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Abstract—There are many pre-existing air conditioner load 
control programs with substantial unused capacity that, to 
date, have not been incorporated into grid operations and 
are not used as contingency reserve.  Several 
demonstrations and pilots have shown that air conditioner 
(AC) electric loads can be controlled during the summer 
cooling season to provide contingency reserves and 
improve the stability and reliability of the electricity grid.  
A key issue for integration of AC load control into grid 
operations is how to accurately measure shorter-term (e.g., 
ten’s of minutes to a couple of hours) demand reductions 
from AC load curtailments for settlement.  This paper 
presents a method for assessing the accuracy of shorter-
term AC load control demand reduction estimation 
approaches.  It then applies the method to compare the 
accuracy of various approaches for measuring AC 
reductions – including approaches that rely on regression 
analysis, load matching and control groups – using feeder 
data, household data and AC end-use data.  A practical 
approach is recommended for settlement that relies on a set 
of tables, updated annually, with pre-calculated load 
reduction estimates.  The tables allow users to look up the 
demand reduction per device based on the daily maximum 
temperature, geographic region and hour of day, 
simplifying the settlement process.       
 
Keywords—measurement, load management, ancillary 
services. 

I. INTRODUCTION 

Historically, air conditioner (AC) direct load control programs 
have been used for emergency operations and to offset the need 
to build additional peak generation.  Interest in using AC load 
response for system operations has increased in the past decade 
due to the increasing need for resources that can start and ramp 
up quickly.  There are many pre-existing AC load control 
programs with substantial capacity that could be incorporated 
into grid operations.  Based on the Federal Energy Regulatory 
Commission 2010 Demand Response (DR) survey, there are 
over 200 such residential programs with over 4.8 million 
households enrolled and 50 commercial programs with 
200,000 businesses  (FERC 2011).  AC load control is well 
suited for providing contingency response, which requires fast 
deployment to stabilize the grid, but are used infrequently (<30 
times per year) and usually lasts less than 10 minutes.  Despite 
the substantial pre-existing capacity, system operators and 
energy markets are still in the process of fully integrating AC 

load control into contingency reserve markets and grid 
operations. 
 

To date there have been several studies that have tested the 
potential of controlling AC loads in order to provide operating 
reserves and assessed the ability of integrating control of AC 
loads into operations.  The conceptual framework and the 
policy reasons for using AC as spinning reserves were detailed 
in a series of reports by the Oakridge and Lawrence Berkeley 
National Laboratories (Eto 2011, Kueck 2011, Kueck 2003).  
In addition, Lawrence Berkeley National Laboratory, Pacific 
Gas & Electric (PG&E) and Southern California Edison (SCE) 
sponsored a series of demonstration studies testing the ability 
to use AC load control to provide operating reserves (Eto 2008, 
Eto 2009, Sullivan 2009).    

Combined, the demonstration studies showed that: 

 AC load control reduces demand quickly.  AC units 
begin to noticeably shut down or cycle compressors 
within 60 seconds of when the load control signal is 
sent out and reach 80% of capacity within 3 minutes.   

 The effect of short-duration AC curtailments on 
customer comfort is negligible.  

 AC load drops can be observed on near real time basis 
using samples.  

 The demand reductions observed in the samples were 
also observed in the distribution feeder circuits.   

 
A key issue for incorporating AC load control into markets is 
how to accurately measure shorter-term (e.g., ten’s of minutes 
to a couple of hours) demand reductions from AC curtailments 
for settlement.  Importantly, measurements for settlement and 
operations need to be conducted quickly (in real time or on a 
monthly basis), much faster than traditional program 
evaluations, which are conducted on an annual basis.  In 
addition, measuring demand reductions, sometimes referred to 
as negawatts, is an entirely different task than measuring power 
production.  While power production is metered and thus is 
measured directly, demand reductions cannot be metered.  
They must be estimated by indirect approaches.   In principle, 
the reduction is simply the difference between electricity use 
with and without the AC curtailment.  However, it is not 
possible to directly observe or meter what electricity use would 
have been in the absence of curtailment.   Instead, the 
electricity that would have been used in the absence of the 
curtailment – the counterfactual, sometimes referred to as the 
baseline – must be estimated.  In doing so, it is important to 
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systematically eliminate or control for alternative explanations 
for the change in electricity consumption.   
 

Much of the existing research on estimating demand reductions 
for settlement has focused on large industrial and commercial 
customers because electricity markets operated by Independent 
System Operators (ISO) have allowed these customers to 
participate in energy and capacity markets for well over a 
decade.  The accuracy of many day-matching baselines for 
settlement of large commercial and industrial customers has 
been studied on several occasions. 

