

Synchrophasor Applications

ERCOT STF Meeting, Feb 5, 2014

David Costello, P.E. **Technical Support Director** Schweitzer Engineering Laboratories, Inc. -509.334.5741Office -830.377.9018 *A*obile - david costello@selinc.com e-mail in www.linkedin.com/in/davidacostello/

http://web.ecs.baylor.edu/faculty/grady/ Texas_Synchrophasor_Network.html

The Texas Synchrophasor Network

Supported by Schweitzer Engineering Labs, EPRI, Southwest Power Pool, Brazos Electric Power Cooperative

Recent Presentation

Compendium of Reports from 2009 and 2010 (135 pages) Compendium of Reports from 2011 and 2012 (38 pages)

Reports for 2013

20130418 Texas Synchrophasor Network West Explosion.pdf 20130428 Texas Synchrophasor Network Week of April 28 2013.pdf 20130502 Texas Synchrophasor Network Special May 02 2013.pdf 20130505 Texas Synchrophasor Network Week of May 05 2013.pdf 20130512 Texas Synchrophasor Network Week of May 12 2013.pdf 20130513 Texas Synchrophasor Network Fun Final Exam May 13 2013.pdf 20130519 Texas Synchrophasor Network Week of May 19 2013.pdf

"The MRI of Power Systems"

NERC press release on Florida outage Feb. 26, 2008

Synchrophasors are "Like the MRI of bulk power systems," said Rick Sergel, President of NERC.

• The fixed net multiple of 30 degree phase shift between U.T. Austin 120V and Harris 69kV has been removed. The variable but steady power flow phase shift through the substation transformer has also been removed.

		Exponential Steady State Transition Curve				Damped Sinusoidal Term					
Start Sec	Stop Sec	Α	В	T1	Tau1	С	T2	Tau2	Tdamp	Fdamp	Zeta
53	60	2.36	0.81	54.14	0.32	-1.29	54.55	1.96	1.44	0.696	0.116

U.T. Pan Am Voltage Phase Angle wrt Baylor, Sept. 10, 2013, 04:36 GMT

Surprises. Very Unusual Events Occur and Need Investigation

Superimposed Frequency Measurements Taken at UT Austin (in black) and McDonald Observatory (in red)

Cause - Throttle valving problem on generator under test. Slow frequency variation had gone unnoticed.

This is probably the world's first electricity market-induced grid oscillation!

High Wind Generation Levels Present Challenges for Grids, but ERCOT is Handling Them Well

Surprises. A 2 Hz Mode in Ambient Oscillation Sometimes Forms with High Wind Generation

42 Major Unit Trips, 0.1 Hz or Greater. Conclusion - No Correlation Between Wind Generation and System Inertia

Does Wind Generation Impact Grid Inertia?

EPRI Study. Purpose – to compute ERCOT System Inertia Constant H From Frequency Response During 42 Unit Trips Having 0.1 Hz or Greater Freq. Drop.

$$H = \frac{\frac{1}{2}J\omega_s^2}{P_{rated}} = \frac{1}{2}\frac{(J\omega_s) \bullet \omega_s}{P_{rated}} = \frac{1}{2}\left[\frac{-\Delta P_m}{d\omega_s / dt}\right]\frac{\omega_s}{P_{rated}}$$
$$H = \frac{1}{2}\left[\frac{-\Delta P_m}{P_{rated}}\right]\frac{\omega_s}{(d\omega_s / dt)} = \frac{-\Delta P_m}{2P_{rated}}\frac{2\pi f_s}{2\pi (df_s / dt)} = \frac{-\Delta P_m f_s}{2P_{rated} (df_s / dt)}$$

H has the units of seconds. The correct interpretation is that the kinetic energy in the equivalent system machine corresponds to H seconds of rated power. Thus, the machine could provide rated power for H seconds, at which time it would have spun down to zero RPM.

