ETWG Solar Workshop Austin, TX April 25, 20110

Current Status and Challenges of Solar Power Production Forecasting

JOHN ZACK AWS TRUEPOWER, LLC 185 Jordan Rd Troy, NY 12180

463 NEW KARNER ROAD | ALBANY, NY 12205 awstruepower.com | info@awstruepower.com

Overview

The Solar Power Forecasting Challenge

Current Forecasting Tools

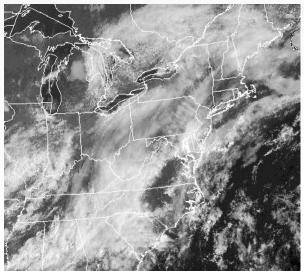
- Weeks and Months Ahead
- Days Ahead
- Minutes and Hours Ahead
- Types of Forecast Products

Forecast Performance Benchmarks

- Performance metrics
- Days Ahead
- Hours Ahead
- Solar vs. Wind Power Forecasts
- The Road to Improved Forecasts

Solar Power Forecast Challenge Factors that Affect Solar Power

- Global Solar Irradiance (~90%),
- Temperature (~10%),
- Wind (<1%)
- Type of Plant
 - Determines exact impact of all three factors
 - Categories of plants: (1) PV, (2) Concentrating PV, (3) Solar thermal (also concentrating)
 - PV is sensitive to Global Irradiance
 - Concentrating types (thermal and PV) are sensitive to Direct Normal Irradiance
 - Also significant sensitivity variations within basic categories


Solar Power Forecast Challenge Environmental Factors that Affect Solar Irradiance

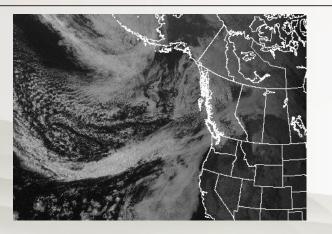
- Sun Angle
 - most significant but completely predictable

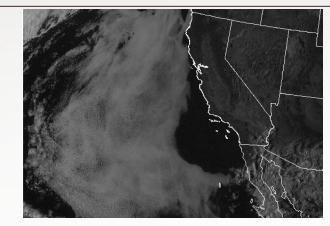
Cloud Cover

- cause of the most variance (~90%)
- largest meteorological challenge to forecasts
- Haze, Dust and Smoke Particles
 - up to 10 % of variance
- Humidity levels (Water Vapor)
 - about 1 % of variability
- Components of Irradiance (diffuse, direct) are affected differently by these factors

The Challenge – Making the Best Forecast for Various Time Scales

Minutes Ahead


- Cumulus clouds, small-scale cloud structures, fog
- Rapid and erratic evolution; very short lifetimes
- Mostly not observed by current sensor network
- Tools: persistence, skycams, local irradiance trends
- Very difficult to beat a persistence forecast
- Need: Data & tools to handle development & dissipation


Hours Ahead

- Frontal bands, mesoscale bands, fog, thunderstorms
- Rapidly changing, short lifetimes

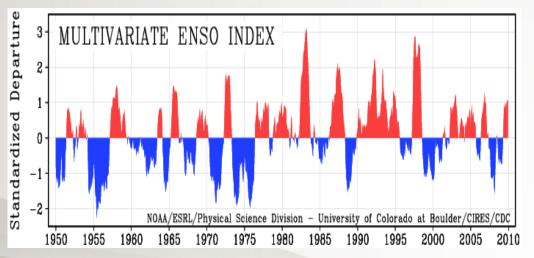
Challenges

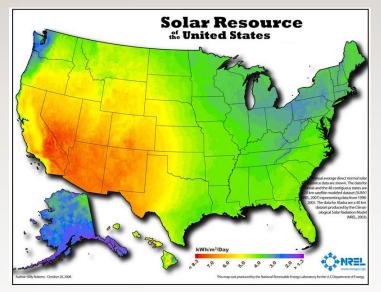
- Current sensors detect existence but not structure
- Tools: satellite-based cloud advection and NWP
- Need: Better forecasts of development & dissipation

Days Ahead

- "Lows and Highs", frontal systems
- Slowly evolving, long lifetimes
- Well observed with current sensor network
- Tools: NWP with statistical adjustments
- > ~ 10 days- climatology and climate trends
- Need: better NWP performance & improved MOS

Solar Irradiance Forecasting Tools

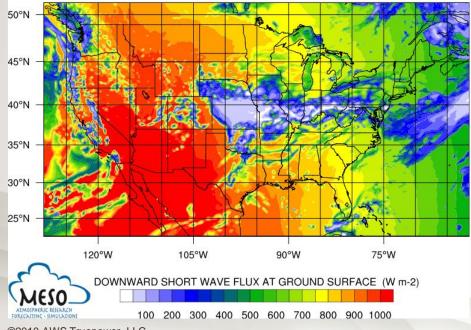

©2010 AWS Truepower, LLC


Forecasting Techniques – Weeks & Months Ahead Climatology and Global Circulation Indices

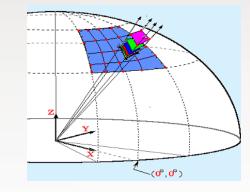
Climatology

Methods

- Long term characteristics of solar resources by time of day and day of year
- Often the best forecast for lookahead periods >10 days



- Statistical links to Global Circulation Indices
 - El Nino (ENSO)
 - Cloudiness and precipitation have significant correlations with ENSO in some areas
 - Madden-Julian Oscillation
 - North Atlantic Oscillation (NAO)
 - Pacific Decadal Oscillation (PDO)



Forecasting Techniques - Days Ahead **Physics-based Numerical Weather Prediction (NWP) Models**

- Differential equations for basic physical principles (conservation laws) are solved on a 3-D grid
- Simulates the evolution of the atmosphere over a 3-D volume
 - explicitly predicts a time series of most atmospheric variables including solar irradiance at all grid points in the model domain

$$\frac{\partial u}{\partial t} = m \left(-u \frac{\partial u}{\partial x} - v \frac{\partial v}{\partial y} - \frac{\partial \Phi}{\partial x} - \sigma_p \alpha \frac{\partial p^*}{\partial x} \right) - \dot{\sigma} \frac{\partial u}{\partial \sigma_p} + fv$$

- Initial values for all variables must be specified for all grid cells.
- Boundary values must be specified for all boundary cells (usually from another model with a larger domain)

©2010 AWS Truepower, LLC