

Transmission Needs Analysis Scenario 2/3 Update

ERCOT/DOE Long Term Study October 12, 2012

Agenda

- Review Major Process Steps
- Review Base Case Upgrades
- Economic Analysis

Major Process Steps

Scenario 2: Base with All Tech and Retirements

•Retirement of legacy natural gasfired generators on their 50th anniversary of commercial operations.

•Retirements in load pockets lead to increasing stress on import paths

Description	2016-2022	2023-2032
Gas Adds (MW)	14,500	13,800
Solar Adds (MW)	2,000	8,000
Wind Adds (MW)	-	1,500
Admin Gas Adds(MW)	13430	1360
Retirements (MW)	9,426	4,339

Scenario 3: Base with All Tech and Incremental Wind

- •17 GW of new wind capacity added by 2032
- •Reduced build-out of gas-fired units

Description	2016-2022	2023-2032
Gas Adds (MW)	3,980	6,760
Solar Adds (MW)	4,500	5,500
Admin Gas Adds(MW)	13,940	3,910
Wind Adds (MW)	6,968	9,887

Scenario 2 – BAU with NG Retirements

Scenario 2 assumes retirement of NG fired resources after 50 years

Scenario 2 Incremental Resources - 2022

Scenario 3: Incremental Resources - 2022

Base Case Thermal Reliability Upgrades 2022

To build a solvable 2022 model, certain upgrades were necessary to replicate what would typically be resolved in shorter term planning horizons. In certain instances (primarily near major load zones) major upgrades were necessary to build a useable case:

2022		Scer	nario 1	Scen	ario 2	Scenario 3		
Lines	Voltage (kV)	Miles	Cost (\$M)	Miles	Cost (\$M)	Miles	Cost (\$M)	
	345	376	700	411	411 904		173	
	138	360	278	376	381	204	187	
Transformers	Voltage (kV)	MVA	Cost (\$M)	MVA	Cost (\$M)	MVA	Cost (\$M)	
	345/138	10363	175	15000	193	3300	49	

Including:

- Upgrades of existing 345kV Imports into Houston*
- Expanded connections between the 345kV and 138kV systems in Dallas and Houston
- Upgrade of an existing import into the DFW Region

*For the purpose of this study, ERCOT did not consider the feasibility / costs associated with the outages required for these upgrades. The incumbent transmission provider has indicated outages would be lengthy, difficult and costly.

Base Case Reliability Upgrades 2022 S2 & S3

Region	Scena	rio 1	Scena	rio 2	Scenario 3			
	Interface Limit	Violated Year	Interface Limit	Violated Year	Interface Limit	Violated Year		
Austin	3839	2028	3839	2028	4572	Beyond 2032		
Dallas	18890	2022	19949	2022	20318	2026		
Houston	8827	2024	8735	2018	9440	2028		
San Antonio	3033	2028	4048	2024	3796	2030		
LRGV	2512	2021	2512	2021	2512	2021		

Area	Reactive Power Support Needed by 2022 (MVAR)	Reactive Power Support Needed by 2032 (MVAR)	Year of Instability without Reactive Power Support
Austin	0	3000*	2028
Dallas	600	10000	2022
Houston	1800	6000	2018
San Antonio	0	*	2024

*Austin and San Antonio were studied as one area for 2032

How much is too much?

Typically, Static Var Compensators (SVC) provide dynamic reactive solutions at a lesser cost than that of incremental transmission sources.

For scenario 2, with resources internal to the load pocket retired, reactive needs became increasingly large. To "right-size" dynamic reactive support, ERCOT performed a regional assessment to determine the "point of diminishing returns" for incremental dynamic reactive support.

Interface Limit (MW) into Metro Areas at Each Dynamic Reactive Power Source Level

Incremental Transmission Timeline for Voltage Stability (S2) 2022-2032

Dallas										
2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
120 MW Retired Housto	n		354 MW Retired	435MW Retired	436 MW Retired	41.9 MW Retired	New Imp Path Nee If 8GVar	ort ed Year Assumed	Nev Pat Witi Ass	v Import h Need Year h 10 Gvar sumed
2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
749 MW Retired		664 MW Retired	345 MW Retired	354 MW Retired	New Impo Path Need With 6 Gv	ort d Year ⁄ar Assum	Add Patl ied	itional Imp Need Yea	oort ar	
San An	tonio/ /	Austin								
2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
750 MW Retired					428 MW New Import Retired Path Need Year With 3 Gyar Ass					

Incremental retirements in major ERCOT load pockets create increasing dependence on existing and incremental import paths. If the assumed levels of dynamic reactive support are unachievable, new import paths would be required in earlier years. (Study in Progress)

Economic Analysis by Area: S2&S3

Methodology:

- 1. Develop a base-case with irresolvable constraints upgraded.
- 2. Identify scenario-specific import limitations into major load zones given most severe resource and element contingencies.
- 3. Create binding constraints to represent AC voltage stability limits in the DC / PROMOD Model.
- 4. Identify must-have reliability upgrades and economic supplements / alternatives.

