WHEREOF, I have hereunto set my hand this day of April, 2014.
Vickie G. Leady Assistant Corporate Secretary

ATTACHMENT A ERCOT BUSINESS PRACTICE

Setting the Shadow Price Caps and Power Balance Penalties in Security Constrained Economic Dispatch

Effective July 17, 2013

Version _8.0

Document Revisions

Date	Version	Description	Author(s)
07/21/2010	0.1	Initial draft	Bob Spangler/ Haso Peljto/Resmi Surendran
08/11/2010	0.11	Added Section 4.0 Power Balance Shadow Price Cap & Appendix, The SCED Optimization Objective Function and Constraints	Bob Spangler/ Haso Peljto/Resmi Surendran
08/18/2010	0.12	Added Transmission Constraint Shadow Price Cap 3.5	Bob Spangler
08/24/2010	0.13	Incorporate Resmi Surendran comments and revisions.	Bob Spangler/Resmi Surendran/Haso Peljto
09/21/2010	0.14	Incorporate Market Participant comments and revisions.	Bob Spangler/Resmi Surendran
09/22/2010	0.15	Incorporate WMS recommendation	Resmi Surendran
09/28/2010	0.2	Incorporate ERCOT updates & corrections	Hasso Peijto/ Resmi Surendan/ R Spangler
10/20/2010	0.21	Incorporate WMS recommendation	Resmi Surendran
11/16/2010	1.0	Updated to reflect TAC approval on November 4 th 2010 and Board approval on November 16 th 2010	Resmi Surendran
03/12/2010	1.14	Added section to address modification to Maximum Shadow Price for Valley import constraint	Resmi Surendran
05/03/2011	2.0	Revision submitted to the ERCOT Board for approval.	R Spangler
05/13/2011	2.0	Revision submitted to the ERCOT Board for approval.	Kristi Hobbs
05/18/2011	2.0	Updated to reflect Board approval on May 18, 2011.	Kristi Hobbs
8/29/2011	3.0	Updated to incorporate the 08/04/11 TAC recommendation for the calculation of Shadow Price Caps for non-competitive constraints that are deemed to be irresolvable in SCED.	R. Spangler
9/1/2011	3.0	Updated to reflect 09/01/11 TAC recommendation.	Kristi Hobbs
10/3/11	3.0	Comments submitted for TAC consideration.	Luminant
10/6/11	3.0	Updated to reflect clarifications offered at the 10/6/11 TAC.	Kristi Hobbs

^{© 2013} Electric Reliability Council of Texas, Inc. All rights reserved.

10/11/11	3.0	Updated to reflect 10/11/11 TAC recommendation.	Kristi Hobbs
12/12/11	3.0	Board approved 10/11/11 TAC recommendation with 1/1/12 effective date.	Kristi Hobbs
3/1/12	4.0	TAC approved 030112 to include on OBD list.	Market Rules
6/21/12 and 6/28/12	5.0	Updated to reflect 6/20/12 Special TAC vote on recommended PBPC and 6/28/12 TAC recommendation.	Kristi Hobbs
7/17/12	5.0	ERCOT Board of Directors approval with effective date 8/1/12.	Market Rules
12/11/12	6.0	TAC recommended revisions to comport with PUCT changes to Substantive Rule 25.505 as well as other administrative clean up. 11/7/12 – WMS recommended approval 11/29/12 - TAC recommended approval 12/11/12 - ERCOT Board of Directors approval with effective date of 12/12/12.	Kristi Hobbs
5/14/13	7.0	TAC recommended revisions to reflect the 6/1/13 change of the high system-wide offer cap from \$4,500 per MWh to \$5,000 per MWh; and to remove non-competitiveness criteria from the methodology for setting Shadow Price caps for irresolvable transmission constraints. • 4/12/13 – WMS recommended approval • 5/2/13 – TAC recommended approval • 5/14/13 – ERCOT Board of Directors approval with effective date of 6/1/13.	Market Rules
7/16/13	8.0	3/7/13 – TAC Tabled for WMS review. 5/2/13 – TAC recommended approval and requested an Impact Analysis. 6/6/13, TAC recommended approval. 7/16//13 – ERCOT Board of Directors approval with effective date of 7/1713.	AEP
3/18/14	9.0	3/18/14 – Updated to reflect WMS approved PBPC	Resmi Surendran

Revisions to this document shall be made according to the approval process as prescribed in Protocol Section 6.5.7.1.11, Transmission Network and Power Balance Constraint Management.

PROTOCOL DISCLAIMER

This Business Practice describes ERCOT Systems and the response of these systems to Market Participant submissions incidental to the conduct of operations in the ERCOT Texas Nodal Market implementation and is not intended to be a substitute for the ERCOT Nodal Protocols (available at http://nodal.ercot.com/protocols/index.html), as amended from time to time. If any conflict exists between this document and the ERCOT Nodal Protocols, the ERCOT Nodal Protocols shall control in all respects.

Table of Contents

1.	PURP	OSE	5		
2.	BACK	BACKGROUND DISCUSSION5			
3.	ELEMENTS FOR METHODOLOGY FOR SETTING THE NETWORK TRANSMISSION SYSTEM-WIDE SHADOW PRICE CAPS6				
	3.1	Congestio	on LMP Component6		
	3.2	Network	Congestion Efficiency8		
	3.3	Shift Fact	or Cutoff9		
	3.4	Methodol	ogy Outline9		
	3.5 Generic Values for the Transmission Network System-Wide Shadow Price Caps in SCED				
		3.5.1	Generic Transmission Constraint Shadow Price Cap in SCED Supporting Analysis		
	3.6		ogy for Setting Transmission Shadow Price Caps for Irresolvable ts in SCED		
		3.6.1	Trigger for Modification of the Shadow Price Cap for a Constraint that is Consistently Irresolvable in SCED15		
		3.6.2	Methodology for Setting the Constraint Shadow Price Cap for a Constraint that is Irresolvable in SCED16		
		3.6.3	The Constraint Net Margin Calculation for Constraints that Have Met the Trigger Conditions in Section 3.6.118		
4.	POWE	ER BALAN	NCE SHADOW PRICE CAP19		
	4.1	The Powe	er Balance Penalty19		
	4.2	Factors C	onsidered in the Development of the Power Balance Penalty Curve20		
	4.3	The ERC	OT Power Balance Penalty Curve22		
ΑF	PENDI	X 1: THE	SCED OPTIMIZATION OBJECTIVE FUNCTION AND CONSTRAINTS2		
ΑF	PENDI	X 2: DAY	-AHEAD MARKET OPTIMIZATION CONTROL PARAMETERS 26		

1. PURPOSE

Protocol Subsection 6.5.7.1.11, Transmission Network and Power Balance Constraint Management, requires the ERCOT Board to approve ERCOT's methodology for establishing caps on the Shadow Prices for transmission constraints and the Power Balance constraint. Additionally, the ERCOT Board must also approve the values (in \$/MWh) for each of the Shadow Price caps.