Select A Disturbance

776 MW Generator Tripped*

Real-Time P_m – P_e Calculation

Measure Frequency Change

Measure Time Change

df/dt Calculation

$$P_m - P_e = \frac{2 \cdot (9 \, sec) \cdot (-0.04 \, Hz/sec) \cdot 60 GW}{60 Hz}$$

• $P_m - P_e = 720 \text{ MW}$

Already Installed PMU-Capable SEL Devices in Each Grid

Developing Synchrophasor Solutions for Over a Decade

These solutions are in service today, worldwide

SEL Synchrophasor Building Blocks Phasor Measurement Units

SEL Synchrophasor Building Blocks

Data Concentration SYNCHROWAVE. PDC

Control Solutions

Visualization and Analysis SYNCHROWAVE. Central

Secure Communications

Satellite Clocks

https://www.selinc.com/synchrophasors/

Learn more about SEL's industry- leading customer service and war
Technologies
Safety
Economical
Synchrophasors
Products
Applications
The Synchrophasor Report
FAQs
Ask the Synchrophasor Team
DNA (Distribution Network Automation)
SEL Government Services
Smart Grid Solutions From SEL
Application Notes

ranty.

Synchrophasors Overview

Synchronized phasors (synchrophasors) provide a real-time measurement of electrical quantities from across the power system. Applications include wide-area control, system model validation, determining stability margins, maximizing stable system loading, islanding detection, system-wide disturbance recording, and visualization of dynamic system response. The basic system building blocks are GPS satellite-synchronized clocks, phasor measurement units (PMUs), a phasor data concentrator (PDC), communication equipment, and visualization software.

Typical Synchrophasor System Architecture

A complete system includes GPS clocks, PMUs, PDCs, secure communications, and visualization software.

Why choose SEL?

- SEL has a comprehensive portfolio of products to create a complete solution that meets your needs.
- SEL has experience implementing systems worldwide and guarantees all products with a ten-year warranty.

New to SEL synchrophasors? Check out the FAQ.

- SEL relays include PMU capability free of charge. This makes SEL systems economical and easy to implement.
- The SEL Engineering Services Division can design, install, and commission your system to meet your schedule and budget.

SEL Disturbance Recording System

Training

SEL University Training

SYS 310—Modern Synchrophasor Visualization, Control, and Analysis In this two-day, hands-on systems course, you will learn, step-by-step, how to configure a modern synchrophasor protection and control system and how to identify specific system instability conditions.

PMU Snapshots

Rela Stat	ty 1 ion A			1	Date: 02 Serial N	:/26/2 lumber	013 Time : 2004342	e: 14:54:14.000 2280		
Time	e Quality	Maximum ti	me synchro	nization	error:	Ø.	000 (ms)	TSOK = 1		
Sync	hrophasors									
		Phas	e Voltages		Pos	Pos. Seguence Voltage				
		VA	VB	UC			Ū1			
MAG	(kU)	Ø.741	Й.789	0.855			0.035			
ANG	(DEG)	91.797	92.717	93.027		83 3	44.573			
		IW P	IV	IW Pos. Sequence Current						
		IA	IB	IC			ΙÎW			
MAG	(A)	278.365	62.777	52.277			74.480			
ANG	(DEG)	65.338	92.177	91.954			60.756			
		IX Phase Currents			IX	IX Pos. Sequence Current				
		IA	IB	IC			ΙÍΧ			
MAG	(A)	42.862	37-681	36.293			2.178			
ANG	(DEG)	92.177	90.608	91.135		1	10.375			
		IS Phase Currents			IS	Pos.	Sequence	Current		
		TA	TR Straight	IC			TÍS			
MAG	(A):	317.201	100.449	88.568			75.910			
ANG	(DEG)	68.835	91.588	91.619			62.009			
FREQ Rate) (Hz) 60.0 e-of-change	00 of FREQ (H	z/s) Ø.	00						

Easily Identify Errors

Check CT Polarities, Phasing, and Ratio

Find Problems With PTs, CVTs and CTs

- Discover loose connections in potential circuits
- Detect CVT drift and future failure
- Prevent future outages and misoperations

Samples Time Stamped +/- 5 microsec

NERC PRC-002-2 Disturbance Recording

Advanced Event Analysis

Improve Understanding of Events Example – 10:23 p.m. July 14, 2012

Improper relaying on Grizzly-Ponderosa 500 kV

Eastern Interconnection Transient 3:06:48 a.m. July 21, 2012

Generator Trip 9:21:00 a.m. May 14, 2012

500 kV DC Line Trip April 20, 2012

750 MW Generation Trip July 8, 2012

Wide-Area Visualization

Get Instant Feedback After System Changes

Distribution Planning and Improvement Example

Detection of loose fuse caps, loose connections at safety switch or terminal cabinets, and animal damage to wiring

Study the Impact of Renewables Example – 7:13 a.m. January 7, 2012

Sudden high frequency oscillation – cause under investigation (an inverter?)

