ERCOT Look-Ahead SCED ALSTOM Experiences and Solution

Dr. Xing Wang
04/26/2011
ERCOT METF Meeting

ALSTOM

Outline

- ALSTOM LA-SCED Customer Implementations
- LA-SCED Implementation Challenges
- ALSTOM Smart Dispatch R\&D Development
- ALSTOM's New Developments in Real-Time Markets
- Open Discussion / Q\&A

ALSTOM LA-SCED CUSTOMER IMPLEMENTATIONS

ALSTOM LA-SCED Customer Implementations

- PJM LA-SCED went-live on June 9th 2010
- LA Commitment: 2 hour look-ahead fast-start unit commitment
- LA Dispatch: coupled multi-interval SCED
- Midwest ISO LA-SCED
- LAC focuses on fast-start unit commitment in production April 2nd 2012
- Look-ahead Dispatch (LAD) is next phase
- ISO-NE LA-SCED
- Commitment advisory passed operator testing Q1 2012
- Commit fast-start unit, predict emergency conditions, DR activation, and transaction clearing prices
- Production implementation phase begins Q2 2012
- SPP LA-SCED for Integrated Marketplace (go-live Q1 2014)
- Pre-RTBM is a interval coupled LA dispatch to look ahead 2 hours for OOME recommendation
- Other LA-SCED projects that went live
- North China Grid
- Terna of Italy

PJM Real-Time Market Evolution

- 2001: $1^{\text {st }}$ RT-UDS for energy only real-time market
- 2002: hourly Sprego market with co-optimization
- 2006: allow DR to participate Spin and Regulation markets
- 2008: perfect dispatch
- 2009: prototype of GCA (LA-SCED)
- 2010: IT-SCED/RT-SCED replaced LA-/RT-UDS
- Multi-interval RT market and fast start LA commitment
- 2011: PRD prototype
- 2012/13: Shortage Pricing, FERC 745, FERC755, PRD will go live

PJM LA-SCED

Generation Control Application (GCA)

IT-SCED

demand trajectory, generator loading strategy, CT commitment

30
final dispatch contour, pricing

$\underset{\text { generator dispatch range } \& \text { sequence solution }}{\text { Current }}$
generator dispatch range \& sequence solution

AGC

regulation signals

PJM LA-SCED

- Initiated by recommendation from "Perfect Dispatch" Study
- Reduce fast-start commitment and dispatch cost
- IT-SCED is a MIP Look-ahead Commitment Engine
- Reduce fast-start unit commitment cost
- RT-SCED is a Multi-interval Look-ahead Dispatch Engine
- Provide unit dispatch trajectory
- Pre-ramp units
- Look-Ahead transmission constraint prediction
- Energy and Ancillary Services co-optimization
- Reduce real-time LMP volatility

PJM Savings From Perfect Dispatch and GCA

(3) pjm.com/~/media/ab
$\leftarrow \rightarrow$ C ©pjm.com/~/media/about-pjm/newsroom/2012-releases/20120119-perfect-dispatch-news-release-2012.ast \& \&

NEWS RELEASE

FOR IMMEDIATE RELEASE

PJM'S STRIVING FOR PERFECT DISPATCH NETS NEARLY \$200 MILLION IN SAVINGS

Savings almost equal to operating costs
(Valley Forge, Pa. - Jan. 19, 2012) - PIM Interconnection saved $\$ 199$ million last year-an amount almost equal to its operating costs-by increasing efficiency in how generation is scheduled to meet electric demand requirements, particularly, the scheduling of more costly combustion turbines used to meet demand shortfalls. Accumulated savings since 2008 are $\$ 455$ million.

Combustion turbines, gas or oil-fired generators that use air combustion to produce power, are often on-stand-by to run in case needed because they can be brought on-line more quickly.
However, the cost of having them available and running them are typically more expensive than previously scheduled generation.

MISO Real-Time Market Evolution

- 2005: Launched Energy only Market
- 2009: Launched Energy and Ancillary Services Market
- Energy and AS co-optimization in both DA and RT markets
- DRR I and II, SER, etc.
- 2011: Look-Ahead Commitment in parallel operation
- 2012: Look-Ahead Commitment went live
- 2012: FERC 755, ELMP
- 2013: Look-Ahead Dispatch in plan

MISO LA-SCED

Offers
 Commitments
 Regulation commitments Operator Overrides
 Initial conditions (SE)
 Transmission Constraints
 Load Forecast
 Wind Forecast
 NSI

LAC \& LAD Relative Timeline at PJM

MISO LAC Phase 1

- Focus on near short term period (~3 hours)
- Bridge gap between existing IRAC \& real-time dispatch
- Application of advanced optimization algorithms to improve ear term commitment process
- 3 scenarios to study input data uncertainties
- Real time telemetry input and wind forecast
- Energy and Ancillary Services Co-optimization
- Sub-hourly granular study to address intra-hour issues
- Operator review and approval of commit suggestions

MISO Savings from LAC MISO Press Release Issued April 3, 2012

MISO Make Whole Payment Example

Resource Pre-Ramping in Time-Coupled LA-SCED

LA-SCED IMPLEMENTATION CHALLENGES

LA-SCED: Summary of Implementation Challenges

- Uncertainties of future operating conditions
- Load forecast error
- NSI uncertainty
- Wind forecast errors
- Discrepancy between outage schedules and the actual occurrence
- LA commitment and dispatch justification
- Operators need to quickly understand the reasons for fast-start commitment and out-of-merit dispatch
- UI design
- Efficiently presenting information obtained from large amount of data
- Time coupled multi-interval dispatch and pricing
- Cross hourly boundary and day boundary

ALSTOM SMART DISPATCH R\&D DEVELOPMENT

ALSTOM Smart Dispatch Overview

ALSTOM LA-SCED Optimization Engine

- LA-SCED is a Mixed Integer Programming (MIP) / Linear Programming (LP) based optimization application which includes both unit commitment and unit dispatch functions. LA-SCED can be easily configured to perform scheduling processes with different heart beats and different look-ahead time.
- Far Look-Ahead Unit Commitment
- Incremental commitment for next 6-12 hours with hourly intervals
- Short-Term Look-Ahead Scheduling
- Look ahead 2-4 hours with 15-minute intervals
- Both commitment and dispatch
- Real-time Dispatch and Pricing
- Dispatch and pricing for next hour with 5-minute intervals

ALSTOM RT/LA Product Features

- Fully support Energy and AS co-optimization
- Scarcity pricing
- Support various resource types, including storage, DRs, wind, Combined Cycle, etc.
- Look-Ahead network topology processing and constraint prediction
- Information driven Operator UI
- Configurability
- Commitment/Dispatch/Pricing
- Single Interval/Multi-interval time coupled /multi-interval non-time coupled
- Study period and interval duration

ALSTOM'S NEW DEVELOPMENTS IN REAL-TIME MARKETS

Alstom's New Developments In Real-Time Markets

- Model Demand Responses and Distributed Energy Resources
- MISO DRR Type 1 and Type2
- PJM Price Responsive Demand
- Pilot Projects with Duke, NiceGrid, etc.
- Wind \& Renewables Integration
- Dispatchable Intermittent Resources
- Model Storage Resources
- MISO Stored Energy Resource (SER)
- FERC Order 755 - Regulation Payment for Performance
- Working with PJM and MISO, target production Q4 2012
- MISO Extended LMP
- ISO-NE Adaptive Transmission Rating
- Load following product / ramp product

Q\&A

THANK YOU!