The effect of the Shadow Price cap for transmission network constraints is to limit the cost calculated by the Security Constrained Economic Dispatch (SCED) optimization to resolve an additional MW of congestion on a transmission network constraint to the designated maximum Shadow Price for that transmission network constraint. The effect of the Shadow Price cap for the Power Balance Constraint is to limit the cost calculated by the SCED optimization when the instantaneous amount of generation to be dispatched does not equal the instantaneous demand of the ERCOT system. In this case, the cost calculated by SCED to resolve either the addition or reduction of one MW of dispatched generation on the power balance constraint is limited to the maximum Shadow Price for the power balance constraint, which is also referred to as the Power Balance Penalty.

The maximum Shadow Prices for the transmission network constraints and the power balance constraint directly determine the Locational Marginal Prices (LMP) for the ERCOT Real Time Market in the cases of constraint violations.

This Business Practice describes:

- the ERCOT Board approved methodology that the ERCOT staff will use for determining the maximum system-wide Shadow Prices for transmission network constraints and for the power balance constraint, and
- the ERCOT Board approved Shadow Price caps and their effective date.

2. BACKGROUND DISCUSSION

The term Shadow Price as used in a constrained optimization problem in economics, is usually defined as the change in the objective value of the optimal solution of the optimization problem obtained by changing each constraint, one-at-a-time, by one unit. In the SCED process the objective function to be minimized by the SCED optimization engine is the total system dispatch cost required to maintain the system power balance and to resolve congestion of the transmission network as specified in the transmission constraint input set. The term Shadow Price is used in the context of individual constraints, whether a transmission network constraints or power balance constraint. Consistent with the definition of the Shadow Price, in a minimization problem, such as the SCED, the Shadow Prices for the transmission constraints are different for

each transmission constraint and they are positive \$/MW amounts defined as increase of the system dispatch costs if a transmission line limit is decreased by one MW. The Shadow Price for the Power Balance constraint represents system costs for serving the last MW of load. The Power Balance Penalty can be either positive (if the system requires additional generation) or negative (if the system requires a reduction in generation). If a constraint is not binding, meaning the constraint has excess capability under the given system conditions, the Shadow Price of the constraint is \$0.00/MWh. On the other hand, if the constraint is binding, meaning it is limiting because the system conditions are such that the constraint limit is exactly met by the SCED selected dispatch pattern, the constraint Shadow Price is a non-zero \$/MW value and when the maximal Shadow Price (i.e. the Shadow Price cap) is reached the constraint will be violated without further increases in the constraint Shadow Price.

In the context of the SCED optimization, the Shadow Prices give rise to the application of a transmission penalty cost and a power balance penalty cost in the SCED objective function that results in an increase in the total system dispatch cost. On the other hand, the transmission network constraint Shadow Prices and the Power Balance Shadow Price directly determine the LMPs (in \$/MWh) calculated in the SCED. The LMPs will be limited because of the Shadow Price cap amounts, expressed in \$/MWh.

For the network transmission constraints, the Shadow Price Cap may vary for each constraint, may be a unique value applicable to all constraints, or may be values unique to subsets of the full constraint set. For the Power Balance constraint, the Shadow Price Cap may be a single value or a value given as a function of the amount of the power balance mismatch (instantaneous generation to be dispatch minus instantaneous demand) in MW.

3. ELEMENTS FOR METHODOLOGY FOR SETTING THE NETWORK TRANSMISSION SYSTEM-WIDE SHADOW PRICE CAPS

3.1 Congestion LMP Component

The LMPs at Electrical Buses are calculated as follows:

$$LMP_{EB} = \lambda - \sum_{line} SF_{EB}^{line} \cdot SP^{line}$$

Where:

 LMP_{EB} is LMP at Electrical Bus EB

 λ is system lambda (Shadow Price of power balance)

 SF_{EB}^{line} is Shift Factor for Electrical Bus EB for transmission line

SP^{line} is Shadow Price for transmission line.

6

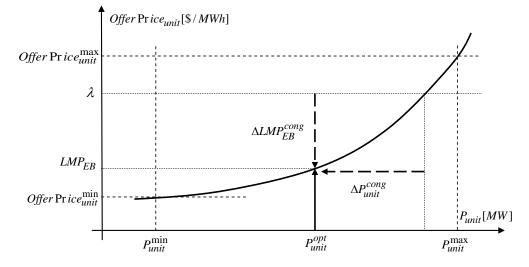
© 2013 Electric Reliability Council of Texas, Inc. All rights reserved.

Note that the Shadow Prices for congested transmission lines are positive, otherwise they are equal zero. The Shift Factors for Electrical Buses on one side of transmission line are negative and for Electrical Buses on the other side of transmission line are positive.

The congestion component of Electrical Bus LMP is:

$$\Delta LMP_{EB}^{cong} = -\sum_{line} SF_{EB}^{line} \cdot SP^{line}$$

and it can be positive or negative depending on sign of Shift Factors. The congestion component of LMP represents a price incentive to generation units connected at that Electrical Bus to increase or decrease power output to manage network congestion. Note that only marginal units (i.e. units that are able to move, not those dispatched at min/max dispatch limits to resolve other constraints or to provide energy to the system) can participate in resolving network congestion and determining the system lambda for a particular iteration of SCED.


The optimal dispatch from both system (minimal congestion costs) and unit (maximal unit profit) prospective is determined by condition:

Offer
$$Price_{unit}(P_{unit}^{opt}) = LMP_{EB}$$
.

The generation unit response to pricing signal will result in line power flow reduction in amount:

$$\Delta P^{line} = SF_{EB}^{line} \cdot \Delta P_{unit}^{cong}$$

These relationships are illustrated at the following figure:

3.2 Network Congestion Efficiency

The following three elements of network congestion management determine the efficiency of generating unit participation (as defined above):

- Line power flow contribution ΔP^{line}
- LMP congestion component ΔLMP_{EB}^{cong}
- Unit power output adjustment ΔP_{unit}^{cong}

The line power contribution is determined by its Shift Factor directly. It may be established that generating units with Shift Factors below specified threshold (10%) are not efficient in network congestion.

The LMP congestion component is main incentive controlling generating unit dispatch. It is determined by Shift Factors and Shadow Prices for transmission constraints:

$$\Delta LMP_{EB}^{cong} = \sum_{line} SF_{EB}^{line} \cdot SP^{line} \; .$$

Generating units with small Shift Factors (i.e. below Shift Factor threshold) will not be as effective in resolving constraints as will generators with higher shift factors on the constraint. If there is no efficient generating units then Shadow Price must be increased to get enough contribution from inefficient units. Therefore, high Shadow Prices indicate inefficient congestion management.