 

In 2003, KEMA compared the accuracy of 6 settlement 
baselines in 2003 using 646 accounts from multiple regions 
across the U.S.  In 2004, Quantum Consulting (2004) estimated 
the accuracy of 4 settlement baselines using data from 450 
accounts in California, none of which were enrolled in DR 
programs.  In 2008, Lawrence Berkeley National Laboratory 
(2008) compared accuracy of 7 alternate settlement baselines 
using data from 32 sites in California.  It was the first study to 
assess accuracy by comparing actual and predicted baseline 
load for demand response program participants.  All prior 
studies had drawn conclusions based on either non-participants 
or comparisons of one estimate to another estimate.  Since 
then, assessments of baseline accuracy have relied on the use 
of proxy event days because it allows a comparison of 
estimated values to actual values.  Several additional studies 
have been conducted since all of which focused on large 
commercial and industrial customers (Braithwait 2009, 
Braithwait 2010, KEMA 2011, Bode 2010, George 2011).  

 
In 2010, Bode analyzed the accuracy of 48 different baseline 
day-matching methods for a large C&I contractual DR 
program administered by the Ontario Power Authority.  Up 
until then, studies had focused on the margin of error of the 
baselines themselves, rather than on how accurately the 
variable of interest – demand reduction – was being measured.    
 
This paper presents a method for assessing the accuracy of 
shorter-term AC load control demand reduction estimation 
approaches and compares the accuracy of various alternatives 
for measuring AC reductions using three data sources: feeder 
data, household data and AC end-use data.  The method relies 
on inserting pre-determined values measured in prior studies 
into naturally occurring electricity use.    It then measures how 
well each approach estimates (or “predicts”) the known 
demand reductions under different conditions.   
 
In total, we evaluate 10 different demand reduction estimation 
approaches using feeder data, household data and end-use AC 
data.  The approaches tested include both within- and between-
subject estimators.  Within-subject estimators use customer’s 
electricity use patterns during days when AC units are not 

curtailed to estimate AC load absent curtailment operations 
during actual event days.  Between-subject estimators rely on 
an external control group of AC units that is not curtailed to 
provide information about electricity use absent curtailment.  
While highly accurate results are desirable, there is often a 
tradeoff between simplicity and incremental accuracy.  In order 
to help gauge the benefit of more complex and costly 
approaches, each of the estimation approaches are compared 
with one of the simplest and least technical approaches – a set 
of tables with pre-calculated load reduction estimates.  The 
tables are based on annual evaluations and allow users to look 
up the demand reduction per device based on the daily 
maximum temperature, geographic region and hour of day.  
They facilitate quick settlement when resources are dispatched 
and provide operators a quick estimate of the DR resources 
available for operations.     
 
The study presented in this article differs from the studies cited 
above because it focuses explicitly on residential customers 
and on AC load curtailment.  In addition, it compares a wider 
range of approaches for estimating demand reductions, 
including day-matching baselines, weather-matching baselines, 
regression models, and approaches that rely on control groups.  
Finally, it also assesses how the accuracy of the demand 
reduction estimation approaches varies as a function of the data 
source employed.  Decisions about whether to rely on end-use, 
household, or feeder data directly affect the ability to 
accurately measure demand reductions.  This is because the 
data source affects the amount of background noise from 
which the signal – the demand reduction – must be identified 

 
The remainder of this paper is structured as follows.  Section II 
summarizes prior research.  Section III documents the 
methodology, including the data sources used, estimation 
approaches tested, and metrics used to assess accuracy.  
Section IV presents the results.  Section V concludes by 
discussing the implications of the findings.   

II. METHODOLOGY 

To assess the accuracy of different approaches for estimating 
AC demand reductions, we introduced pre-determined AC load 
curtailments on actual feeder, household, and AC end-use data 
from customers enrolled in Pacific Gas & Electric’s SmartAC 
program  (George 2012, George 2011, George 2010, KEMA 
2009).  That is, while the estimates of AC demand have been 
predetermined for purposes of this evaluation, they were 
developed from a prior analysis of recorded data collected on 
AC usage patterns and demand reductions by temperature 
conditions and geographic location.  This process is used in 
order to ensure that the true demand reductions  are known in 
advance.  This enables us to determine exactly how well 
different approaches estimate these known demand reductions 
and whether or not they exhibit tendencies to over or 
underestimate them. 
 



 

3 

A. Simulation Framework 

Figure 1 summarizes the general framework used for assessing 
the accuracy of the demand reduction estimation approaches.   
 
To implement the assessment framework, we: 
1. Calculate the magnitude of controllable AC loads.  This 

step estimates how much of the load from the data source 
can be controlled for each date and hour.  This estimate is 
based on a sample of unperturbed AC end use data for 547 
Pacific Gas & Electric residential customers.  The load 
data was used to create 24 daily load profiles, based on 
temperature conditions, for each of 3 distinct climate 
regions.  

