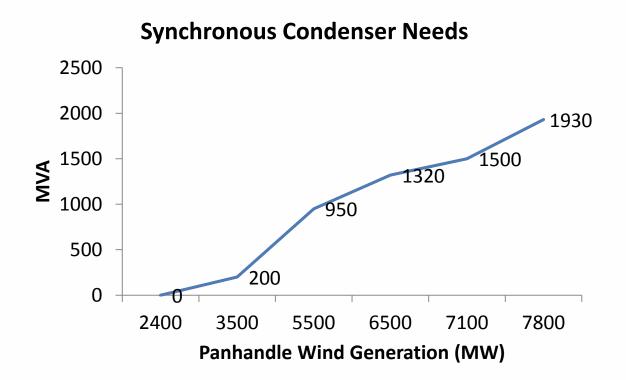


Panhandle Renewable Energy Zone (PREZ) Study Preliminary Results

ERCOT System Planning


ERCOT Regional Planning Group (RPG) Meeting 11-15-2013

Outlines

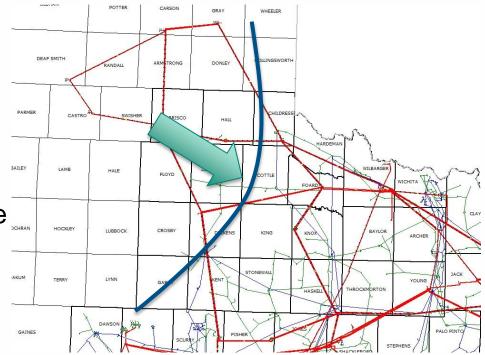
- Update
 - Synchronous condenser needs
 - System strength assessment
- Roadmap In progress
- Appendix
 - Needs, Purpose, and Goal of PREZ

Synchronous Condenser Needs

- Panhandle SCR target = 1.5
- Actual synchronous condenser needs will vary based on transmission line upgrades and wind generation projects.

System Strength Assessment

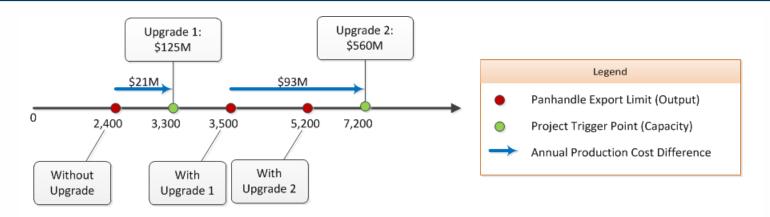
	Synchronous		
	Condenser	SVC	VFT
Dynamic Reactive			
Support	V	V	v
System Strength	V	_	v**
Cost	\$\$	\$\$	\$\$\$


<u>Notes</u> SVC: Static Var Compensator VFT: Variable Frequency Transformer ** Dependent on the strength and appropriate modeling of the adjacent system

Panhandle Constraint and Interface

- Constraints:
 - Voltage stability
 - System strength

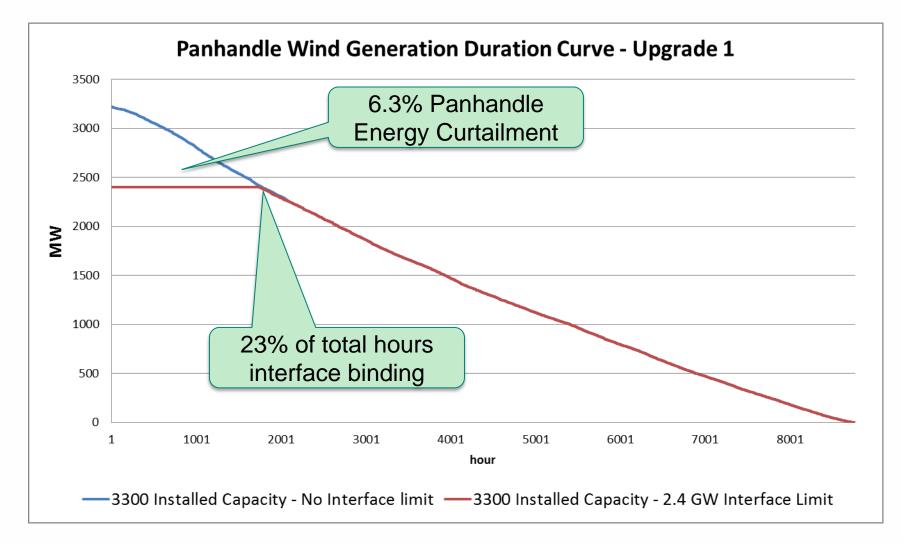
- Panhandle Interface
 - Gray Tesla
 - Tule Canyon Tesla
 - Cottonwood Edith Clarke
 - Cottonwood Dermott