The maximal value of LMP congestion component $\Delta LMP_{\text{max}}^{cong}$ directly limits the transmission congestion costs:

$$C_{\cos t}^{cong} = \sum_{unit} \Delta LM P_{\max}^{cong} \cdot P_{unit}^{opt}.$$

The efficiency of generating unit contribution can be determined by maximal value of LMP congestion component $\Delta LMP_{\rm max}^{cong}$ (say \$500/MWh). The maximal Shadow Price for transmission constraint can be established by Shift Factor efficiency threshold and maximal LMP congestion component as follows:

$$SP_{\max} = \Delta LMP_{\max}^{cong} / SF_{threshold}^{efficiency}$$
.

The maximal unit power output adjustment ΔP_{\max}^{cong} will be determined by condition:

Offer
$$Price_{unit}(P_{unit} - \Delta P_{\max}^{cong}) = LMP_{EB} = \lambda - SF_{threshold}^{efficiency} \cdot SP_{\max}$$

3.3 Shift Factor Cutoff

Note: This Shift Factor cutoff is not related to above Shift Factor efficiency threshold used for determination of maximal Shadow Price.

Some generating units can be excluded from network congestion management by ignoring their contribution in line power flows. Note that this exclusion cannot be performed physically, i.e. all units will always contribute to line power flows according to their Shift Factors. Therefore, the Shift Factor cutoff introduces an additional approximation into line power flow modeling.

Since the effect of the Shift Factors below the cut off on the overload are ignored in the optimization, any Shift Factor cutoff will cause additional re-dispatch of the remaining generating units participating in the management of congestion on the constraint. I.e. Generation Resources with Shift Factor above cut off will have to be moved more to account for the increase in overload caused by increasing generation of an inexpensive Resource with positive Shift Factor below cut off and decreasing generation of an expensive Resource with negative Shift Factor below cut off.

The Shift Factor cutoff will cause mismatch between optimized line power flow and actual line power flow that will happen when dispatch Base Points are deployed. This mismatch can degrade the efficiency of congestion management.

The Shift Factor cutoff can reduce volume of Shift Factor data and filter out numerical errors in calculating Shift Factors. Currently the default value of Shift Factor cut off is 0.0001) and is implemented at the EMS to reduce the amount of data transferred to MMS. Any threshold above that level will cause a distortion of congestion management process.

3.4 Methodology Outline

The methodology for determination of maximal Shadow Prices for transmission constraints could be based on the following setting:

- (a) Determine Shift Factor efficiency threshold $SF_{threshold}^{efficiency}$ (default x%)
- (b) Determine maximal LMP congestion component $\Delta LMP_{\text{max}}^{cong}$ (default \$y/MWh)
- (c) Calculate maximal Shadow Price for transmission constraints:

$$SP_{\text{max}} = \Delta LMP_{\text{max}}^{cong} / SF_{threshold}^{efficiency}$$

- (d) Determine Shift Factor cutoff threshold $SF_{threshold}^{cutoff}$ (default z%)
- (e) Evaluate settings on variety of SCED save cases.

3.5 Generic Values for the Transmission Network System-Wide Shadow Price Caps in SCED

The Generic Transmission Shadow Price Caps noted below will be used in SCED unless ERCOT determines that a constraint is irresolvable by SCED. The methodology for determining and resolving an insecure state within SCED (i.e. SCED Irresolvable) is defined in Protocol Section 6.5.7.1.10, whereas the subsequent trigger condition for the determination of that constraint's Shadow Price Cap is described in Section 3.6, Methodology for Setting Transmission Shadow Price Caps for Irresolvable Constraints in SCED.

Generic Transmission Constraint Shadow Price Caps in SCED

Base Case/Voltage Violation: \$5,000/MW

• N-1 Constraint Violation

345 kV: \$4,500/MW
 138 kV: \$3,500/MW
 69 kV: \$2,800/MW

3.5.1 Generic Transmission Constraint Shadow Price Cap in SCED Supporting Analysis

Figure 1 is a contour map that shows the relationship between the level of the constraint shadow price cap, the offer price difference of the marginal units deployed to resolve a constraint, and the shift factor difference of the marginal units deployed to resolve a constraint.¹

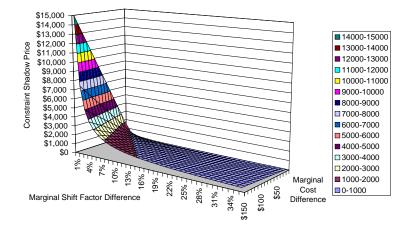


Figure 1

10

© 2013 Electric Reliability Council of Texas, Inc. All rights reserved.

¹ A distributed load reference bus is assumed in this document, and all shift factor values refer to the flow on a constraint (either pre- or post-contingency) assuming an injection at the location in question and a withdrawal at the reference bus.

Figure 2 is a projection of Figure 1 onto the x-axis (*i.e.*, looking at it from the top). These two figures focus on constraint shadow price cap levels, and do not consider the interaction with the power balance constraint penalty factor, which is further discussed in association with Figure 4.

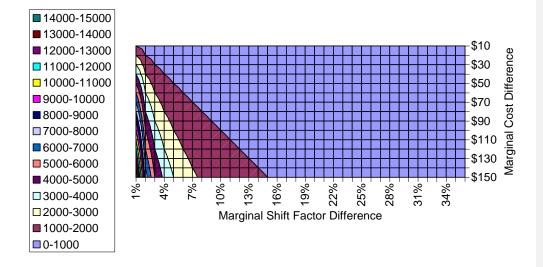


Figure 2

Figures 1 and 2 show that:

- For a constraint shadow price cap of \$5,000/MW
 - Marginal units with an offer price difference of \$50/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 1%
 - Marginal units with an offer price difference of \$150/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 3%.
- For a constraint shadow price cap of \$4,500/MW
 - Marginal units with an offer price difference of \$45/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 1%.
 - Marginal units with an offer price difference of \$150/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 3.4%.
- For a constraint shadow price cap of \$3,500/MW

- Marginal units with an offer price difference of \$35/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 1%.
- Marginal units with an offer price difference of \$150/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 4.3%.
- For a constraint shadow price cap of \$2,800/MW
 - Marginal units with an offer price difference of \$28/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 1%
 - Marginal units with an offer price difference of \$150/MWh will be deployed to resolve a constraint when the shift factor difference of the marginal units is as low as 5.35%.

Figure 3 shows the maximum offer price difference of the marginal units that will be deployed to resolve congestion with each of the proposed shadow price cap values as a function of the shift factor difference of the marginal units.

