## Gill

## Synchrophasor Applications

## ERCOT STF Meeting, Feb 5, 2014

## David.Costello



## SEL

David Costello, P.E.
Technical Support Director
Schweitzer Engineering Laboratories, Inc.
Office - 509.334.5741
Mobile -830.377.9018
e-mail 1 _david costello@selinc:com
, in wwalinkedin:com/in/daridacostellol

## http://web.ecs.baylor.edu/faculty/gradyl Texas_Synchrophasor_Network.html

## The Texas Synchrophasor Network

Supported by Schweitzer Engineering Labs, EPRI, Southwest Power Pool, Brazos Electric Power Cooperative

Idahn Nakxal ab

- Los Allsnos vas. Lsb Sancs Nat, Mon Mmer:"


Recent Presentation
Compendium of Reports from 2009 and 2010 ( 135 pages)
Compendium of Reports from 2011 and 2012 ( 38 pages)
Reports for 2013
20130418_Texas_Synchrophasor_Network_West_Explosion.pdf 20130428 Texas Synchrophasor_Network Week of April 28 2013.pdf 20130502_Texas_Synchrophasor_Network_Special_May 02_2013.pdf 20130505_Texas_Synchrophasor_Network_Week_of_May 05_2013.pdf 20130512_Texas_Synchrophasor_Network_Week_of_May 12_2013.pdf 20130513_Texas_Synchrophasor_Network_Fun_Final_Exam_May 13_2013.pdf 20130519_Texas_Synchrophasor_Network_Week_of_May_19_2013.pdf

## "The MRI of Power Systems"

NERC press release on Florida outage Feb. 26, 2008 :

Synchrophasors are "Like the MRI of bulk power systems," said Rick Sergel, President of NERC.

## 120V Wall Outlets Work for Synchrophasors (of course, we would prefer to have three-phase grid PMUs)

Voltage Ringdown at McDonald Observatory Observed at the Following Two Locations in Austin:
a 120V Wall Outlet on Campus, and the Harris 69kV Substation that Feeds the Campus


- The fixed net multiple of 30 degree phase shift between U.T. Austin 120 V and Harris 69 kV has been removed. The variable but steady power flow phase shift through the substation transformer has also been removed.


Grid response to unit trip gives a measure of stability via the normalized damping ratio, zeta


|  |  | Exponential Steady State Transition Curve |  |  |  | Damped Sinusoidal Tè̇m |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Sec | Stop Sec | A | B | T1 | Tau1 | C | T2 | Tau2 | Tdamp | Fdamp | Zeta |
| 53 | 60 | 2.36 | 0.81 | 54.14 | 0.32 | -1.29 | 54.55 | 1.96 | 1.44 | 0.696 | 0.116 |

U.T. Pan Am Voltage Phase Angle wrt Baylor, Sept. 10, 2013, 04:36 GMT


Surprises. Very Unusual Events Occur and Need Investigation
Superimposed Frequency Measurements Taken at
UT Austin (in black) and McDonald Observatory (in red)


Cause - Throttle valving problem on generator under test. Slow frequency variation had gone unnoticed.

This is probably the world's first electricity market-induced grid oscillation!



## High Wind Generation Levels Present Challenges for Grids, but ERCOT is Handling Them Well




On April 21, 2013, wind generation dropped from

- $35 \%$ to $4 \%$ of total generation,
- 8500 MW to 1100 MW, in 12 hours

Voltage phase angle (loadflow, short circuit, stability, state estimator), dropped $40^{\circ}$ and then rose $45^{\circ}$


## Surprises. A 2 Hz Mode in Ambient Oscillation Sometimes Forms with High Wind Generation

Big Wind (20\%) with 2 Hz Cluster
© UT Austin - Schweitzer Phasor Measurement Network. Modal A... $\square$
Synchrophasor Modal Analysis of ERCOT
Plot 1. Scatter Plot of Modal Frequencies and Damping Ratios 090318.070000000 .UT Austin, 3378.csv


Top 5\% Mag >= | 3.61 |
| :---: | To copy to your clipboard, click anywhere on the form Top $1 / 4 \mathrm{Mag}>=0.76$ and then use Ctrl+Alt+PrintScreen

Top $1 / 2 \mathrm{Mag}>=0.29 \quad \begin{aligned} & \text { Funds provided by the Texas Emerging Technology Fund, throun Center for the Commexcialization of Electic Technologies } \\ & \text { the }\end{aligned}$
Top 3/4 Mag $>=\sqrt{0.16}$ Engineering Labs, Inc. Mack Grady, March 24, 2009.