Study Criteria

- Reliability Criteria (ERCOT SOL methodology*)
 - Steady State:
 - Thermal:
 - 100% rate A for base case
 - 100% rate B for contingency analysis
 - Transient stability:
 - Post disturbance voltage within the range from 0.9 to 1.1 pu
 - Post disturbance frequency within the range from 59.4 Hz to 60.4 Hz
- Economic Criteria
 - Thermal: 100% rate A for base case, 100% rate B for contingency analysis
- Panhandle Short Circuit Ratio >= 1.5

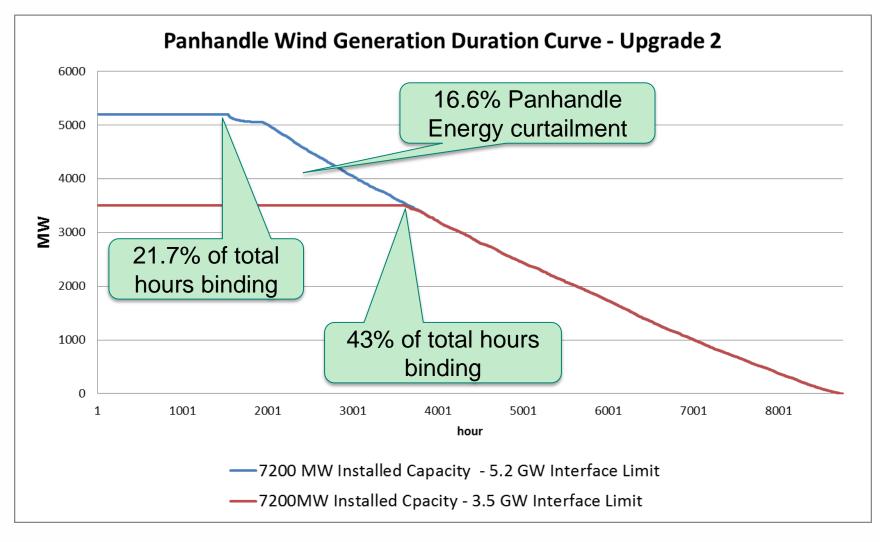
* Available at http://planning.ercot.com/procedures/irtcm/

Roadmap – Preliminary Result



Upgrades								
Element	Description	Circuit #	Upgrade	Length/Size	Note	Estimated Cost (\$M)		
345kV Line	Alibates-Windmill	1	1	93 miles	On the existing tower	125		
345kV Line	Windmill-Ogallala	1	1	27 miles	On the existing tower			
345kV Line	Ogallala-Tule Canyon	1	1	47 miles	On the existing tower			
Synchronous Condenser	Windmill		1	200 MVA				
Reactor	Alibates		1	50 MVAr				
Reactor	Ogallala		1	100 MVAr				
345kV Line	Ogallala-Long Draw	2	2	190 miles	New line	560		
Synchronous Condenser	Windmill		2	400 MVA				
Synchronous Condenser	Alibates		2	200 MVA				
Synchronous Condenser	Gray		2	150 MVA				
Reactor	Windmill		2	50 MVAr				
Reactor	Ogallala		2	150 MVAr				
Reactor	Long Draw		2	150 MVAr				