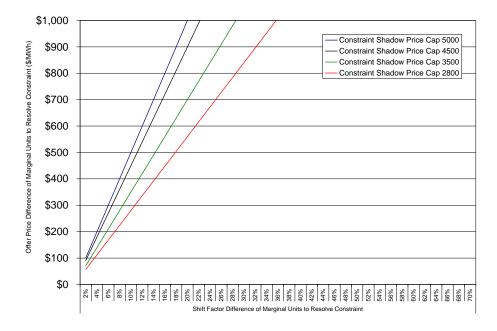


Figure 3

12

For example, with a shift factor difference of the marginal units of just 2%, the maximum offer price difference of the marginal units that will be deployed to resolve the constraint is \$56, \$70, \$90 and \$100/MWh for constraint shadow price cap values of \$2,800, \$3,500, \$4,500 and \$5,000/MW, respectively. Similarly, for with a shift factor difference of the marginal units of 60%, the maximum offer price difference of the marginal units that will be deployed to resolve the constraint is \$1,680, \$2,100, \$2,700 and \$3,000/MWh for constraint shadow price cap values of \$2,800, \$3,500, \$4,500 and \$5,000/MW, respectively.

In some circumstances these constraint shadow price cap values may preclude the deployment of a \$5,000/MWh offer. However, it is not possible in the nodal design to establish constraint shadow price caps at a level that will always accept a \$5,000/MWh offer and still produce pricing outcomes that remain within reasonable bounds of the PUCT Substantive Rule 25.505(g)(6) \$5,000 offer cap. For example, taking the case above where the shift factor difference of the marginal units is just 2%, a constraint shadow price cap of \$250,000/MW would be required to deploy \$5,000/MWh offers to resolve the congestion (assuming an offer price of zero for the marginal constrained-down unit). In this case, for nodes with a higher shift factor relative to the constraint (regardless of whether the nodes are generation or load nodes), the resulting LMP would be significantly higher than the \$5,000/MWh system-wide offer cap if the constraint was irresolvable. For example, a node with a shift factor of -50% would have an LMP with a congestion component of \$125,000/MWh from just this one constraint, and even higher if multiple constraints are binding. In contrast, with a \$5,000/MW shadow price cap, the congestion component of the LMP of the node with a shift factor of -50% would be \$2,500/MW for just this one constraint.

Figure 4 ties together the effect of the proposed constraint shadow price caps and the proposed power balance penalty factor. This figure is shown only for the case of a constraint shadow price cap of \$4,500/MW. The purpose of this figure is to demonstrate the circumstances in which the power balance constraint will be violated prior to violating a transmission constraint. In other words, when a unit is constrained-down to manage transmission congestion and the only options available to meet power balance are to either (1) violate the power balance penalty, or (2) violate the constraint, under what circumstances will (1) occur vs. (2)?

Figure 4 shows the following:

 The constraint will be violated prior to violating power balance for offer prices of the constrained-down unit up to \$300/MWh in all cases where the shift factor of the constrained-down unit relative to the constraint is less than or equal to 60%. Power balance will be violated prior to violating the constraint for offer prices of the constrained-down unit greater than \$30/MWh in all cases where the shift factor of the constrained-down unit relative to the constraint is 66% or greater.

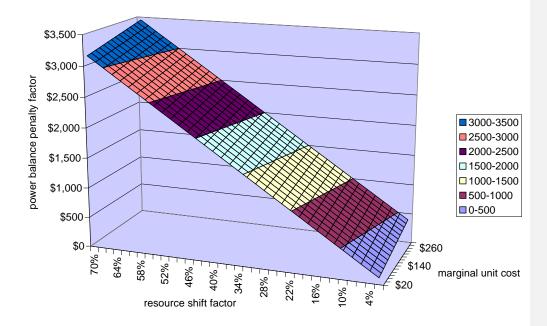


Figure 4

The LMP at an individual node, hub or load zone can exceed the system-wide offer cap in some circumstances. This is most likely to occur when there are one or more irresolvable constraints on the system *and* when overall dispatchable supply on the system is tight. Relatively speaking, it is more likely that individual node prices will exceed the system-wide offer cap than hubs or load zones, but it is possible that hub or load zone prices could exceed the system-wide offer cap. It is not possible in the nodal system to assign constraint shadow price caps and power balance penalty factor values that achieve the desired reliability and efficiency objectives and ensure that all LMPs remain within the bounds of the system-wide offer caps under all circumstances.

Operationally once ERCOT reaches the shadow price cap, ERCOT may use the following method to manage congestion. Steps that may be taken by ERCOT operations to resolve congestion when the transmission constraint is violated in SCED after the Shadow Price reaches the shadow price cap include:

- Formulating a mitigation plan which may include
 - o Transmission reconfiguration (switching)
 - Load rollover to adjacent feeders
 - Load shed plans
- Redistribution of ancillary services to increase the capacity available within a particular area.
- Commitment of additional units.
- Re-dispatching generation through over-riding HDL and LDL. [6.5.7.1.10 3(b)]

3.6 Methodology for Setting Transmission Shadow Price Caps for Irresolvable Constraints in SCED

ERCOT Operations is required to resolve security violations on the ERCOT Grid as described in Section 6 of the Nodal Protocols and the associated Nodal Operating Guides and ERCOT will utilize the SCED application or direct actions on the transmission network and among Generation Resources, as needed, to resolve security violations. With regard to SCED operations, if a security violation on a constraint occurs, ERCOT will determine whether or not this constraint violation should be deemed to be irresolvable by online Generation Resource Dispatch by the SCED application. ERCOT will use the methodology described in this section to determine the Shadow Price Cap for a constraint that is deemed irresolvable pursuant to Section 3.6.1 below. For each of these constraints this Shadow Price Cap will be used by the SCED application in place of the generic cap specified by Section 3.5, Generic Values for the Transmission Network System-Wide Shadow Price Caps in SCED until ERCOT deems the constraint resolvable by SCED. ERCOT shall provide the market 30 days notice before deeming the constraint resolvable by SCED. Upon deeming the constraint resolvable by SCED, the Shadow Price Cap for the constraint shall be determined pursuant to Section 3.5.

3.6.1 Trigger for Modification of the Shadow Price Cap for a Constraint that is Consistently Irresolvable in SCED

The methodology for determining and resolving an insecure state within SCED is defined in Protocol Section 6.5.7.1.10. ERCOT shall modify the Shadow Price Cap for a transmission network constraint that is consistently irresolvable by SCED if either of the following two conditions are true. Intervals with manual overrides performed as a result of SCED not resolving the congestion, shall be included:

A. A constraint violation is not resolved by the SCED dispatch or overridden for more than two consecutive hours on more than 4 consecutive Operating Days; or

15

B. A constraint violation is not resolved by the SCED dispatch for more than a total of 20 hours in a rolling thirty day period.

