

Houston Import Project – ERCOT update

RPG Meeting December 17, 2013

Status of Houston Import Project Review

- ERCOT is conducting the Independent Review to increase the import capability into the Houston area
 - ERCOT presented the reliability need in the October RPG meeting:
 - Thermal overloads of the import paths from North to Houston
 - Low voltages around Bobville, Rothwood, Tomball, and Kuykendahl
 - The worst G-1+N-1 issue occurs when the South Texas U1 is offline
 - Current status:
 - ERCOT is evaluating various options
 - ERCOT is working with TSPs to obtain cost estimates of certain existing line upgrades and is preparing additional request for estimates of select options as well as other existing line upgrades
 - ERCOT will perform economic analysis to further evaluate each select option

Study Base Case

- Total Load in Coast Weather Zone in the 2018 SE case
 - ~ 26,355 MW (CNP load = ~ 22800 MW)
 - The load is identical to the SSWG case load in the Coastal weather zone
- Status of future generators in the study case

Online:

- Deer Park Energy G6, Channel Energy GT3,
- Deepwater Energy,

Offline:

New W.A. Parish unit, Pondera King, Cobisa

Study Approach – Initial Option Evaluation

Initial Options

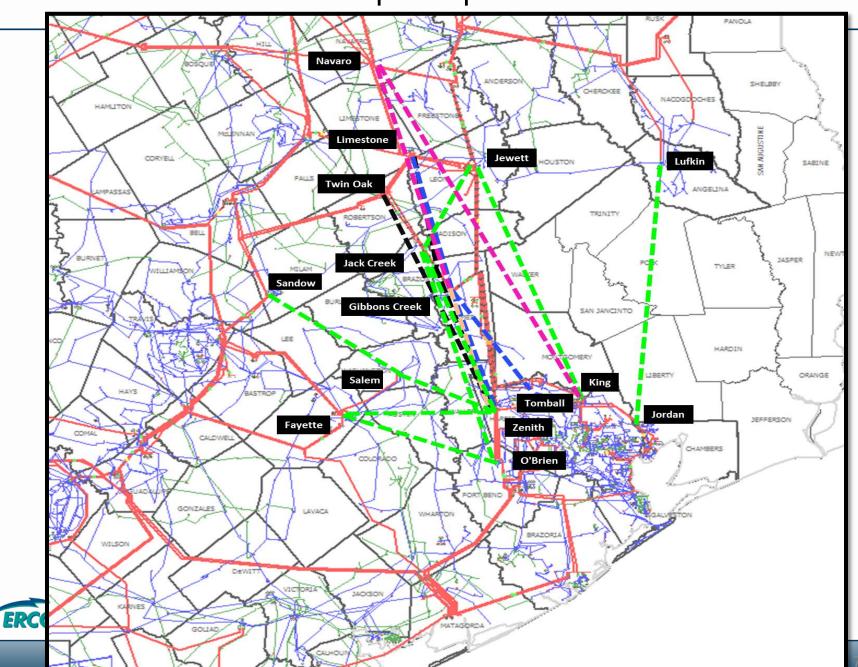
 Developed based on system problems found, studies done in the past (DOE Long-term planning study), and inputs from TSPs

Study Approach to Screen Initial Options

- N-1 Analysis:
 - AC power flow analysis under N-1 conditions
 - If an option addresses N-1 issue, it moves to the G-1+N-1
- G-1+N-1 Analysis:
 - AC power flow analysis under G-1+N-1 conditions
 - If an option addresses G-1+N-1 issue, it is selected for further evaluation
- Select Options:
 - Options selected for further evaluation
 - Each option that passed G-1+N-1 analysis requires upgrades of certain existing line(s) located near termination point of each option.
 - The existing line upgrade(s) is also assumed as part of each select option

Study Approach – Evaluation of Select Options

Evaluation of Select Options


- Power transfer capability analysis (including voltage stability)
- Cost Analysis (Present Value Analysis)
- Impact of old generation retirement inside Houston area
- Impact of NERC Category C and D contingencies
- System loss analysis
- Congestion-related impact