Small Wind (2\%) without 2 Hz Cluster
© UT Austin - Schweitzer Phasor Measurement Network. Modal A... $\square$
Synchrophasor Modal Analysis of ERCOT
Plot 1. Scatter Plot of Modal Frequencies and Damping Ratios 090312,070000000.UT Austin,3378.csv


42 Major Unit Trips, 0.1 Hz or Greater. Conclusion - No Correlation Between Wind Generation and System Inertia


## Does Wind Generation Impact Grid Inertia?

EPRI Study. Purpose - to compute ERCOT System Inertia Constant H From Frequency Response During 42 Unit Trips Having 0.1 Hz or Greater Freq. Drop.

$$
\begin{aligned}
H & \equiv \frac{\frac{1}{2} J \omega_{s}^{2}}{P_{\text {rated }}}=\frac{1}{2} \frac{\left(J \omega_{S}\right) \bullet \omega_{S}}{P_{\text {rated }}}=\frac{1}{2}\left[\frac{-\Delta P_{m}}{d \omega_{s} / d t}\right] \frac{\omega_{S}}{P_{\text {rated }}} \\
H & =\frac{1}{2}\left[\frac{-\Delta P_{m}}{P_{\text {rated }}}\right] \frac{\omega_{S}}{\left(d \omega_{s} / d t\right)}=\frac{-\Delta P_{m}}{2 P_{\text {rated }}} \frac{2 \pi f_{s}}{2 \pi\left(d f_{s} / d t\right)}=\frac{-\Delta P_{m} f_{s}}{2 P_{\text {rated }}\left(d f_{s} / d t\right)}
\end{aligned}
$$

H has the units of seconds. The correct interpretation is that the kinetic energy in the equivalent system machine corresponds to H seconds of rated power. Thus, the machine could provide rated power for H seconds, at which time it would have spun down to zero RPM.

## Select A Disturbance



## 776 MW Generator Tripped*



## Real-Time $P_{m}-P_{e}$ Calculation



## Measure Frequency Change



## Measure Time Change



## dfldt Calculation



## Estimated Generation Lost

- $\mathrm{df} / \mathrm{dt}=-40 \mathrm{milliHz} /$ second
- H = 9 seconds
- $V A_{\text {base }}=60 \mathrm{GW}$
- $\mathrm{f}_{\text {nom }}=60 \mathrm{~Hz}$

$$
P_{m}-P_{e}=\frac{2 \cdot(9 \mathrm{sec}) \cdot(-0.04 \mathrm{~Hz} / \mathrm{sec}) \cdot 60 \mathrm{GW}}{60 \mathrm{~Hz}}
$$

- $P_{m}-P_{e}=720 \mathrm{MW}$


## Already Installed PMU-Capable SEL Devices in Each Grid



## Developing Synchrophasor Solutions for Over a Decade



These solutions are in service today, worldwide

## SEL Synchrophasor Building Blocks Phasor Measurement Units



## SEL Synchrophasor Building Blocks

Data
Concentration SYNCHBDMATE PDC

| 細 SEL-3373 |  |
| :---: | :---: |
| [1: : | $\square$ |

Control Solutions


Visualization and Analysis synchiolive Central

Secure Communications


Satellite Clocks


## https://www.selinc.com/synchrophasors/ <br> Learn more about SEL's industry-

## $(10$

 leading customer service and warranty.
## Technologies <br> Safety

Economical
Synchrophasors
Products
Applications
The Synchrophasor Report
FAQs
Ask the Synchrophasor Team DNA (Distribution Network Automation) SEL Government Services Smart Grid Solutions From SEL Application Notes

HOW CAN SYNCHROPHASORS HELP SOLVE YOUR POWER SYSTEM CHALLENGE?


ASK THE SYNCHROPHASOR TEAM TODAY


Meets NERC PRC-002-2 draft

## Synchrophasors Overview

Synchronized phasors (synchrophasors) provide a real-time measurement of electrical quantities from across the power system. Applications include wide-area control, system model validation, determining stability margins, maximizing stable system loading, islanding detection, system-wide disturbance recording, and visualization of dynamic system response. The basic system building blocks are GPS satellite-synchronized clocks, phasor measurement units (PMUs), a phasor data concentrator (PDC), communication equipment, and visualization software.

Typical Synchrophasor System Architecture


A complete system includes GPS clocks, PMUs, PDCs, secure communications, and visualization software.
Why choose SEL?

- SEL has a comprehensive portfolio of
products to create a complete solution that

meets your needs. $\quad$\begin{tabular}{l}

- SEL relays include PMU capability free of charge. <br>
This makes SEL systems economical and easy to <br>
implement.
\end{tabular}

》 New to SEL synchrophasors? Check out the FAQ

## Training

## U

## SEL University Training

SYS 310-Modern Synchrophasor Visualization, Control, and Analysis
In this two-day, hands-on systems course, you will learn, step-by-step, how to configure a modern synchrophasor protection and control system and how to identify specific system instability conditions.