On the Operating Day during which ERCOT deems a network transmission constraint to have met the trigger conditions, ERCOT shall identify the following Generation Resources:

- C. The Generation Resource with the lowest absolute value of the negative shift factor impact on the violated constraint (this resource is referred as Generation Resource C in the Shadow Price Cap calculation below); and,
- D. The Generation Resource with the highest absolute value of the negative shift factor on the violated constraint (this resource is referred to as Generation Resource D in the designation of the net margin Settlement Point Price (SPP) described below).

When determining Generation Resources C and D above, ERCOT shall ignore all Generation Resources that have a shift factor with an absolute value of less than 0.02 impact on the irresolvable constraint.

3.6.2 Methodology for Setting the Constraint Shadow Price Cap for a Constraint that is Irresolvable in SCED

The Shadow Price Cap for a constraint that has met the trigger conditions described in Section 3.6.1 will be determined as follows.

The Shadow Price Cap on the constraint that has met the trigger conditions described in Section 3.6.1, will be set to the minimum of E or F as follows:

- E. The value of the Generic Shadow Price Cap as determined in Section 3.5, and
- F. The Maximum of the either the largest value of the Mitigated Offer Cap for Generation Resource C, as determined above, divided by the absolute value of its shift factor impact on the constraint or \$2000 per MW.

[Replace the paragraph above with the following upon system implementation:]

The Shadow Price Cap for a constraint that has met the trigger conditions described in Section 3.6.1, and the Shadow Price Cap for any constraint that has the same overloaded transmission element and direction as a constraint that has met the trigger conditions, will be determined as follows.

The Shadow Price Cap on the constraint that has met the trigger conditions described in Section 3.6.1, will be set to the minimum of E or F as follows:

- E. The value of the Generic Shadow Price Cap as determined in Section 3.5, and
- F. The Maximum of the either the largest value of the Mitigated Offer Cap for Generation Resource C, as determined above, divided by the absolute value of its shift factor impact on the constraint or \$2000 per MW.

This calculation is performed one time in the Operating Day during which the trigger conditions described in Section 3.6.1 have been met and, subject to the value of the constraint net margin described below, this Shadow Price Cap will remain in effect for the shorter of the remainder of the calendar year or the remainder of the month in which the constraint is determined to be resolvable by SCED.

When the value of a constraint that has met the trigger conditions described in Section 3.6.1 accumulates a net margin, as determined in 3.6.3 below, that exceeds \$95,000 /MW at any time during the remainder of the calendar year following the determination that the constraint is irresolvable by SCED, the Shadow Price Cap for this constraint in the next Operating Day will be set to the minimum of either \$2,000/MWh or G, below, for the remainder of the calendar year:

G. The Maximum of either the largest value of the Mitigated Offer Cap for Generation Resource C, as determined above, divided by the absolute value of its shift factor on the constraint or the currently effective LCAP pursuant to PUC Substantive Rule 25.505 (g).

[Replace the paragraph above with the following upon system implementation:]

When the value of a constraint that has met the trigger conditions described in Section 3.6.1 accumulates a net margin, as determined in 3.6.3 below, that exceeds \$95,000 /MW at any time during the remainder of the calendar year following the determination that the constraint is irresolvable by SCED, the Shadow Price Cap for this, and for all constraints that have the same overloaded transmission element and direction as the constraint in the next Operating Day will be set to the minimum of either \$2,000/MWh or G, below, for the remainder of the calendar year:

G. The Maximum of either the largest value of the Mitigated Offer Cap for Generation Resource C, as determined above, divided by the absolute value of its shift factor on the constraint or the currently effective LCAP pursuant to PUC Substantive Rule 25.505 (g).

When a constraint meets the trigger condition described in Section 3.6.1 and accumulates a net margin that exceeds \$95,000/MW as described in Section 3.6.2, ERCOT shall:

- 1. As soon as practicable, but not more than ten (10) business days after the triggers are met, review transmission outages and recall outages that are contributing to overloading the constraint(s), if feasible.
- 2. As soon as practicable, but not more than thirty (30) days after the triggers are met, review and develop Remedial Action Plans (RAP) or Temporary Outage Action Plans (TOAP) to mitigate congestion on the affected constraint(s), if feasible. To the degree that a RAP or

17

TOAP can be developed, ERCOT shall implement it through an Emergency Database Load, if necessary to avoid delay in addressing the congestion.

- 3. As soon as practicable, but not more than ninety (90) days after the triggers are met, review and develop or identify one or more Special Protection Systems or transmission proposal(s) to alleviate the risk of future congestion on the affected constraint(s), if feasible, so long as the proposed solution produces an overall reduction of congestion on the ERCOT system.
- 4. Perform a detailed review of the constraint(s) that is irresolvable by SCED, and in the next annual Regional Transmission Plan, identify projects that will mitigate the risk of future recurrence of the condition, if any.

Additionally, at the end of the calendar year, for all constraints that have a shadow price cap set in accordance with this section, ERCOT will:

- Again determine Generation Resource C and D, as described in item C and D above; and,
- Reset the Shadow Price Cap for each of the SCED irresolvable constraints to the minimum of E or F above for that constraint. These changes shall be become effective in January of the next year.
- Reset the Shadow Price Cap for each constraint determined to be resolvable by SCED to the appropriate generic value as defined in Section 3.5.

The IMM may initiate re-evaluation of the maximum Shadow Price of the constraint if it is identified that the constraint can be resolvable. This will reset the constraint net margin calculation.

3.6.3 The Constraint Net Margin Calculation for Constraints that Have Met the Trigger Conditions in Section 3.6.1

Each constraint that has met the trigger conditions in Section 3.6.1 will be assigned a unique net margin value calculated as follows:

- The Settlement Point Price at the Resource Node for Generation Resource D (as determined for each SCED irresolvable constraint in section 3.6.2, Methodology for Setting the Constraint Shadow Price Cap for a Constraint that is Irresolvable by SCED) is designated to be an irresolvable constraint net margin reference SPP. This SPP is unique to each SCED irresolvable constraint.
- 2. For these, ERCOT will calculate a constraint net margin in \$/MW equal to the running sum of ½ times the Maximum of either zero or that constraint's (net margin reference SPP the POC) for all Real Time Settlement Intervals in the current calendar year during which the constraint is binding (i.e. the constraint net margin calculation starts with the first operating day in the current calendar year during which the constraint meets the trigger conditions described in Section 3.6.1).

18

- 3. The Proxy Operating Cost (POC) in \$/MWh used in step 2 for each of these constraints equals 10 times the Fuel Index Price as defined in the Nodal Protocol Section 2, Definitions and Acronyms, for the Business Day previous to the current Operating Day.
- 4. All constraint net margin values for these constraints that will be carried to the next calendar year will be reset to zero at the start of the next calendar year and a new running sum will be calculated daily.