2. Select proxy curtailment events.  In total, 15 curtailment 
days were randomly selected in 2009 and 2010 from the 
set of weekdays where daily maximum temperature 
exceeded 85°F.  Days with a daily maximum temperature 
below 85°F generally have little AC load in California 
because overnight temperatures cool off substantially 
more than in humid regions.  In the hottest climate region 
– the Fresno/Bakersfield region of the Central Valley – 
daily maximum temperatures exceeded 90°F on 76% of 
summer days.  In the second hottest region – the Northern 
part of the Central Valley near Stockton and Sacramento – 
daily maximum temperatures exceeded 90°F on 43% of 
the days.  Curtailment event start times were randomly 
selected between 12 PM and 10 PM with durations of one 
hour.  One-hour events were simulated because residential 
smart meter data were only available on an hourly basis.  
In practice most contingency reserves operations are much 
shorter, typically less than 10 minutes, though contingency 

reserves must be able to deliver resources for 90 minutes 
or up to 2 hours based on market rules.   

3. Simulate the demand reductions.  The demand reductions 
were simulated based on the variation observed in 
historical reductions of AC load from 34 curtailment 
events documented in annual program impact evaluations.  
The simulated percent reductions incorporate the effect of 
weather plus a random variation component that reflects 
the variation in the historical evaluation results. 
Reductions were then applied to the controllable AC loads 
to produce the simulated demand reduction.  With this 
process, the demand reductions for each curtailment event 
are known, making it possible to test how accurately each 
of the different settlement alternatives measures the 
load drop.  

4. Apply demand reductions to unperturbed loads.  During 
each of the proxy curtailment event periods, simulated 
demand reductions were subtracted from the unperturbed 
loads.  In other words, we knew the actual demand with 
and without the simulated curtailments, as well as the 
magnitude of the demand reductions.  For AC end-use 
data, the unperturbed load consisted of the sample of 547 
AC units with directly metered end use data.  The 
simulated percent demand reductions were applied directly 
to the actual loads.  For household-level data, the 
unperturbed load consisted of smart meter data from 6,000 
households located in 204 randomly sampled feeders.  For 
each feeder, 100 households participating in PG&E’s AC 
load control program were randomly selected.  For feeders 
with less than 100 participating households, we included 
data from all participants.  The household data was 
aggregated to the feeder level prior to applying the 

Figure 1:  Methodological Framework 
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demand reductions.  Unperturbed feeder load was based 
on the same 204 randomly selected feeders; however, 
hourly data was only available for 85 of those feeders.  By 
applying the simulated demand reduction to unperturbed 
electric loads, not only did we know the actual 
curtailments, but we were able to realistically simulate the 
background noise and the effect size.  

5. Estimate the demand reductions using each data source 
and 10 estimation approaches.  The demand reductions 
were calculated using feeder, household, and AC end use 
data.  The estimation approaches tested included day- and 
weather-matching methods, regressions, and approaches 
that relied on control groups.   

6. Assess the accuracy of each of the estimation approaches.  
For each of the curtailment events, we knew the true load 
patterns without curtailment and the true demand 
reductions.  As a result, we were able to assess the 
accuracy of each estimation approach.  To standardize the 
comparison, we used metrics designed to assess if the 
estimation approaches systematically over or under-
reported demand reductions (bias) and metrics that 
summarized how close the estimates were to the true 
demand reductions (goodness-of-fit).  

B. Demand Reduction Estimation Approaches 

Table 1 summarizes the estimation approaches we evaluated 
and provides greater detail for the fifth step in the simulation 
framework described above.  A total of 10 different demand 
reduction estimation approaches were applied to feeder, 
household, and AC end-use data.  The least technical approach 
– a set of tables that provides estimates of the load curtailment 
based on daily maximum temperature, region, and hour of day 
– is used as a benchmark to assess the extent to which more 
complex demand reduction estimation approaches improve 
accuracy.  The approaches can be classified into 2 broad 
categories: within- and between-subject estimators. 
 
Within-subject estimators use customer’s electricity use 
patterns during days when AC units are not curtailed to 
estimate AC load absent curtailment operations during actual 
event days.  They include demand reduction calculation 
methods such as individual customer regressions and day- and 
weather-matching baselines.  They work because the AC 
curtailment is introduced on some days and not on others, 
making it possible to observe behavior with and without the 
load control in effect. 
 
Within-subject approaches can be less reliable when 
curtailment events lack comparable non-event periods.  For 
example, if an AC load control program is utilized on all of the 
hottest days, much like AC programs have normally been 
operated, there may not be any similarly hot days left over for 
comparison.  However, contingency reserve operations are 
typically triggered by random generation or transmission 

outages.  They tend to be short in duration and do not always 
affect the same hours.  As a result, there are typically a large 
number of similar non-curtailment periods.  
 
Between-subject estimators rely on an external control group 
of AC units that are not curtailed to provide information about 
AC units that were curtailed and would have used electricity if 
they were not instructed to shed load.  We considered two 
simple options that rely on random assignment to load control 
operations: a simple comparison of means and a difference-in-
differences calculation. 
 
1)  Impact Estimate Tables 
Impact estimate tables are the least technical demand reduction 
estimation approach and are typically constructed at the AC 
unit level.  They are essentially a set of tables with pre-
calculated load reduction estimates based on annual impact 
evaluations of historical curtailment.  They allow the user to 
look up estimates of the reduction per AC unit based on the 
hour of day, temperature condition category, and climate 
region.  These estimates per AC unit can be multiplied by the 
number of AC units dispatched in each climate region and 
aggregated to obtain an estimate of the aggregate demand 
reduction.  While not complex, the approach is practical and 
low cost.  It serves as a useful baseline for assessing how much 
value is added by using more complex demand reduction 
estimation approaches or requiring placing more extensive data 
requirements for settlement.  
 
