

Panhandle Renewable Energy Zone (PREZ) Study Preliminary Results

ERCOT System Planning

ERCOT Regional Planning Group (RPG) Meeting 10-22-2013

Outlines

- Disclaimer
- Study Assumptions
- Study Observations
- Roadmap In progress
- Next Step
- Appendix
 - Needs, Purpose, and Goal of PREZ

Disclaimer

- PREZ study focuses on the upgrade needs to increase Panhandle export capability. Other ERCOT regions may require further studies for potential thermal and stability challenges.
- The identified upgrades may be revised base on the actual implementation of wind projects in Panhandle.
- The upgrades identified in this study are "NOT" approved projects. The identified projects may still require RPG review.

Agreements in Panhandle (3489 MW, 09/30/2013)

GINR	R ProjectName		Capacity (MW)	COD**
13INR0059	Hereford Wind	Castro	499(*200)	10/1/2013
14INR0012	Miami Wind 1 Project	Gray	401	5/1/2014
13INR0048	Spinning Spur Wind Two	Oldham	*161	6/1/2014
14INR0030a2	Panhandle Wind	Carson	*218	8/1/2014
11INR0050	Moore Wind 1	Crosby	149	8/8/2014
13INR0010a	Mariah Wind	Parmer	200	10/30/2014
14INR0023	Longhorn Energy Center	Briscoe	361	12/1/2014
13INR0005	Conway Wind Farm	Carson	*600	12/15/2014
13INR0010b	Mariah Wind	Parmer	200	12/31/2015
12INR0029	Comanche Run Wind	Swisher	500	12/31/2015
13INR0010c	Mariah Wind	Parmer	200	12/31/2016

*With financial commitment: 1179MW

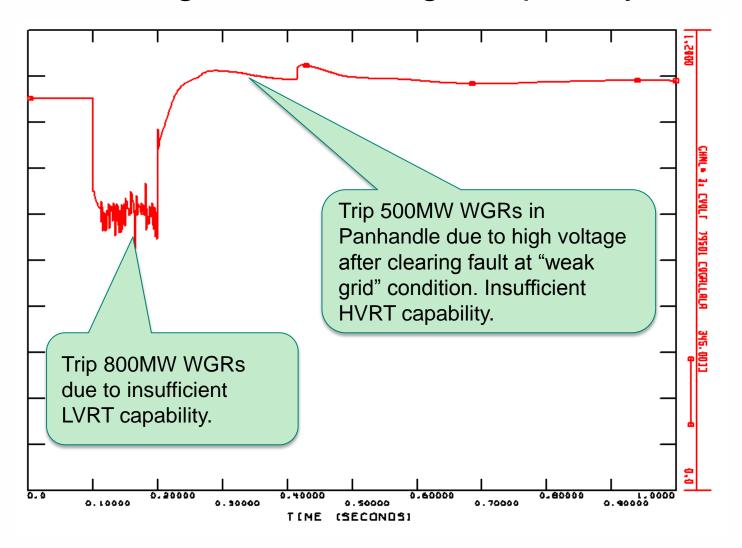
** Projected commercial operation date

Assumptions

- Dynamic model and data for Panhandle wind projects are based on the Generation Interconnection Request (GINR) and Standard Generation Interconnection Agreement (SGIA)
- Panhandle wind generation reactive capability: +/- 0.95pf at Point of Interconnection (POI)
- Panhandle wind generation is dispatch at 95% output in the reliability analysis
- Limited conventional units that are in service in west Texas in the reliability analysis
- No short circuit current contribution from wind generation in short circuit ratio calculation

Study Observations

- Steady state and dynamic stability
- Short circuit ratio calculation
- Synchronous condenser location and size identification