4. POWER BALANCE SHADOW PRICE CAP

4.1 The Power Balance Penalty

The Power Balance constraint is the balance between the ERCOT System Load and the amount of generation that is dispatched by SCED to meet that load. This Shadow Price for this constraint, also called System Lambda (λ), is the cost of providing one MWh of energy at the reference Electrical Bus. System Lambda, i.e. the Shadow Price for the Power Balance constraint, is equal to the change in the SCED objective function obtained by relaxing the Power Balance constraint by 1MW. The System Lambda is the energy component of Locational Marginal Price at each Settlement Point in ERCOT. The Power Balance Penalty sets the maximum limit for this Shadow Price, i.e. Power Balance Penalty is the maximum cost paid for one addition/less MW of generation to meet the ERCOT system load constraint. This section describes those factors that ERCOT considered in developing the amount of the Power Balance Penalty in \$/MW versus the amount of the mismatch and provides the resulting Power Balance Penalty Curve proposed for ERCOT Board approval.

The objective function for SCED is the sum of three components (1) the cost of dispatching generation (2) the penalty for violating Power Balance constraint (3) the penalty for violating network transmission constraints. SCED economically dispatches generation resources by minimizing this objective function within the generator physical limits and transmission limits. Since the Power Balance penalty is the maximum cost for meeting the Power Balance, SCED will re-dispatch generation to meet the Power Balance if the cost of re-dispatching the generation is less than cost of violating the Power Balance. When the cost of re-dispatching the generation resources becomes higher than the cost of violating the Power Balance constraint, SCED ceases the re-dispatch of the generation resources and the objective function is minimized with the Power Balance penalty determined by MW amount of the Power Balance constraint violation.

In the ERCOT design, SCED implements the Power Balance Penalty by a step function with up to 10 (Violation MW; Penalty \$/MW) pairs. This curve determines the maximum System Lambda for a given amount of the Power Balance Constraint violation. The following section describes the factors that ERCOT considered in developing the amount of the Power Balance Penalty in \$/MWh of violation and provides the resulting Power Balance Penalty Curve.

4.2 Factors Considered in the Development of the Power Balance Penalty Curve

ERCOT considered a number of factors in the development of the Power Balance Penalty Curve as described below. The dominant factor in the ERCOT qualitative analysis relates to the use of Regulation Ancillary Service capacity in place of generation capacity provided by the market to resolve the SCED Power Balance constraint violation. ERCOT submits that the Power Balance Penalty Curve presented herein represents a reasonable balance between the loss of the Regulation Ancillary Service capacity used to achieve system power balance and the market value of the energy deployed from these Regulation Ancillary Service Generation Resources.

The factors considered by ERCOT in its qualitative analysis, include the following:

- The amount of regulation that can be sacrificed without affecting reliability,
- The PUCT defined System Wide Offer Cap (SWCAP),
- The expected percentage of intervals with SCED Up Ramp scarcity,
- The expected extent of Ancillary Service deployment by operators during intervals with capacity scarcity, and
- The transmission constraint penalty values.

The following discussion describes the details of these factors as they affect the Power Balance Penalty amounts.

Power Balance mismatch occurs whenever SCED is unable to find a dispatch at a cost lower than the Power Balance constraint Penalty. A Power Balance mismatch can occur under two conditions. One condition occurs when the amount of generation that is dispatched up to each resource's High Dispatch Limits is insufficient to meet the system load. This is referred to as an under generation and the System Lambda will be set by the under generation penalty. The opposite occurs when the amount of generation that is dispatched down to each resource's Low Dispatch Limits is greater than the system load. This is referred to as an over generation and the System Lambda will be set by the over generation penalty. Both of these scenarios are unacceptable because, if left uncorrected by regulation, they result in the operation of the ERCOT system below (under generation) or above (over generation) the system frequency set point (nominally 60 Hertz). In the case of under generation, LFC will dispatch additional Regulation Service to correct the condition and restore system frequency to its set point (nominally 60 Hertz). On the other hand, in the case of over generation, LFC will dispatch reduced amounts of Regulation Service to correct the conditions and restore system frequency to its set point (nominally 60 Hertz). In other words, the Power Balance Penalty Curve acts as if it were an energy offer curve for a virtual Generation Resource injecting the amount of the Power Balance mismatch into the ERCOT system.

Since the actions that cause Regulation Ancillary Service capacity to be deployed to meet the Power Balance constraint reduces the amount of regulation capacity that can be used to maintain control of system frequency, the decision of the pricing of the power balance mismatch represents the value of the trade-off between the reduction in system reliability due to the use of the Regulation AS and the cost to the Load Serving Entities. The ERCOT system is particularly vulnerable to an inability to maintain system frequency because of the limited interchange capability of ERCOT with the Western and Eastern interconnects and, therefore, the larger the power balance mismatch, the larger the penalty amount.

In ERCOT, the PUCT has determined a maximum offer cap that is representative of supply side pricing associated with the concept of the value of lost load. By PUCT Substantive Rule 25.505, this amount is the High System-Wide Cap and ERCOT selected this amount to serve as the maximum value for the Power Balance Penalty.

Additionally, the Power Balance constraint can also be violated during operational scenarios characterized by generation resource ramp scarcity. SCED calculates dispatch limits (a High Dispatch Limit (HDL) and a Low Dispatch Limit (LDL)) for each resource that represent the amount of dispatch that can be achieved by a Generation Resource at the end of a 5 minute interval at the resource's specified ramp rate given current system conditions and the physical ability of the resource. The ramp rates used in this calculation are referred to as the SCED up Ramp Rate ("SURAMP") and the SCED Down Ramp Rate ("SDRAMP"). A ramp scarcity condition can occur when, for example during morning and evening system ramp intervals, the available capacity for increasing/ decreasing Base Points (the sum of HDL minus current generation/the sum of current generation - LDL) is less than the actual system demand based on the rate at which the system Load is increasing/decreasing. Since the HDL and LDL are calculated based on the physical ramp rate of the resources, they cannot be violated. The likelihood of violation of Power Balance during ramp scarcity increases with the reduction in the capacity available for SCED that in turn depends on the operational philosophies. If Ancillary Services are deployed to maintain enough capacity that can be ramped in each SCED interval then the likelihood of Power Balance violation will be less. On the other hand if Ancillary Services are only deployed to maintain frequency and maintain online capacity and not deployed to maintain enough ramp capacity then the likelihood of Power Balance violation will be more. Along with the violation of the Power Balance Constraint in the over and under generation discussed above, Regulation Ancillary Service will be co-opted in this scenario to compensate for the SCED available capacity shortfall due to these ramp limitations. This scenario is also included in the ERCOT analysis for pricing the Power Balance Penalty.