See Information That SCADA Misses

System Reconnection and Restoration Example

Frequencies of three islanded systems

An Comr tions

1 Day - 🟥 < ov 20

+ x VACAVILLE_CA x Charlot

Standard Chart

1.98M

1.58M

1.19M

.79M

.39M

.00M

1/14/2013 11 AM

ţ

	🖷 Desktop - PDC Assistant	nt 💶 🗖 🔀				
alvze	SEL					
	New Open Save As Close Send Settings Connect Disconnect Local Services Help					
he	Home	Calculations				
	Settings		Course 🧖 Add Colo	lating 🕞 carry 🛱 1	Dente 💓 Delete	
nunica-	Inputs	Add Calculation Group Add Calculation				
numua-	Outputs	Sullivan Subs	Sullivan Subs: No	etwork Latency(InstNetLa	itency, AvgNetLatency, Maxi	letLatency)
Notwork	Calculations	-	Instantaneous Network Latency			
NELWOIK	Archives		Enabled	InstNetLatency	1	
Dec 1 2012 Dec 10	Loggers		Average Networl	k Latency		
	Status		Enabled		1	
tte_NC x Vancouver_BC x BOISE_ID x Pullima	Real-time		Tag Window	AvgNetLatency	Minutes	
	Diagnostic Logs		Maximum Netwo	ork Latency	- milited	
	Data		Enabled		1	
	Retrieve Archives 🗸	< >	Tag	MaxNetLatency		
	Project Status - No Errors	PDC Sy	vnc - Sync. Required	PDC Connection - Conr	necter 🛛 🍇 User Domain - L	ocal
	l d fha li bhall bh		http://h			
alin india di second						
li shi da wa Ani na dadahi kuta manga darka (
			ale han and a faith of the state of the			
		w les wei de.	n Marine (di di kasa			
1/14/2013 2 PM 1/14/2013 6 PM	иниламънгининилилини 1/14/2013 9 РМ 1/15/2013	3 12 AM 1/15/2	2013 4 AM 1/1	MUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMU		

Model Verification Example

Observe inertia (H) from generation rejection event

System Settings Example – January 18, 2012 Modal analysis shows marginal damping prior to unusual system events, led to power system stabilizer settings changes

Anti-Islanding Example

- Implemented with Florida Power & Light
- Required for IEEE 1547
- Must disconnect DG within 2 seconds
- Options include
 - Transfer trip
 - Vector shift
 - Injected signal

Wide-Area IDS Uses Slip and Acceleration for Islanding Detection

Wide-Area IDS Detects Islanding During Minimal Power Exchange Conditions

- Synchrophasor data are sent from the DG and remote source
- SVP time-aligns and makes coherent data available to logic

Responsive to All Conditions

Responsive to All Conditions

Generator Protection (voltage or frequency trip)

— Islanding Detection (local-area measurements)

— Islanding Detection (wide-area measurements)

Big Creek Controls Rector Static VAR Compensator

Closed-Loop Control at Big Creek Stabilizes Voltage

CFE AGSS System

Wide-Area Protection at Relay Speeds

230 kV Backbone Connects Countries From Guatemala to Panama

Guatemala Wheels Power From Mexico to Central America

Supplementary Control Scheme (SCS) Trips Interconnection to El Salvador

Oscillation Stability Assessment With Resulting Control Action Displayed

Traditional Method Causes Disturbances

Time-Synchronized Control in Action

Recipe Method Minimizes Impact

Directly Measure the State

ocked [Sync Check,Phasor Magnitudes,Frequencies]

Utilities Are Operating Closer to the Edge

Long Island: Monitor Angles Between Transmission Distribution Buses to Detect & Prevent Voltage Collapse

MAKING ELECTRIC POWER SAFE, RELIABLE, AND ECONOMICAL FOR 30 YEARS