Scenario 2 Congestion

Economic Projects S2

Test Project	202 co	2022 capital cost (\$M)		Reliability benefit of test project (\$M)		Capital Cost Adjusted for Reliability Benefit (\$M)		Production Cost Savings (\$M)		1/6 of Capital Cost (\$M)		L/6 of Jjusted Jital Cost (\$M)	Meet ERCOT Economic Criteria ?
Fayette-O Brien	\$	241.7	\$	345.2	\$	(103.5)	\$	30.8	\$	40.3	\$	(17.3)	YES
Lufkin-Jordan	\$	439.1	\$	138.5	\$	300.6	\$	28.0	\$	73.2	\$	50.1	NO
TNP One-Salem-Zenith	\$	444.6	\$	520.4	\$	(75.7)	\$	37.5	\$	74.1	\$	(12.6)	YES
Hillje-Obrien and South Texas-Hillje upgrade	\$	265.3	\$	262.3	\$	3.0	\$	28.3	\$	44.2	\$	0.5	YES
Navarro-Zenith	\$	597.8	\$	101.1	\$	496.7	\$	29.7	\$	99.6	\$	82.8	NO
Limestone - Gibbons Creek -Zenith	\$	327.2	\$	361.6	\$	(34.4)	\$	40.9	\$	54.5	\$	(5.7)	YES

*Note Singleton-Tomball & Singleton to Zenith were upgraded in this scenario's base-case, and "backedout" in reliability benefit testing.

Test Project	2022 capital cost (\$M)		Reliability benefit of test project (\$M)		Capital Cost Adjusted for Reliability Benefit (\$M)		Production Cost Savings (\$M)		1/6 of Capital Cost (\$M)		1/6 of Adjusted Capital Cost (\$M)		Meet ERCOT Economic Criteria ?
Cagnon-Miguel	\$	193.0	\$	(3.4)	\$	196.4	\$	5.2	\$	32.2	\$	32.7	NO
Cagnon-Pawnee	\$	242.0	\$	(8.0)	\$	250.0	\$	2.8	\$	40.3	\$	41.7	NO
Cagnon-Miguel & South Texas- Coleto	\$	290.0	\$	-	\$	290.0	\$	6.2	\$	48.3	\$	48.3	NO

Scenario 3 Congestion

Economic Projects S3

Test Project	2022 capital cost (\$M)	Reliability benefit of test project (\$M)	Capital Cost Adjusted for Reliability Benefit (\$M)	Production Cost Savings (\$M)	1/6 of Capital Cost (\$M)	1/6 of Adjusted Capital Cost (\$M)	Meet ERCOT Economic Criteria ?
Limestone-Gibbons Creek-Zenith	327.2	120.6	206.6	36.6	54.5	34.4	Yes
Watermill-Big Brown	208.2	23.1	185.1	0.1	34.7	30.9	No
Lake Creek – Navarro	104.1	42.1	62.0	1.7	17.3	10.3	No
Lake Creek – Watermill	297.4	19.0	278.4	0.4	49.6	46.4	No
Clear Spring - Hill County	104.1	0.0	104.1	4.1	17.4	17.4	No
Hays - Kendall second 345kV circuit	41.8	0.0	41.8	3.2	7.0	7.0	No
Sandow - Garfield	133.8	0.0	133.8	4.0	22.3	22.3	No

Conclusions

Should the legacy, gas-fired, urban located fleet be retired (and not repowered), expansive import paths and large amounts of dynamic reactive resources will be needed in Houston and Dallas

Houston: 2 GVAR Dynamic Reactive Support (2022), 6 GVAR 2032

1st Additional Import Path by 2027

2nd Additional Import Path by 2030

Dallas/Fort Worth: 600 MVAR Dynamic Reactive Support (2022), 10 GVAR 2032

1st Additional Import Path by 2029 (w/8GVAR)

2nd Additional Import Path by 2032

If the assumed reliability upgrades or dynamic reactive levels are not attainable, additional import paths will be required sooner.

Conclusions

Should incremental traditional or renewable resources utilize the CREZ system as modeled in Scenario 3, certain incremental import needs in Scenario 1 (East-to-Dallas) are partially offset.

Expanded imports into the Houston Region are needed across all scenarios.

- In Scenarios 1, 2, and 3, at least one major Houston import was considered a must-have, reliability base-case upgrade by 2022. (3 for extensive NG retirements)
- In Scenario 2, multiple options demonstrate economy by 2022.
- In Scenario 3, Limestone Gibbons Creek Zenith demonstrates economy by 2022.

Questions?