• Calculated project trigger points and export limits may vary based on the assumed location of wind generation projects


ERCO

Panhandle Wind Generation Duration Curve

Panhandle Wind Generation Duration Curve

Appendix

Preliminary Results

Disclaimer

- PREZ study focuses on the upgrade needs to increase Panhandle export capability. Other ERCOT regions may require further studies for potential thermal and stability challenges.
- The identified upgrades may be revised based on the actual implementation of wind projects in Panhandle.
- The upgrades identified in this study are "NOT" approved projects. The identified projects may still require RPG review.

Agreements in Panhandle (3837 MW, 11/7/2013)

GINR	ProjectName	County	Capacity (MW)	COD**
13INR0059	Hereford Wind	Castro	499(*200)	4/15/2014
14INR0012	Miami Wind 1 Project	Gray	401(*231)	5/1/2014
13INR0048	Spinning Spur Wind Two	Oldham	*161	6/1/2014
14INR0030a2	Panhandle Wind	Carson	416(*218)	8/1/2014
11INR0050	Moore Wind 1	Crosby	149	8/8/2014
13INR0010a	Mariah Wind	Parmer	200	10/30/2014
14INR0032a	Route66 Wind	Randall	150	9/1/2014
14INR0023	Longhorn Energy Center	Briscoe	361	12/1/2014
13INR0005	Conway Wind Farm	Carson	*600	12/15/2014
13INR0010b	Mariah Wind	Parmer	200	12/31/2015
12INR0029	Comanche Run Wind	Swisher	500	12/31/2015
13INR0010c	Mariah Wind	Parmer	200	12/31/2016

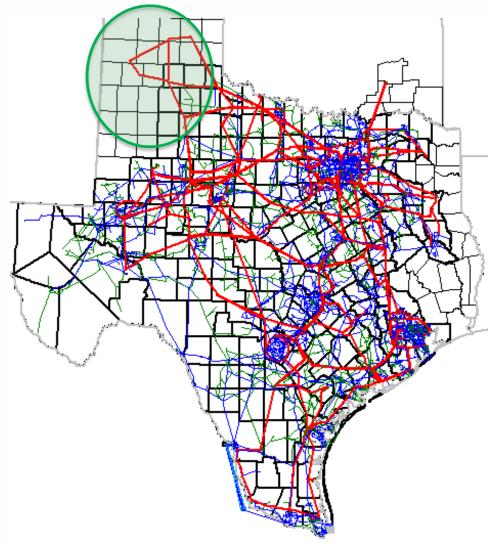
*With financial commitment: 1410 MW

** Projected commercial operation date

Needs of PREZ Study

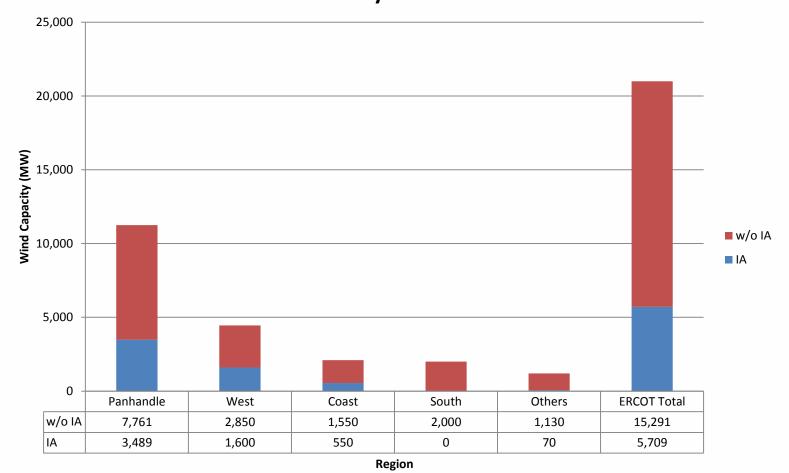
- 2012 Long Term System Assessment
 - Significant expansion of wind resources in the Panhandle under a range of future outcomes.
 - If the northwestern-most portion of the Panhandle CREZ system becomes over-subscribed, voltage stability limits will constrain wind power delivery to the rest of the ERCOT system.
- Generation projects will exceed the CREZ design capacity for the Panhandle area (based on the CREZ Reactive Study "Initial Build" recommendations).
- No near-term Panhandle transmission projects being developed post CREZ 2013.