Options Evaluated for N-1

ID	CenterPoint Options	Approximate Length (mi)
C1	Twin Oak-Zenith 345 kV double circuit	117.0
C2	Ragan Creek-Zenith double-circuit 345 kV double circuit	69.0
C3	Limestone-Ragan Creek-Zenith 345 kV double circuit	130.2
ID	Lone Star Options	Approximate Length (mi)
L1	Navarro-Gibbons Creek-Zenith 345 kV double circuit	165.0
L2	Navarro-King 345 kV double circuit	186.0
L3	Navarro-King 500 kV double circuit	186.0
L4	Navarro-King 345 kV double circuit with 50% Series Compensation	186.0
ID	Cross Texas & Garland Power and Light Options	Approximate Length (mi)
T1	Gibbons Creek-Tomball 345 kV double circuit	50.0
T2	Gibbons Creek-Zenith 345 kV double circuit	60.0
T3	Limestone-Gibbons Creek-Zenith 345 kV double circuit	122.0
ID	ERCOT and Other Options	Approximate Length (mi)
E1	Jewett-King 345 kV double circuit	142.5
E2	Lufkin-Jordan 345 kV double circuit	126.0
E3	Fayette-Zenith 345 kV double circuit	65.6
E4	Fayette-O'Brien 345 kV double circuit	73.9
E5	Jewett-Jack Creek-O'Brien 345 kV double circuit plus loop Twin Oak-Gibbons Creek into Jack Creek	154.6
E6	Jewett-Jack Creek-Zenith 345 kV double circuit plus loop Twin Oak-Gibbons Creek into Jack Creek	134.1
E7	Sandow-Salem-Zenith 345 kV double circuit	113.4
E6-a	Jewett-Jack Creek-Zenith 345 kV double circuit with 50% or 25% Series Compensation plus Loop Twin Oak-Gibbons Creek into Jack Creek	134.1
LO d		

Map of Options

Result – N-1 Analysis

Options that did not pass N-1 criteria:

- C2: Ragan Creek-Zenith 345 kV
 - Overload of Twin Oak-Ragan Creek 345 kV, Jack Creek-Twin Oak 345 kV
 - Heavy flow* on Jewett-Singleton 345 kV
- T1: Gibbons Creek-Tomball 345 kV
 - Overload of Jack Creek-Twin Oaks 345 kV
 - Heavy flow* on Jewett-Singleton 345 kV
- T2: Gibbons Creek-Zenith 345 kV
 - Overload of Jack Creek-Twin Oaks 345 kV
 - Heavy flow* on Jewett-Singleton 345 kV
- E2: Lufkin-Jordan 345 kV
 - Overload of ~50 miles of 138 kV lines in the Lufkin area
- E3: Fayette-Zenith 345 kV
 - Overload of Singleton-Zenith 345 kV
- E4: Fayette-O'Brien 345 kV
 - Overload of Singleton-Zenith 345 kV

^{*} Heavy flow: contingency loading greater than 95%

Result – G-1+N-1 Analysis

- Options that did not meet the G-1+N-1 Analysis:
 - C1: Twin Oak-Zenith 345 kV
 - ✓ Heavy flow* on Singleton-Zenith 345 kV
 - E1: Jewett-King 345 kV
 - ✓ Overload of Singleton-Zenith 345 kV
 - E5: Jewett-Jack Creek-O'Brien 345 kV
 - ✓ Overload of Singleton-Zenith 345 kV
 - E7: Sandow-Salem Zenith 345 kV
 - ✓ Overload of Singleton-Zenith 345 kV
 - ✓ Heavy flow* on Jewett-Singleton 345 kV
 - L3: Navarro-King 500 kV
 - ✓ Overload of Singleton-Zenith 345 kV
 - L4: Navarro-King 345 kV with 50% series compensation
 - ✓ Overload of Singleton-Zenith 345 kV
 - L2: Navarro-King 345 kV
 - ✓ Overload of Singleton-Zenith 345 kV
 - ✓ Heavy flow* on Jewett-Singleton 345 kV