## PMU Snapshots

Relay 1
Station A

Date: 02/26/2013 Time: 14:54:14.000
Serial Number: 2004342280

Time quality Maximum time synchronization error: 0.000 ( ms ) $\mathrm{TSOK}=1$
Synchrophasors

|  | Phase Uoltages |  |  |
| :--- | :--- | :--- | :--- |
|  | UA | UB |  |
|  | UAG (KU) | 0.741 | 0.789 |
| MAG (DEG) | 91.797 | 92.717 | 93.855 |
|  |  |  |  |

Pos. Sequence Voltage U1
0.035
-44.573
IW Pos. Sequence Current I1W
74.480
60.756

IX Pos. Sequence Current I18
2.178
110. 375

IS Pos. Sequence Current I1S
75.910
62.009

FREQ (Hz) 60.000
Rate-of-change of FREQ ( $\mathrm{Hz} / \mathrm{s}$ ) 0.00

## Easily Identify Errors



## Check CT Polarities, Phasing, and Ratio



## Find Problems With PTs, CVTs and CTs

- Discover loose connections in potential circuits
- Detect CVT drift and future failure
- Prevent future outages and misoperations



## Samples Time Stamped +/- 5 microsec



## NERC PRC-002-2 Disturbance Recording



## Advanced Event Analysis

## SEL




$-150.5$
$50.658380 \quad 50.708377$
50.758374

^ $1^{\text {SEL-311L }}$
1 2/26/2013 3:25:50 PM
Location: Relays
FID=SEL-311L-R102-V0-Z001001-D20010820
Frequency: 60 Hz Samples Rate: 961 Samples/Second

| Relay Settings | Adjust Time |
| :--- | :--- |

$\pm$
User Defined Calculations
$\mathrm{IO}=\mathrm{IA}+\mathrm{IB}+\mathrm{IC}$

## Improve Understanding of Events Example - 10:23 p.m. July 14, 2012

Improper relaying on Grizzly-Ponderosa 500 kV


## Eastern Interconnection Transient 3:06:48 a.m. July 21, 2012



## Generator Trip 9:21:00 a.m. May 14, 2012



## 500 kV DC Line Trip April 20, 2012



## 750 MW Generation Trip July 8, 2012



|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Wide-Area Visualization



## Get Instant Feedback After System Changes



## Distribution Planning and Improvement Example

Detection of loose fuse caps,
loose connections at safety switch or terminal cabinets, and animal damage to wiring


## Study the Impact of Renewables Example - 7:13 a.m. January 7, 2012

Sudden high frequency oscillation - cause under investigation (an inverter?)


## See Information That SCADA Misses



## System Reconnection and Restoration Example

Frequencies of three islanded systems
Sell


## Model Verification Example

## Observe inertia $(\mathrm{H})$ from generation rejection event



## System Settings <br> Example - January 18, 2012

Modal analysis shows marginal damping prior to unusual system events, led to power system stabilizer settings changes


## Anti-Islanding Example

- Implemented with Florida Power \& Light
- Required for IEEE 1547
- Must disconnect DG within 2 seconds
- Options include
- Transfer trip
- Vector shift
- Injected signal


## Architecture With Synchrophasors



## Wide-Area IDS Uses Slip and Acceleration for Islanding Detection



## Wide-Area IDS Detects Islanding During Minimal Power Exchange Conditions



- Synchrophasor data are sent from the DG and remote source
- SVP time-aligns and makes coherent data available to logic


## Responsive to All Conditions



## Responsive to All Conditions



- Generator Protection (voltage or frequency trip)
- Islanding Detection (local-area measurements)
- Islanding Detection (wide-area measurements)


## Big Creek Controls Rector Static VAR Compensator



## Closed-Loop Control at Big Creek Stabilizes Voltage



## Transient Stability Control

CFE Mexico

## CFE AGSS System



## Simple Synchrophasor Generator-Shedding Logic

Remote Phasor


## Wide-Area Protection at Relay Speeds



## 230 kV Backbone Connects Countries From Guatemala to Panama



## Guatemala Wheels Power From Mexico to Central America



## Supplementary Control Scheme (SCS) Trips Interconnection to El Salvador



## Oscillation Stability Assessment With Resulting Control Action Displayed



## Traditional Control to Isolate Line

Master Control


Bus 1


Tap Down


## Traditional Method Causes Disturbances



## Time-Synchronized Control in Action



## Synchronous Control to Isolate Line



## Recipe Method Minimizes Impact



## Directly Measure the State




SRP Operator Closes Tie Based


Reference Station
Station TS WECC GE2 on Synchrophasors, 2004


## What if I Have Multiple Tie Points?



23:16:20


Refinery Selects From 5 Breakers

DIFFERENCE ANGLE -43.26 133330 BUS VOLTAGE 82085

REFERENCE FREQUENCY 59.9989 SLIP FREQUENCY -0.0288

Phasor Magnitudes 23:16:20


| Station | Phasor | Magnitude |
| :---: | :---: | :---: |
| REF_BuS | -V1LPM | 133326.83 |

Frequencies 23:16:20


| Station | Element | Value |
| :--- | :--- | :--- |
| REF_BUS | Frequency | 59.999 |

## Utilities Are Operating Closer to the Edge



## Long Island: Monitor Angles Between Transmission Distribution Buses to Detect \& Prevent Voltage Collapse




$$
S_{\max }=\frac{(1-\sin (\theta)) V_{s}^{2}}{2 \cos (\theta)^{2} X}
$$

## SEL

## MAKING ELECTRIC POWER SAFE, RELIABLE, AND ECONOMLCAL FOR