The accuracy of the impact estimate tables was tested using a 
sub-sampling approach.  Approximately one eighth of the data 
was sampled and used to develop the impact estimate tables.  
To assess accuracy, we then compared the estimates from the 
table to the known impacts for population, which were 
artificially introduced.  The process is repeated 100 times to 
reflect both sampling and estimation error.  
  
2) Within Subject Estimators 

a) Day- and Weather-matching Baseline 
Estimation Approaches 

Day-matching baselines are a widely used technique for 
developing an estimate of what electricity use would have been 
in the absence of load control.  The approach was developed 
and tested for large C&I customers and have been used by 
ISOs for settlement of DR products targeting large C&I 
customers.  This approach relies solely on electricity use 
patterns when the AC unit is not controlled.  A subset of 
weekdays when units were not cycled in close proximity to the 
event day is identified.  The electricity use in each hour of the 
identified days is averaged to produce a baseline.  While more 
accurate approaches are available, baselines are useful because 
they allow settlement to be conducted quickly and are 
relatively intuitive and easy to understand.  Many options exist 
for calculating baselines.  
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Table 1: Demand Reduction Estimation Methods Tested 

Type of 

Estimator 
Method No. Calculation 

Data Source 

Summary Description 

Individual
AC 

Aggregated 
AC 

Feeder 
House
Data 

Within- 
subject 
estimators 

Day-
matching 
baseline 

1 
10-in-10 with a 20% 
in-day adjustment cap 

X X X X 
A subset of weekdays when units were not cycled 
is identified and the average is calculated for each 
hour to produce a baseline.  The days are selected 
from the 10 non-event weekdays closest to the load 
curtailment day.  The baseline is calibrated or 
adjusted using information about demand patterns 
in the hours preceding the curtailment (in-day 
adjustment).  Demand reductions are calculated as 
the difference between the adjusted baseline and 
metered load.  The process for weather-matching 
baselines is similar except that the baseline load 
profile is selected from non-event days with similar 
daily maximum temperatures and then calibrated 
with an in-day adjustment.     

2 
10-in-10 without an 
in-day adjustment cap 

X X X X 

3 
Top 3 in 10 without 
an in-day adjustment 
cap 

X X X X 

Weather- 
matching 
baseline 

4 

Profile selected based 
on daily maximum 
temperature without 
an in-day adjustment 
cap 

X X X X 

Regression 

5 
Treatment variables 
and no day or hourly 
lags or leads 

X X X X 
Regression analysis quantifies how different, 
observable factors such as weather, hour of day, 
day of week, location, and load curtailments affect 
AC electricity use patterns.  With regressions, the 
impacts are usually directly estimated through the 
model parameters that reflect the effect of load 
control operations – known as treatment variables.  
With treatment variables, the impacts are the 
difference between the regression estimates of AC 
use with and without load control.  Regression 
models can be informed by electricity use patterns 
in the day prior (day lags) and in the hours before 
or after an event (lags or leads).     

6 
Treatment variables 
with a day lag 

X X X X 

7 
Treatment variables 
with hourly lags and 
leads 

X X X X 

8 
No treatment variables 
but use of hourly lags 
and leads 

X X X X 

Between- 
subject 
estimators 

Random 
assignment 
of load 
control 
operations 

9 Comparison of Means  X  X 

AC load control program participants are randomly 
assigned to groups that do and do not have their 
AC unit instructed to reduce or shed AC load.  Any 
differences between the two groups are random, 
not systematic.  The group that is not subject to the 
load curtailment is typically referred to as the 
control group and provides information about 
normal electricity use patterns in the absence of 
AC curtailment.  Impacts are calculated as the 
difference in average demand between the group 
that is and is not dispatched (comparison of 
means).  The estimate can be refined by assessing 
inherent differences between the two groups in hot 
non-event days and netting them out of the demand 
reduction calculation (difference-in-differences). 

10 
Difference-in-
differences 

 X  X 

Pre-calculated load 
reduction estimate 

tables 
11 

Multiply the number 
of AC units in each 
geographic location 
by the corresponding 
estimate of demand 
reductions per AC 
unit for the 
corresponding area, 
hour of day, and 
temperature bin. 

 

X X  

Empirical data on AC end use (absent 
curtailments) is used to produce estimates of 
average load by geographic location, hour of day, 
and temperate bins (based on cooling degree days).  
The historical evaluation data is used to estimate 
how the percent load reductions vary with 
temperature conditions and geographic locations.   
The percent load reductions are also estimated by 
geographic location, hour of day, and temperate 
bins.  The percent load reductions are then applied 
to estimates of AC end-use (absent curtailment) to 
produce tables.  The tables contain estimates of the 
per AC unit demand reduction for specific 
geographic locations, hour of day, and 10 
temperature profiles.  
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Day-matching baselines are often supplemented with 
corrections to incorporate information about usage patterns in 
the hours preceding an event – usually referred to as in-day or 
same-day adjustments.  In-day adjustments are common and 
typically reduce the error between the unadjusted baseline and 
actual loads.   
 