ERCOT

^{*} Heavy flow: contingency loading greater than 95%

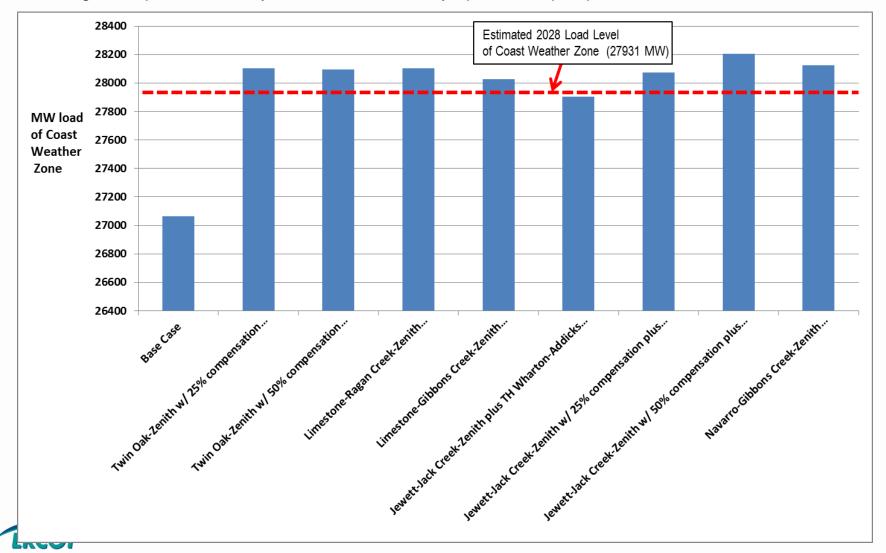
Selected Option for Further Analysis

Eight options selected for further study

- Option 1: Twin Oak-Zenith 345 kV with 25% series compensation (~117 miles)
- Option 2: Twin Oak-Zenith 345 kV with 50% series compensation (~117 miles)
- Option 3: Limestone-Ragan Creek-Zenith 345 kV (~130.2 miles)
- Option 4: Limestone-Gibbons Creek-Zenith 345 kV (~122 miles)
- Option 5: Jewett-Jack Creek-Zenith 345 kV (~134.1 miles)
- Option 6: Jewett-Jack Creek-Zenith 345 kV with 25% series compensation (~134.1 miles)
- Option 7: Jewett-Jack Creek-Zenith 345 kV with 50% series compensation (~134.1 miles)
- Option 8: Navarro-Gibbons Creek-Zenith 345 kV (~165 miles)

Few upgrades of existing lines are also included as part of the options

- For all options above, upgrade
 - T.H. Wharton-Addicks 345 kV line (~10.7 miles)
- For Option 6 and 7, upgrade
 - Jack Creek-Twin Oak double-circuit 345 kV line (terminal upgrade)
- For Option 8, upgrade
 - Jack Creek-Twin Oak 345 kV #1 (terminal upgrade)
- These select options moved to the next stage for further evaluation.


(Thermal Overload)

 Performed power transfer analysis and identified future thermal upgrades needed for each option over the next 15 years (2028)