ERCOT also considered the fact that near scarcity, the Power Balance Constraint can become violated as the result of the network transmission constraints that are also binding/violated at the same time. In this scenario LMPs will depend on the interaction of the Power Balance Penalty

with the network transmission constraint Shadow Price caps (refer to the Appendix description of the SCED Energy LMP calculation to view this relationship). Under such condition the relative values of the network transmission constraint penalty and power balance penalty will determine whether resources with positive Shift Factor on the violated constraints will be moved up to meet Power Balance causing the network transmission constraint to become violated or will be moved down to resolve the network transmission constraint violation with a concomitant Power Balance violation.

Additionally, Protocols limit both the Energy Offer Curves (EOC) and the proxy EOC created in SCED to the SWCAP. SCED uses the EOC submitted by a QSE for its Generation Resources subject to the following. A proxy EOC is created in the SCED process if the QSE submitted Energy Offer Curve does not extend from LSL to HSL (in this case SCED extends the submitted EOC as described in Protocol 6.5.7.3 Security Constraint Economic Dispatch). A proxy EOC is also created for Generation Resources operating on an Output Schedule. In this case, the proxy EOC is designed to limit the dispatch of these resources from their Output Schedule amounts by pricing this dispatch at values equal to the System-Wide floor or cap. Since the Power Balance Penalty curve can be characterized as equivalent to a virtual EOC, the relative value of the Power Balance Penalty to the EOCs used by SCED will determine the whether energy will be deployed from the EOC or the Power Balance Penalty curve. If the Power Balance constraint is violated in step one of SCED, then the Power Balance Penalty will set the reference LMP and the submitted and proxy EOCs will then be mitigated at the max of that reference LMP or verifiable cost in the second step of SCED. Consequently, if the Power Balance Penalty Curve provides a gradual ramp to SWCAP then the prices will gradually ramp to the SWCAP instead experiencing a sudden jump to SWCAP.

4.3 The ERCOT Power Balance Penalty Curve

Based on the criteria described in Section 4.2 above, the SCED under-generation Power Balance Penalty is shown in Figure 5. The SCED over-generation Power Balance Penalty curve will be set to System-Wide Offer Floor.

SCED Under-generation Power Balance Penalty Curve

22

© 2013 Electric Reliability Council of Texas, Inc. All rights reserved.

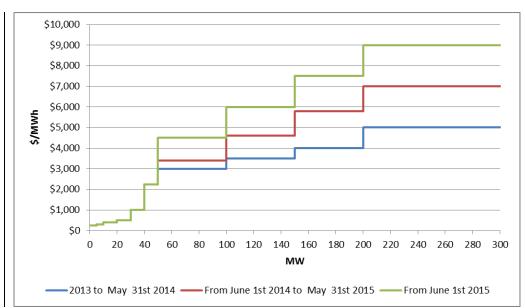


Figure 5

MW Violation	<u>Until May</u> 31st 2014	From June 1st 2014 to May 31st 2015	From June 1st 2015
<u>≤ 5</u>	<u>\$250</u>	<u>\$250</u>	<u>\$250</u>
<u>5 < to ≤ 10</u>	<u>\$300</u>	<u>\$300</u>	<u>\$300</u>
<u>10 < to ≤ 20</u>	<u>\$400</u>	<u>\$400</u>	<u>\$400</u>
<u>20 < to ≤ 30</u>	<u>\$500</u>	<u>\$500</u>	<u>\$500</u>
<u>30 < to ≤ 40</u>	<u>\$1,000</u>	<u>\$1,000</u>	<u>\$1,000</u>
<u>40 < to ≤ 50</u>	\$2,250	<u>\$2,250</u>	<u>\$2,250</u>
<u>50 < to ≤ 100</u>	\$3,000	<u>\$3,400</u>	<u>\$4,500</u>
<u>100 < to ≤ 150</u>	<u>\$3,500</u>	<u>\$4,600</u>	<u>\$6,000</u>
<u>150 < to ≤ 200</u>	\$4,000	<u>\$5,800</u>	<u>\$7,500</u>
200 or more	\$5,001	<u>\$7,001</u>	\$9,001

The SCED under-generation Power Balance Penalty curve will be capped at LCAP plus \$1 per MWh whenever the SWCAP is set to the LCAP.

SCED Over-generation Power Balance Penalty Curve

23

© 2013 Electric Reliability Council of Texas, Inc. All rights reserved.

Deleted: MW Violation

MW Violation	Price/MWh
< 100,000	-\$250

APPENDIX 1: THE SCED OPTIMIZATION OBJECTIVE FUNCTION AND CONSTRAINTS

The SCED optimization objective function is as given by the following:

Minimize {Cost of dispatching generation

+ Penalty for violating Power Balance constraint+ Penalty for violating transmission constraints}

which is:

Minimize {sum of (offer price * MW dispatched)

+ sum (Penalty * Power Balance violation MW amount)

+ sum (Penalty *Transmission constraint violation MW amount)}

The objective is subject to the following constraints:

• Power Balance Constraint

 $sum \ (Base \ Point) + under \ gen \ slack - over \ gen \ slack = Generation \ To \ Be$ Dispatched

• Transmission Constraints

sum(Shift Factor * Base Point) − violation slack ≤ limit

• Dispatch Limits

 $LDL \leq Base Point \leq HDL$

Based on the SCED dispatch the LMP at each Electrical Bus is calculated as

$$LMP_{bus,t} = SP_{demand,t} - \sum_{c} SF_{bus,c,t} \cdot SP_{c,t}$$

Where

 $SP_{demand,t}$ = System Lambda or Power Balance Penalty (if a Power Balance violation exists) at time interval "t"

 $SF_{bus,c,t}$ = Shift Factor impact of the bus "bus" on constraint "c" at time interval "t"

 $SP_{c,t}$ = Shadow Price of constraint "c" at time interval "t" (capped at Max Shadow Price for this constraint).

During scarcity if a transmission constraint is violated then transmission constraint and Power Balance constraint will interact with each other to determine whether to move up or move down a resource with positive SF to the violated constraints if there are no other resources available.

(a) Cost of moving up the Resource = Shift Factor * Transmission Constraint Penalty + Offer cost

24

© 2013 Electric Reliability Council of Texas, Inc. All rights reserved.

(b) Cost of moving down the Resource = Power Balance Penalty

The Resource will be moved down for resolving constraints if (a) > (b). If (a) < (b) then the Resource will be moved up for meeting Power Balance.