Weather-matching baselines are a variation of day-matching 
approaches.  The main difference is that the comparable days 
are based on average hourly load patterns during non-event 
days with similar weather conditions, as defined by 
temperature bins.  These days may or may not be immediately 
prior to the curtailment event.  For example, to produce a 
baseline for a weekday with a daily maximum temperature 
between 90°F and 95°F, the first step would be to identify 
weekdays with similar temperatures and without AC 
curtailments.  If there were six such days, the electricity use for 
each time period would be averaged for those six days to 
produce a baseline.  As with the day-matching baseline, the 
weather-matching baseline can be calibrated or adjusted using 
actual usage patterns in the hours preceding an event.  Given 
the weather sensitivity of AC load, this approach is preferable 
to using a simple baseline. 

b) Regression Analysis Estimation Approaches  

Regression analysis quantifies how different, observable 
factors such as weather, hour of day, day of week, location, 
and cycling affect AC electricity use patterns.  With 
regressions, the impacts are directly estimated through the 
regression model parameters.  In other words, the impacts are 
the difference between the regression estimates of AC use with 
and without load control.    
 
The analysis consists of applying regression models separately 
at the unit of analysis.  The regression specification is common 
over all units but estimated coefficients vary for each unit.  The 
variables in the regression specifications model time-based and 
weather-based impacts.  The fact that each feeder has its own 
specification automatically accounts for variables that are 
relatively constant for each unit, such as geographic location, 
mix of load control switches versus smart thermostats, and the 
strength of the communication network.  Because the 
coefficients are specific to the unit, they can better explain the 
variation in weather sensitivity and load patterns. 
  
Regression analysis estimation approaches work because AC 
load control naturally produces an alternating or repeated 
treatment design.  The primary intervention – AC load control 
– is present on some days and not on others, making it possible 
to observe AC use with and without cycling under similar 
conditions.  A repeated introduction and removal of 
curtailment events allows for an assessment of whether the 
outcome – electricity consumption – rises or falls with the 
presence or absence of AC cycling.   

 
We tested four regression analysis estimation approaches; the 
appendix contains the mathematical expression of the 
regression models tested.  
 

3) Between-subject Estimation Approaches (Control 
Groups) 

Another way to estimate demand reductions is by using a 
control group of customers that does not participate in the 
event.  In essence, the electricity demand patterns by the group 
that did not participate are used to infer what the usage patterns 
of the curtailment group would have been absent 
the curtailment.   
 
However, on its own, using a control group does not guarantee 
more accurate results.  To eliminate alternative explanations 
for differences in electricity use, it is critical that the only 
systematic difference between the two groups is the fact that 
one group had their AC units curtailed while the other group 
did not.   
 
The best way to ensure there are no systematic differences 
between the two groups is to randomly assign customers to the 
curtailment and control groups and use large sample sizes.  
Because of random assignment, on average, both groups can be 
expected to have similar characteristics such as household size 
and to experience the same weather, economic conditions, and 
occupancy patterns.  The only systematic difference between 
the two groups is whether or not they were curtailed.   
 
The demand reductions were calculated in one of two methods:  
A simple comparison of means: with this approach, for each 
time period, demand reductions are estimated as the difference 
between the group that did not have their AC loads curtailed 
and one that did.  
A weather-matched difference-in-differences calculation: this 
approach is useful when sample sizes are smaller.  The demand 
reduction is calculated as the difference between the two 
groups, but then adjusted with one additional step.  We 
subtracted out differences between the two groups observed 
during days without curtailments and similar weather.  This 
nets out differences that are irrelevant and mainly due to 
sampling variation. 
 
To simulate the effect of sampling accuracy, we 1) randomly 
selected a sample of customers, 2) randomly assigned half of 
them to receive the curtailment and half to act as the control 
group, 3) simulated the impacts for the group assigned 
curtailment, 4) calculated the demand reduction using the 
control group, and 5) recorded the degree of error in the 
estimate.  This process was repeated 100 times to reflect the 
distribution of errors in the estimation approach. 
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C. Metrics for Assessing Accuracy 

Since AC load control programs aggregate tens and sometimes 
hundreds of thousands of the AC units, the focus is less on the 
accuracy of estimates for individual AC units or feeders and 
more on the overall accuracy of the results for the program and 
for larger zones in the electric grid.   
 
To standardize the comparison between various estimation 
approaches, we used metrics designed to assess to what extent 
the estimates systematically over or under-estimated the 
known, true demand reductions (bias) as well as metrics that 
summarized how close the estimates were to the known, true 
demand reductions (goodness-of-fit).  An accurate estimator 
produces results that are on average unbiased and minimize 
amount of error for individual periods (i.e., it has a high 
goodness-of-fit).   
 