Option		by 2025	by 2026	by 2027	by 2028	
Option 1	Twin Oak-Zenith w/ 25% compensation plus TH Wharton-Addicks upgrade		Singleton-Zenith 345 kV (53.2 mi)	Big Brown-Jewett 345 kV (32.8 mi)	Zenith-TH Wharton 345 kV (15.1 mi)	
Option 2	Twin Oak-Zenith w/ 50% compensation plus TH Wharton-Addicks upgrade		Big Brown-Jewett 345 kV (32.8 mi)		Singleton-Zenith 345 kV (53.2 mi), Zenith-TH Wharton 345 kV (15.1 mi)	
Option 3	Limestone-Ragan Creek-Zenith plus TH Wharton-Addicks upgrade			Singleton-Zenith 345 kV (53.2 mi), Jack Creek-Twin Oak #1 (26.7 mi), Big Brown-Jewett 345 kV (32.8 mi)	Gibbons Creek-Ragan Creek 345 kV (9.6 mi)	
Option 4	Limestone-Gibbons Creek-Zenith plus TH Wharton-Addicks upgrade			Singleton-Zenith 345 kV (53.2 mi), Big Brown-Jewett 345 kV (32.8 mi)	Jack Creek-Twin Oak #1 (26.7 mi)	
Option 5	Jewett-Jack Creek-Zenith plus TH Wharton-Addicks upgrade	Singleton-Zenith 345 kV (53.2 mi)	Big Brown-Jewett 345 kV (32.8 mi), Twin Oak-Jack Creek 345 kV (26.7 mi)		Jewett-Singleton 345 kV (49.9 mi), Zenith-TH Wharton 345 kV (15.1 mi), Gibbons Creek-Singleton 345 kV (9.4 mi), Gibbons Creek-Jack Creek 345 kV (21.3 mi)	
Option 6	Jewett-Jack Creek-Zenith w/ 25% compensation plus TH Wharton- Addicks & Twin Oak-Jack Creek upgrade		Big Brown-Jewett 345 kV (32.8 mi)	Singleton-Zenith 345 kV (53.2 mi)	Zenith-TH Wharton 345 kV (15.1 mi), Twin Oak-Jack Creek 345 kV (26.7 mi)	
Option 7	Jewett-Jack Creek-Zenith w/ 50% compensation plus TH Wharton- Addicks & Twin Oak-Jack Creek upgrade		Big Brown-Jewett 345 kV (32.8 mi)		Singleton-Zenith 345 kV (53.2 mi), Zenith-TH Wharton 345 kV (15.1 mi), Twin Oak-Jack Creek 345 kV (26.7 mi)	
Option 8	Navarro-Gibbons Creek-Zenith plus TH Wharton-Addicks & Twin Oak- Jack Creek upgrade		Jewett-Singleton 345 kV (49.9 mi), Gibbons Creek-Twin Oak & Gibbons Creek-Jack Creek-Twin Oak 345 kV (48 mi)	Singleton-Zenith 345 kV (53.2 mi)		

Result of Transfer Capability Analysis (Voltage Stability)

- MW load level at the point of voltage collapse under each select option without any upgrades
- Voltage collapse occurs beyond 2028 under every option except Option 5

Impact of Old Generator Retirement

- 11 units (total 1939 MW) are more than 50 year old by 2018
 - Sam Bertron G1, G2, G3, G4 and GT2
 - T.H. Warton GT1
 - W.A. Parish G1, G2, G3, G4, and GT1
- Result of AC power flow analysis with all these 50-year old units offline
 - System problems in the 2018 base case either under system intact or N-1 conditions:
 - Under system intact condition with the units offline,
 - Overload of Singleton-Zenith 345 kV line
 - Overload of Jewett-Singleton 345 kV line
 - Low voltage around Tomball, Kuykendahl, Bobville, Rothwood
 - Under N-1 contingency conditions,
 - Overload of Jewett-Singleton 345 kV line
 - Overload of the bus ties at Twin Oak/Oak Grove
 - Overload of Singleton-Zenith 345 kV line
 - Overload of Gibbons Creek-Twin Oak 345 kV line
 - Overload of Jack Creek-Twin Oak 345 kV line
 - Overload of Gibbons Creek-Singleton 345 kV line
 - Overload of Roans Prairie-Bobville-Kuykendahl 345 kV line
 - Heavy flow on Singleton-Tomball and Gibbons Creek-Jack Creek 345 kV line
 - Low voltages at 15 345-KV buses and 38 138-kV buses in Houston area

Impact of Old Generator Retirement

- Result of AC power flow analysis with each option:
 - ✓ No system problem under system intact condition
 - ✓ No low voltage issues under N-1 condition
 - ✓ Table below shows overload and heavy flow issues under N-1 conditions when the old units are
 offline