APPENDIX 2: DAY-AHEAD MARKET OPTIMIZATION CONTROL PARAMETERS

The purpose of the Day-Ahead Market (DAM) is to economically co-optimize energy and Ancillary Service by simultaneously clearing offers and bids submitted by the Market Participants to maximize social welfare while observing the transmission and generation physical constraints. The ERCOT DAM uses a multi-hour mixed integer programming algorithm to maximize bid-based revenues minus the offer-based costs over the Operating Day, subject to transmission security and other constraints as described in Protocol Section 4. The bid-based revenues include revenues from DAM Energy Bids and Point-to-Point (PTP) Obligation Bids. The Offer-based costs include costs from the Startup Offer, Minimum Energy Offer, and Energy Offer Curve of Resources that submitted a Three-Part Supply Offer, as well as the DAM Energy-Only Offers, CRR Offers, and Ancillary Service Offers. The DAM optimization's objective function includes components that represent the bid based revenues and offer based cost and, additionally, penalty cost values that are used to control certain non-economic aspects of the optimization as described below. These penalty values represent costs of constraint violations and they serve two purposes: rank constraints as relative violation priorities and limit the costs of constraint limitations. Based on the Protocol Section 4.5.1(4)(c)(i), the transmission constraint limits needs to be satisfied in DAM and hence the transmission constraint penalty values are set to very high values to ensure that the constraints are not violated in DAM.

The penalty factors used in the Day-Ahead optimization's objective function are configurable and can be set by an authorized ERCOT Operator. Table 2-1 lists the available optimization penalty cost parameters that are controllable by the ERCOT Operator. The values provided for each of these parameters have been determined by ERCOT based on the results of the DAM quality of solution analysis and various DAM stress tests performed by ERCOT and, following the TNMID, may only be changed with the concurrence of the responsible ERCOT Director.

TABLE 2 - 1

Penalty Function & Shadow Price Cap Cost Parameters	
Constraint	Penalty (\$/MWh)
Over and Under - Generation Penalty Factors	
Over Generation	5,000,000.00
Under Generation	5,000,000.00
Ancillary Service Penalty Factors	
Regulation Down	3,000,000.00
Regulation Up	3,000,000.00
Responsive Reserve	2,000,000.00
Non-spin Reserve	1,000,000.00
Network Transmission Penalty Factors	
Base case 1-10KV	350,000.00
Base case 10.1-20KV	450,000.00
Base case 20.1-30KV	550,000.00
Base case 30.1-50KV	650,000.00
Base case 50.1-100KV	750,000.00
Base case 100.1-120KV	850,000.00
Base case 120.1-150KV	950,000.00
Base case 150+KV	1,050,000.00
Contingency 1-10KV	300,000.00
Contingency 10.1-20KV	400,000.00
Contingency 20.1-30KV	500,000.00
Contingency 30.1-50KV	600,000.00
Contingency 50.1-100KV	700,000.00
Contingency 100.1-120KV	800,000.00
Contingency 120.1-150KV	900,000.00
Contingency 150+KV	1,000,000.00
Non-thermal (e.g. generic constraints)	1,000,000.00

2.1 Over/Under – Generation Penalty Factors

In the ERCOT DAM an over/under energy supply condition (referred to here as over/under generation conditions) in an Operating Hour within the Operating Day can occur as a result of a strike of energy only block offers or the inherent lumpiness of Generation Resource strikes. The values of the Over/Under Generation Penalty Factors are chosen to allow the DAM clearing engine to select offers that result in the least amount of the over/under generation over the entire Operating Day and additionally, to enforce this constraint at the highest rank order relative to all other constraints. Additionally, the values of the Over/Under Generation Penalty Factors used in the DAM are considerably higher than the Power Balance Penalty Factor used in the SCED since DAM is a unit commitment problem and for it to clear reasonable offers and bids, the value of these penalty factors need to be high enough to reflect the start up and minimum generation cost of the committed resources. SCED, on the other hand, is an economic dispatch problem and hence for it to dispatch reasonable offers, the Power Balance Penalty Factor need only be in the order of the energy offer cost.

2.2 Ancillary Service Penalty Factors

The Ancillary Service penalty factors serve two purposes. The procured amount of an Ancillary Service can be lower than the difference between the amount of the required AS, as specified in the AS Plan, and the amount of the self-arranged AS. The value of the AS penalty factors are chosen to allow the selection of AS offers that result in the least amount of deficit for each given AS over the Operating Day and to assign a priority to the AS constraints relative to the enforcement of the Power Balance and Network Transmission constraints. Additionally, the increasing penalty cost structure from Non-Spin AS to Regulation AS prioritizes the DAM AS procurement as first Regulation Services, then Responsive Reserve Service and lastly Non-Spin Service. In other words multiple offers from the same resource will be considered in the rank order given. Notably however, the AS penalty factors are not used to set the MCPC for each Ancillary Service. Instead, the infeasible AS requirement amounts are reduced to the feasible level and the DAM clearing is rerun so that the price of the last AS awarded MW sets the MCPC for the each Ancillary Service.

2.3 Network Transmission Penalty Factors

The DAM Clearing Engine includes the Network Security Monitor (NSM) application and Network Constrained Unit Commitment (NCUC) application. These applications execute in a loop beginning with a NSM execution followed by a NCUC execution until a secure commitment pattern that maximizes the objective function is achieved (i.e. NSM begins with an estimated initial unit commitment and uses, thereafter, the latest NCUC commitment). The value of the Network Transmission Penalty Factors for each specified voltage level are used in NCUC application to set the rank order for relaxing the base case constraints and the security constrained network transmission constraints by voltage level and to set the rank order for the enforcement of the Network Transmission Constraints relative to the Power Balance and AS requirements. The increasing value of the Network Transmission Penalty Factors for increasing voltage levels assures that base case and security constraint violations are relaxed progressively in the NSM and NCUC applications with the 69 kV constraints being the first relaxed, followed by 138 kV and lastly the 345 kV constraints. This assures that the DAM solution will honor network transmission constraints in the rank order from the 345 kV to the 69 kV voltage level. Additionally, these penalty factors are chosen such that, in each voltage range, the base case violations have a slightly higher penalty factor than the security constrained penalty factors. This assigns a higher priority in the NSM and NCUC to a network transmission base case violation compared to a network transmission security constrained violation. In other words, within the same voltage level, the security constraints are relaxed before the base case constraints.

Finally, the Non-Thermal (generic constraint) Penalty Factor assigns these constraints the same priority level in the optimization as the 345 kV security constraints making both less than the 345 kV base case constraints.

The values of the Network Transmission Penalty Factors chosen to enforce the Network Transmission Constraints are considerably higher in DAM when compared to the SCED (Network Transmission Shadow Price Caps) since the DAM is a unit commitment problem and for it to clear reasonable offers and bids, the Network Transmission Penalty Factors need to represent the higher costs associated with a unit start up and generation at minimum energy. The

SCED is an economic dispatch problem and hence for it to dispatch reasonable offers; the penalties need only be in the order of energy offer cost.