In comparing various demand reduction estimation approaches, 
it is important to understand whether an approach is unbiased 
on average and accurate for individual curtailment hours.  An 
approach that produces correct measurements on average can 
perform poorly for individual events.  This occurs if the errors 
cancel each other out.   
 
Table 2 summarizes the metrics for bias and goodness-of-fit 
used to assess the different estimation approaches.  It includes 
a brief description and the corresponding 
mathematical equations.   
 

III. RESULTS 

This section summarizes the accuracy of the estimation 
approaches tested.  In total, we evaluated 10 estimation 
approaches that relied on either feeder data, household data, or 
end-use AC data.  Each combination of data source and 
estimation approach is considered as a separate alternative.  

Results are shown for bias, using the mean percent error 
(MPE), and for goodness-of-fit, using the mean absolute 
percent error (MAPE), and normalized root mean square error 
(CV RMSE).  To illustrate, a bias statistic of 5% indicates that 
the approach tends to overestimate demand reductions by 5%.  
In contrast, the goodness-of-fit metrics selected indicate the 
magnitude of the errors for individual curtailment periods, with 
lower values indicating less error.  MPE can be positive or 
negative, while MAPE and CV RMSE can only be positive. 
 
Table 3 shows results for the within-subjects estimation 
approaches and compares those results with the impact 
estimate tables for the average event day.  The within-subjects 
approaches include three different day-matching baseline 
methodologies, a weather-baseline methodology, and four 
regression models.  As a reference, the table also shows impact 
estimate tables, which are the least technical approach 
available, and serve as a benchmark to test more sophisticated 
approaches.  The impact estimate results shown here are for a 
sample of 500 customers drawn, 100 times, and show both the 
median result and a 90% confidence band around that result. 
 
Feeder data provides the worst results across the board, 
regardless of the estimation approach employed.   Simply put, 
feeder data includes a lot of irrelevant load variation that 
dilutes the signal and makes it harder to detect.  It includes 
load variation due to customers that are not enrolled in the AC 
load curtailment program (including commercial and industrial 
businesses), as well as end-uses that are not AC related.  It is 
difficult to pinpoint the amount of load being curtailed by an 
AC program because the program signal is very small, while 
the noise of other loads is large.  

Type of 
Metric 

Metric Description Mathematical Expression 

Bias 
Mean Percentage Error 

(MPE) 

The mean percentage error (MPE) indicates the 
percentage by which the measurement, on 
average, tends to over or underestimate the true 
demand reduction. 

1∑
 

 

Goodness-of-
Fit 

Mean Absolute 
Percentage Error 

(MAPE) 

The mean absolute percentage error (MAPE) is a 
measure of the relative magnitude of errors across 
event days, regardless of positive or negative 
direction.  It is normalized allowing comparison 
of results across different data sources. 

1
 

CV(RMSE) 
This metric normalizes the RMSE by dividing it 
by the average of the actual demand reduction. 
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Table 3: Within-Subjects Methods Results 

 
  For the average feeder, the curtailment events led to an 
average reduction of 0.2% for the feeder loads.  Even for the 
feeders with the highest penetration of load control devices, the 
curtailments rarely exceed more than 1% or 2% of the feeder 
loads.  While demand reductions can be observed in feeders 
with high AC load control penetration on very hot afternoons, 
they are not a viable option for settlement.  Not only does it 
lead to inaccurate demand reduction estimates, but many 
utilities such as PG&E cannot readily access sub-hourly data 
for a large share of their feeders.  
 
Table 3 also shows that baseline approaches are inferior to 
regression approaches.  The day-matching baselines that are 
typically used for large C&I customers produced the least 
accurate estimates of residential AC demand reductions.  They 
both exhibited larger bias and more error for individual  
curtailment periods (goodness-of-fit).  This is likely because 
residential AC loads are far more weather-sensitive than large 
C&I loads.  Weather-matching baselines tend to provide results 
that are lower in bias and have better goodness-of-fit than day-
matching approaches because they better account for 
residential AC weather sensitivity.  They work well with 
aggregated AC end-use data, less so with household data.  The 
regressions are much better at providing accurate estimates of 
load curtailments than day- or weather-matching baselines.  
They produce the most accurate results and perform with both 
AC end-use and household data.  Regression methods 1 and 4 
do particularly well.  (Regression specifications are included in 
the Appendix to this article.)   
 
As the table shows, alternatives that rely on AC end-use data 
tend to do the best job of estimating the true demand 
reductions.  Individual AC loads show a very clear usage 
pattern – they are either on or off – those patterns are very 
difficult to predict, as any individual AC unit’s load can be 

 

 rather volatile.  Aggregated AC data can be more accurate 
because it is easier to predict the aggregate behavior of many 
customers than to accurately predict the individual behavior of 
one customer. 
 