Purpose of PREZ Study


- To identify system constraints and upgrades to accommodate future wind generation projects.
- To provide a project roadmap for both ERCOT and TSPs to accommodate additional generation resources in the study area.
 - List of potential system upgrade projects.
 - Triggers for when those projects will be recommended.

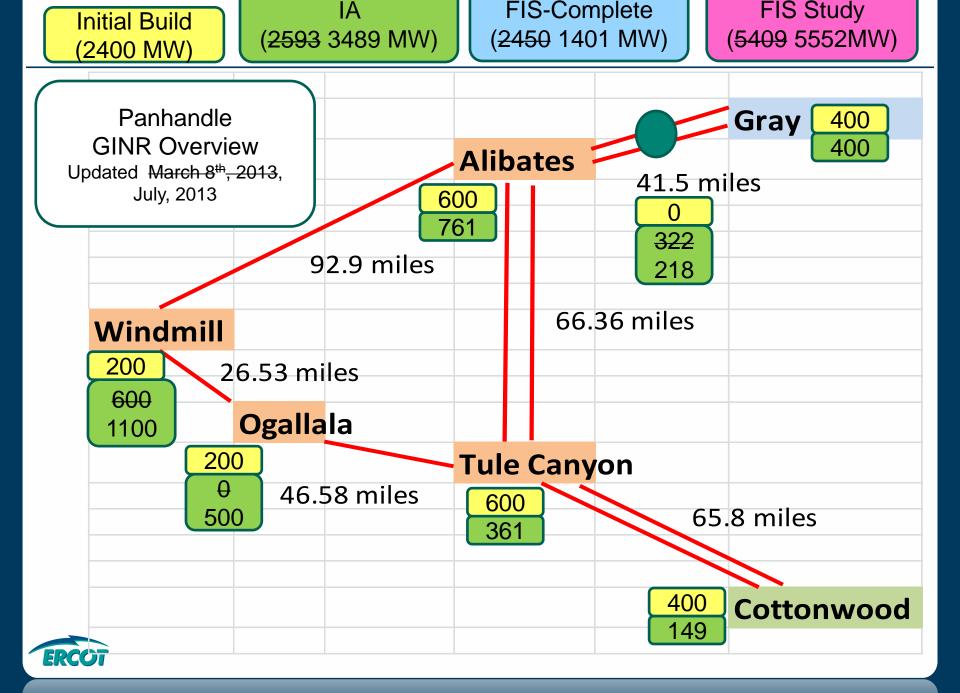
Panhandle Grid Characteristics

- Minimal/no local load
- Minimal/no sync generation
- 11 GW wind capacity in GINR


 Voltage stability and grid strength challenges

Wind Projects GINR Overview

Wind Generation Capacity in the Interconnection Request July 2013



ERCOT

Challenge and Need

- Challenge: Weak Grid
 - Natural system characteristic when a region is dominated by non-synchronous generation.
 - Sensitive voltage response
 - Coordination between voltage support resources
 - Steady state and transient voltage stability
- Need: System Strength
 - Stable voltage response (steady state and dynamics)
 - Allow voltage controller work properly
 - Minimize impact of critical contingency

Preliminary Results