Steady State Voltage Stability

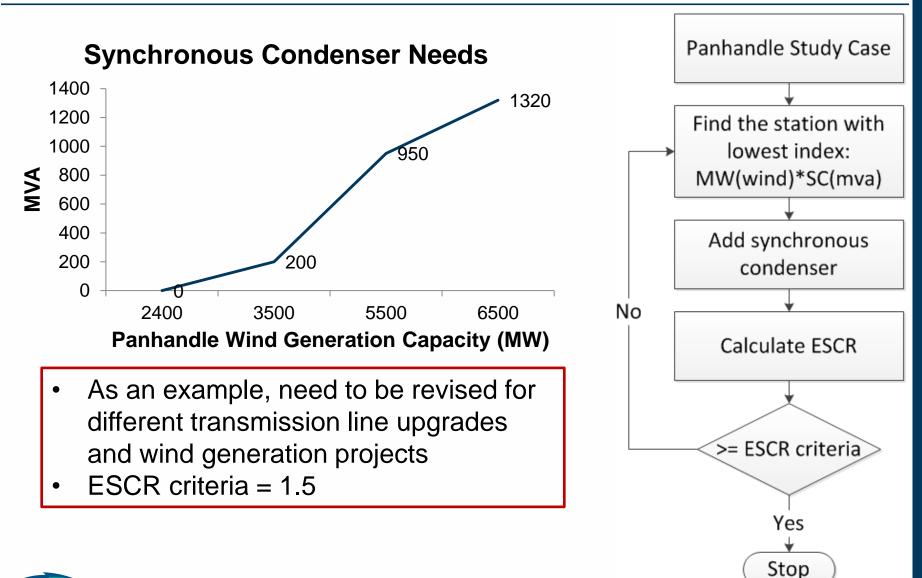
Existing Panhandle Grid 1.060 1.040 1.020 Bus Voltage (p.u.) 086'0 Unclear for system voltage stress **TESLA7A** 345. [60501] ALIBATES 345. [79500] 0.960 Voltage collapse at normal operating voltage range: 0.940 0.95~1.05 pu 0.920 Panhandle Wind Generation (MW)

Voltage Ride Through Capability

Panhandle 345kV voltage response

Equivalent Short Circuit Ratio Calculation

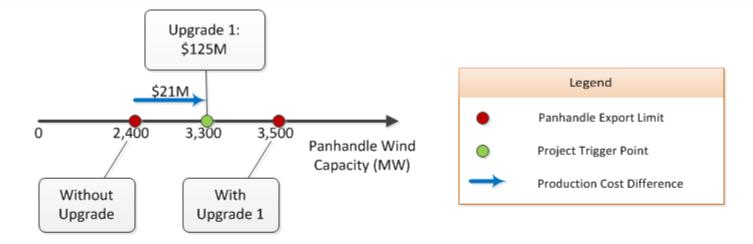
Example:


	Wind Capacity	Short Circuit MVA:	
Bus	(MW)	SCMVA	SCR=SCMVA/MW
Α	1200	6500	5.42
В	1000	8000	8.00
C	800	8500	10.63

 $\mathsf{ESCR} = \frac{\sum (SCMVA \ at \ bus_i * Wind \ capacity \ (MW) connect \ to \ bus_i)}{(Total \ Wind \ Capcity \ (MW) \ connect \ to \ Panhandle)^2}$

• ESCR = 2.5

Synchronous Condenser: Location and Size


Roadmap – In Progress

- Identify upgrade needs and the associated Panhandle export limit.
- Perform economic cost analysis to find the triggers of upgrades
 - in terms of wind project capacity in Panhandle
 - Protocol 3.11.2 (5)

...., the levelized ERCOT-wide annual production cost savings over the period for which the simulation is feasible is calculated and compared to the first year annual revenue requirement of the transmission project.....

Roadmap – Preliminary Result

Upgrades								
Element	Description	Circuit #	Upgrade	Length/Size	Note	Estimated Cost (\$M)		
345kV Line	Alibates-Windmill	1	1	93 miles	On the existing tower	125		
345kV Line	Windmill-Ogallala	1	1	27 miles	On the existing tower			
345kV Line	Ogallala-Tule Canyon	1	1	47 miles	On the existing tower			
Synchronous Condenser	Windmill		1	200 MVA				
Reactor	Alibates		1	50 MVAr		-		
Reactor	Ogallala		1	100 MVAr				