Even though it provides the most accurate results, collecting 
large amounts of AC end-use data is an expensive proposition.  
Generally, data loggers must be installed on individual AC 
units and retrieved at the end of a study period or have data 
transmittal capability.  Data collection of AC end-use data 
requires large expenditures in both labor and capital.  On the 
other hand, household-level data is much easier to collect, 
especially as smart meters become more and more common.   
 
Several evaluations have recently relied on smart meter data 
from tens or hundreds of thousands of households with very 
little incremental cost (George 2012 and Hartmann 2012).  
While household load data is “noisier” than AC end-use data 
because it includes the load of many other household devices, 
the AC load is still quite easy to detect, especially on hotter 
days.  This makes it an affordable and very useful data source.   
 
The impact estimate tables provide fairly good results.  In 
terms of bias, they consistently do better than baseline 
approaches, and the median result only shows bias of 0.1%, 
which is better than even the regression approaches.  Their 
goodness-of-fit statistics are not quite as good, indicating that 
while they do a good job of estimating demand reductions for 
the average event day, there is considerable variation across 
individual event days.  In addition, goodness-of-fit does not 
improve as sample size increases; the results shown in the table 
are for a sample of 500 customers, but our results for a sample 
of 2,000 customers are very similar.  Importantly, the quality 
of results using this approach depends on the amount of 
historical event data incorporated, the quality of the underlying 
evaluations, and the granularity of the cell tables.  

No. 
Result Type Bias (MPE) Goodness-of-Fit (MAPE) Goodness-of-Fit (CV RMSE) 

Data Source 
Ind. 
AC 

Agg. 
AC 

Whole 
House 

Feeder Ind. AC Agg. AC
Whole 
House 

Feeder Ind. AC Agg. AC
Whole 
House 

Feeder 

1 

Within-
Subjects 

Baseline 
Methods 

Day-
matching 

1 -136% -105% -123% -1810% 141% 111% 120% 2114% 1.82 1.26 1.88 29.84 

2 2 94% 14% -36% -526% 129% 32% 70% 1663% 2.24 0.50 0.92 20.10 

3 3 960% 9% -11% -203% 146% 31% 49% 932% 2.72 0.43 0.57 12.27 

4 
Weather- 
Matching 

4 55% -3% -6% -463% 99% 29% 25% 1165% 1.64 0.35 0.40 15.30 

5 

Regression Methods 

5 80% 3% 0% -89% 23% 24% 29% 304% 0.26 0.26 0.25 3.17 

6 6 2% 5% 12% -140% 26% 25% 32% 367% 0.29 0.29 0.27 3.62 

7 7 6% 15% 14% -98% 30% 30% 36% 331% 0.30 0.31 0.28 4.01 

8 8 -3% -2% -8% -72% 31% 24% 24% 549% 0.35 0.22 0.30 7.26 

11 
Impact 

Estimate 
Tables 

Percentiles 

5% -6% 33% 0.39 

50% 0% 36% 0.41 

95% 7% 40% 0.44 
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However, considering the simplicity of this very low-cost 
approach, impact estimate tables provide a good method of 
achieving a relatively accurate settlement.  Regression 
approaches are preferable for accurate ex post measurement 
and verification, but impact estimate tables are quite capable of 
providing quick, unbiased results for settlement purposes. 
 
Table 4 shows results for the two between-subjects methods.  
The first approach is a simple comparison of means, while the 
second approach is a difference-in-differences calculation.  
With the first approach, demand reductions are estimated as the 
difference between the group that did not have their AC loads 
curtailed and one that did.  With the second approach, the 
difference between the two groups is also calculated for the 
curtailment day.  However, differences between the two groups 
observed during days without curtailments and similar weather 
are then subtracted out.  This additional step nets out 
differences that are irrelevant and mainly due to sampling 
variation.  It improves precision of the estimates, particularly if 
smaller samples are employed.  The table also shows results 
for the impact estimate table approach using a sample size of 
500 customers. 
 
By definition, between-subjects approaches require 
aggregating multiple customers into two groups to make a 
comparison.  Thus, individual AC data does not lend itself to 
doing this type of comparison.  In addition, it is not possible to 
carry out a meaningful comparison between randomly assigned 
groups of feeders.  Thus, the table only shows results for 
aggregated AC data and household data.   
 
In comparing the results of AC end-use and household data, it 
is important to keep in mind that collecting AC end-use data is 
prohibitively expensive in comparison to extracting household 
data from smart meters that have or will be deployed.  
Collecting AC data for an entire summer for a sample of 500 
customers can cost from $300,000 to $600,000. 
 
 
Table 4: Between Subjects Methods Results 

Despite the fact that the aggregated AC data source only has 
500 customers, it exhibits less bias and better goodness-of-fit 
than household data with a sample size of 500 or 1,000 
customers.  This echoes the results shown in the within-
subjects comparison; aggregated AC data includes only the 
“signal” of AC usage with none of the “noise” of other end-
uses found in household data.  With household sample sizes of 
2,000 or more, household data does do better than 500 AC 
units.  Increasing the sample size tightens up the confidence 
bands for both bias and goodness-of-fit statistics considerably.   
 