Elements	Jewett S- Singleton 345 kV line #1	Jewett N- Singleton 345 kV line #1	Twin Oak-Oak Grove 345 kV bus tie	Twin Oak 345 kV bus tie	Singleton- Zenith 345 kV line #98		Gibbons Creek-Twin Oak 345 kV #1	Gibbons Creek-Jack Creek 345 kV #2	Jack Creek- Twin Oak 345 kV #1	Jack Creek- Twin Oak 345 kV #2
Option 1			Overload	Overload	Overload	Overload				
Option 2			Overload	Overload						
Option 3			Heavy flow	Heavy flow	Heavy flow	Heavy flow			Heavy flow	
Option 4			Heavy flow	Heavy flow	Heavy flow	Heavy flow				
Option 5			Overload	Overload	Overload	Overload			Overload	Overload
Option 6			Overload	Overload	Heavy flow	Heavy flow				
Option 7			Heavy flow	Heavy flow					Heavy flow	Heavy flow
Option 8	Overload	Overload	Heavy flow	Heavy flow	Heavy flow	Heavy flow	Overload	Heavy flow	Heavy flow	

Impact of Old Generator Retirement

- Result of generation reduction analysis:
 - ✓ Tested G-1+N-1 while reducing the output from the old units.
 - ✓ Estimated total MW output that can be reduced from the old unit under each select option without causing any thermal issues

Option	Description	Approximate MW generation reduction that starts causing overload under G-1+N-1
Option 1	Twin Oak-Zenith with 25% series compensation plus TH Wharton-Addicks upgrade	900.6
Option 2	Twin Oak-Zenith with 50% series compensation plus TH Wharton-Addicks upgrade	911.1
Option 3	Limestone-Ragan Creek-Zenith plus TH Wharton-Addicks upgrade	1061.3
Option 4	Limestone-Gibbons Creek-Zenith plus TH Wharton-Addicks upgrade	1020.0
Option 5	Jewett-Jack Creek-Zenith plus TH Wharton-Addicks upgrade	400.0
Option 6	Jewett-Jack Creek-Zenith with 25% series compensation plus TH Wharton-Addicks upgrade and Twin Oak-Jack Creek upgrade	773.8
Option 7	Jewett-Jack Creek-Zenith with 50% series compensation plus TH Wharton-Addicks upgrade and Twin Oak-Jack Creek upgrade	662.6
Option 8	Navarro-Gibbons Creek-Zenith plus TH Wharton-Addicks upgrade and Twin Oak-Jack Creek upgrade	652.6

Impact of NERC Category C and D

 Tested 23 severe events (NERC Cat. C and D contingencies) based on the past study and knowledge of the system

Options	Description	# of Unsolved Contingencies (NERC Cat. D)	Thermal Overload 345 kV 115% above	Low Voltage At 345 kV Buses (below 0.9 pu)	
	Base Case	6	6	5	
Option 1	Twin Oak-Zenith with 25% series compensation plus TH Wharton-Addicks upgrade	1	1	4	
Option 2	Twin Oak-Zenith with 50% series compensation plus TH Wharton-Addicks upgrade	1	0	3	
Option 3	Limestone-Ragan Creek-Zenith plus TH Wharton- Addicks upgrade	1	0	5	
Option 4	Limestone-Gibbons Creek-Zenith plus TH Wharton-Addicks upgrade	1	0	5	
Option 5	Jewett-Jack Creek-Zenith plus TH Wharton-Addicks upgrade	1	1	6	
Option 6	Jewett-Jack Creek-Zenith with 25% series compensation plus TH Wharton-Addicks upgrade and Twin Oak-Jack Creek upgrade	1	0	5	
Option 7	Jewett-Jack Creek-Zenith with 50% series compensation plus TH Wharton-Addicks upgrade and Twin Oak-Jack Creek upgrade	1	0	3	
Option 8	Navarro-Gibbons Creek-Zenith plus TH Wharton-Addicks upgrade and Twin Oak-Jack Creek upgrade	1	0	5	

System Loss Reduction

- System losses with each option modeled in the 2018 summer peak study case were compared to the base case
- In every option, significant loss reduction is expected

Option	Option 1 (TWZ- 25%COMP-TA)	Option 2 (TWZ- 50%COMP-TA)	Option 3 (LRZ-TA)	Option 4 (LGZ-TA)	Option 5 (JJZ-TA)	Option 6 (JJZ-25%COMP- TATJ)	Option 7 (JJZ-50%COMP- TATJ)	Option 8 (NGZ-TATJ)
System Loss Reduction (MW)	44.7	38.8	47.6	31.2	38.2	44.8	35	32.7