Next Step

- Complete roadmap
- Prepare report

Preliminary Results

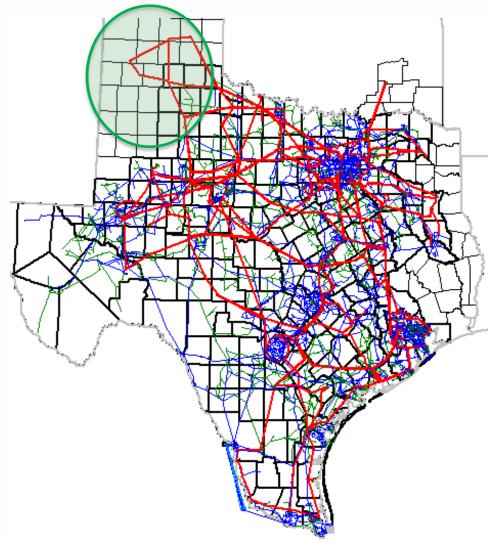
Appendix

Preliminary Results

Needs of PREZ Study

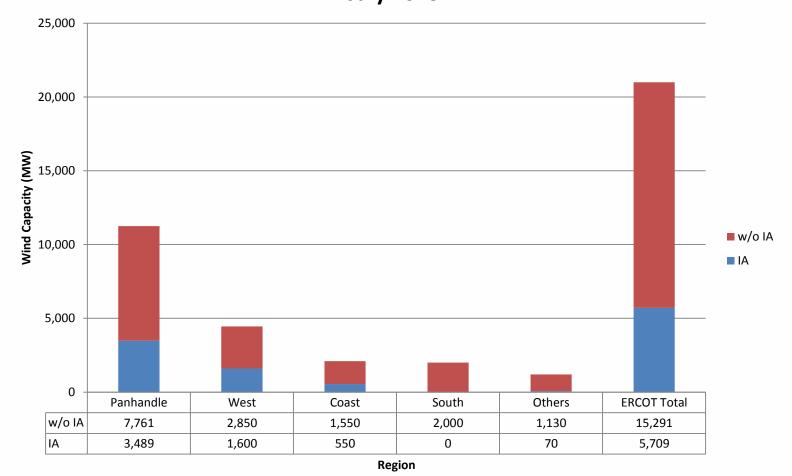
- 2012 Long Term System Assessment
 - Significant expansion of wind resources in the Panhandle under a range of future outcomes.
 - If the northwestern-most portion of the Panhandle CREZ system becomes over-subscribed, voltage stability limits will constrain wind power delivery to the rest of the ERCOT system.
- Generation projects will exceed the CREZ design capacity for the Panhandle area (based on the CREZ Reactive Study "Initial Build" recommendations).
- No near-term Panhandle transmission projects being developed post CREZ 2013.

Purpose of PREZ Study


- To identify system constraints and upgrades to accommodate future wind generation projects.
- To provide a project roadmap for both ERCOT and TSPs to accommodate additional generation resources in the study area.
 - List of potential system upgrade projects.
 - Triggers for when those projects will be recommended.

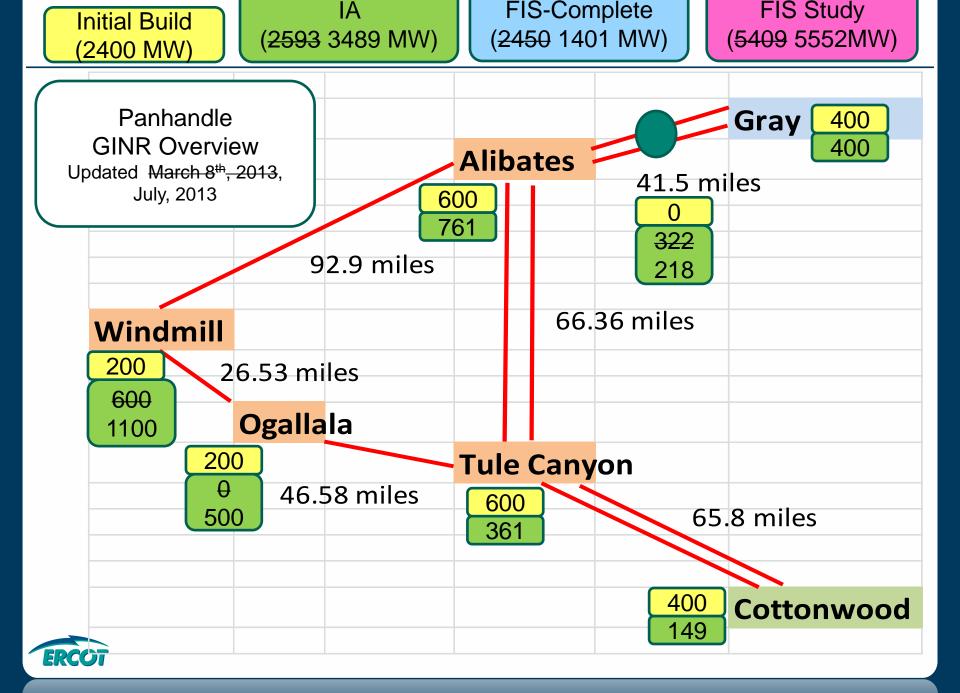
Panhandle Grid Characteristics

- Minimal/no local load
- Minimal/no sync generation
- 11 GW wind capacity in GINR


 Voltage stability and grid strength challenges

Wind Projects GINR Overview

Wind Generation Capacity in the Interconnection Request July 2013



ERCOT

Challenge and Need

- Challenge: Weak Grid
 - Natural system characteristic when a region is dominated by non-synchronous generation.
 - Sensitive voltage response
 - Coordination between voltage support resources
 - Steady state and transient voltage stability
- Need: System Strength
 - Stable voltage response (steady state and dynamics)
 - Allow voltage controller work properly
 - Minimize impact of critical contingency

Preliminary Results