The difference-in-differences approach is more accurate than 
the simple comparison of means.  The additional step of 
netting out random differences that are mainly due to sampling 
variation improves measurement precision considerably, 
especially for smaller sample sizes. 
 
Both impact estimate tables and between-subjects approaches 
do not tend to over or underestimate impacts, provided sample 
sizes are large enough.  However, goodness-of-fit is 
considerably improved when using the between-subjects 
approaches, indicating that these approaches do much better 
for individual event days.  Some other considerations regarding 
the use of impact estimate tables have already been described 
above.  
 
Comparing Tables 1 and 2, it is clear that a between-subjects 
design using household data and a sample size of 2,000 
customers does a better job of estimating curtailment on both 
average and individual event days than any within-subjects 
approach; in addition, it also does a better job of estimating 
curtailment on individual days than the impact estimate tables.   
 
AC load control devices are well suited for between-subject 
approaches that rely on random assignment.  It is possible to 
randomly assign and/or rotate curtailment operations rather 
than have to deny or delay an intervention for a subset of 
customers.  For example, with many systems, it is possible to 
instruct the load control device of a house to shed load and to 
instruct the load control devices at an adjacent house not to do 
so.  This approach was successfully executed in the 2011 

No. 

Result Type Bias (MPE) Goodness-of-Fit (MAPE) Goodness-of-Fit (CV RMSE) 

Data Source Agg. AC Household Agg. AC Household Agg. AC Household 

Sample Size 500 500 1000 2000 500 500 1000 2000 500 500 1000 2000 

9 

Between 
Subjects 

Comparison 
of Means 

5% -32% -72% -57% -41% 20% 36% 25% 17% 0.23 0.33 0.24 0.17 

Median -2% -7% 4% -2% 30% 58% 40% 27% 0.34 0.54 0.37 0.24 

95% 39% 78% 56% 32% 50% 106% 92% 64% 0.55 0.97 0.73 0.52 

10 Diff-in-diff 

5% -16% -21% -13% -9% 18% 28% 21% 15% 0.20 0.28 0.21 0.15 

Median 0% 0% 0% -1% 26% 42% 30% 21% 0.30 0.41 0.29 0.20 

95% 14% 22% 13% 10% 36% 58% 42% 28% 0.43 0.58 0.39 0.27 

11 
Impact 

Estimate 
Tables 

Percentiles 

5% -6% 33% 0.39 

Median 0% 36% 0.41 

95% 7% 40% 0.44 
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evaluation of Pacific Gas & Electric’s SmartAC program, 
where approximately 140,000 AC units were randomly 
assigned to 10 different groups and test operations were 
systematically called for research purposes (George, 2012).  
For each curtailment event, one or two groups were curtailed 
and the remaining groups served as controls.  

IV. CONCLUSIONS AND IMPLICATIONS FOR UTILITIES 

AC load control programs are substantial, existing resources 
that can be deployed quickly.  If integrated into grid operations 
and ancillary service markets, they can provide operators with 
a resource that can be deployed quickly in response to system 
shocks or unexpected changes in demand or supply that 
requires a fast response.  In order to incorporate AC load 
control into grid operations and markets, it is necessary to 
define the rules and requirements for settlement.  

 
Much of the debate to date regarding settlement methods for 
demand reduction has focused on day-matching baselines, 
metering requirements, and telemetry.  Our research shows that 
day-matching baselines are not well suited for measuring AC 
demand reductions.  Moreover, more granular meters do not 
necessarily increase the accuracy of demand reduction 
measurement because measuring demand reduction is 
fundamentally different than measuring the output from 
generation resources.  
 
The fact that relatively accurate estimates can be obtained 
using pre-calculated tables of demand reduction estimates 
raises several questions.  Is it really necessary to use more 
complex and more expensive estimation approaches for each 
individual AC curtailment event?  How much value does the 
incremental accuracy of more complex estimation approaches 
and metering provide for settlement?  How much value is 
gained by increasingly granular measurement (1 minute versus 
15 minutes versus 1 minute data)? 
 
A practical approach is recommended for settlement.  It 
involves using tables with pre-calculated load reductions per 
AC unit to estimate demand reductions over the summer; 
conducting a more detailed evaluation at the end of the summer 
to reconcile settlements and updating the demand reduction 
tables on an annual basis using a transparent process that 
allows for independent verification by a third party.  As the 
measurement uncertainty in annual evaluations improves and 
the number of AC load operations increases, the accuracy of 
the tables is expected to increase.  The use of such tables 
allows for quick settlement when resources are dispatched and 
provide operators a quick estimate of the DR resources 
available for operations.  
 
The accuracy of pre-calculated tables depends in part on the 
amount of historical curtailment data incorporated, the quality 
of the evaluations, and the granularity of the tables.  When 

possible, it is highly recommended that direct load control 
program administrators systematically execute test operations 
to better define the performance of the programs and that they 
rely on large sample sizes, with random assignment of devices 
to curtailment operations, and a difference-in-differences 
method.        
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