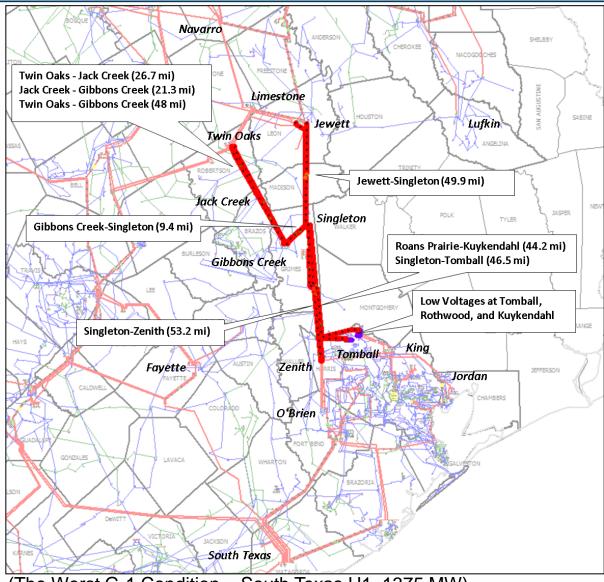
Other Sensitivity Analyses

- A sensitivity analysis was performed using the latest SSWG case
 - Case used: As-built 2014 SSWG Data Set B 2018 base case
 - Results confirmed overload on Singleton-Zenith 345 kV double circuit line under the G-1+N-1 condition
- Power transfer analysis using different load scaling approach
 - Power transfer analysis was performed for certain options under N-1 conditions using the following two load scaling approaches:
 - 1) Scaling load down in North, North Central, West and Far West
 - 2) Scaling all load down except the load in Coast Weather Zone
 - The result indicates that:
 - There are reliability criteria violations in 2018 regardless of which approach is used
 - The need identification for the next set of upgrades may be deferred by a year or two if the all-load-scaling (#2) approach is used
 - For example, roughly 220~300 MW difference in the transfer capability, when the future overload issue on the Singleton-Zenith double-circuit 345 kV line occurs with each option

Next Step

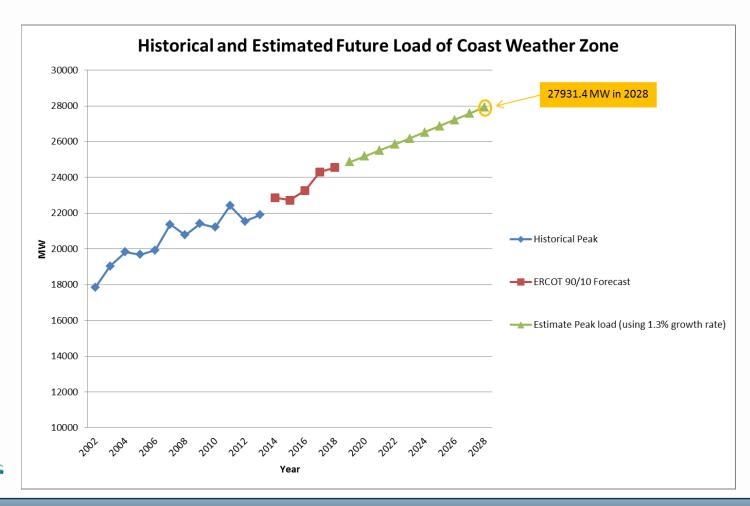
- Cost analysis
 - ✓ Cost of each option and additional future upgrades found in the transfer analysis to perform Present Value analysis

Economic Analysis


Documentation

Questions?

Appendix 1. Map of System Problems



(The Worst G-1 Condition = South Texas U1, 1375 MW)

Appendix 2. Future Load (Coast WZ) Assumed for Study

- Estimated load in Coast Weather Zone for the year 2028
 - 1.3 % of annual load growth rate was used from 2018 to 2028
 - Roughly 27931 MW of load in 2028

