BUILDING A WORLD OF DIFFERENCE

SHARYLAND LOMA ALTA HVDC PROJECT

CONFIDENTIAL

STRATEGIC PROJECTS
B&V ENERGY

Contents

HVDC Technology
Cost Estimates & Schedule
Conclusions & Next Steps

HVDC TECHNOLOGY

Technology: Why HVDC?

- Power flow is controllable
- Bypasses congested AC circuits w/o inadvertent flow
- Bipole DC performs similar to dbl-ckt AC line under contingencies
- Protects against cascading outages
- Power flow can be maintained at reduced levels during loss of one pole by switching to monopole with metallic return
- Can carry more power with reduced losses for a given size of conductor
- Lower cost per MW of delivered capacity (\$/MW) for large systems

Technology: Voltage Source Converters

- VSC marketed as HVDC Light by ABB and as HVDC Plus by Siemens
- Insulated Gate Bipolar Transistor (IGBT) technology does not require strong AC sources for commutation
- Low Short Circuit ratio requirements
- Does not have minimum transfer requirements
- Minimal filtering is required at the terminals
- Smaller terminal footprint and easier to "harden" to improve reliability
- Present technology being used on underground and submarine lines but has limited use and experience on overhead lines
- Allows use of solid dielectric cable technology for submarine cables

Technology: Classic HVDC

- Extensive track record up to ±800 kV
- Converter terminals typically less expensive than VSC terminals but reactive compensation requirements drive up costs
- Thyristor valve technology requires strong AC sources for commutation
- Higher Short Circuit ratio requirements often resulting in need for synchronous condensers or other devices
- Minimum transfer requirements
- Filtering required at the terminals
- Large footprint required at terminals

Technology: Why Metallic Return?

- Improved operational reliability and flexibility
- Bipole operation does not require separate return path;
 monopole operation will require return path
- Sustained use of earth return during monopole operation often not permitted for environmental reasons (e.g. impact on other buried utilities)
- Planned events, such as planned maintenance, requiring sustained monopole operation may use metallic return
 - ➤ Metallic return configuration achieved by controlled switching procedures
 - ➤ Metallic return can include a separate return conductor or can be implemented by switching to the remaining unused pole if serviceable
- Unplanned events may use earth return for initial period (minutes) and then switch to metallic return (hours to weeks)

Project Name: Cross Sound

Location: New York – Conn.

Voltage: ± 150 kV HVDC

Capacity: 330 MW

Technology: ABB HVDC Light (VSC)

Sea Route: 25 miles

Land Route: 1 mile

Project Status: In commercial operation

since 2002

Project Name: Trans Bay

Location: San Francisco Bay

Voltage: ± 200 kV HVDC

Capacity: 400 MW

Technology: Siemens HVDC Plus (VSC)

Sea Route: 53 miles

Land Route: 1 mile

Project Status: In commercial operation

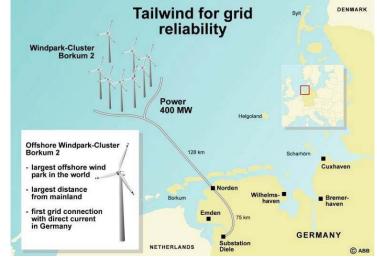
since 2010

Project Name: BorWin1

Location: North Sea

Voltage: ± 150 kV HVDC

Capacity: 400 MW


Technology: ABB HVDC Light (VSC)

Sea Route: 77 miles

Land Route: 46 miles

Project Status: In commercial operation

since 2009

Project Name: DolWin1

Location: North Sea

Voltage: ± 320 kV HVDC

Capacity: 800 MW

Technology: ABB HVDC Light (VSC)

Sea Route: 46 miles

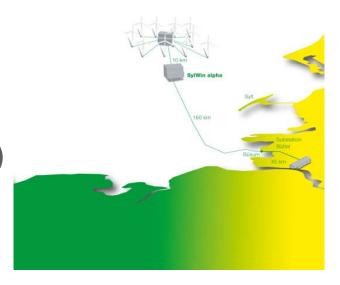
Land Route: 56 miles

Project Status: 2013 Completion

Project Name: SylWin1

Location: North Sea

Voltage: ± 320 kV HVDC


Capacity: 864 MW

Technology: Siemens HVDC Plus (VSC)

Sea Route: 99 miles

Land Route: 28 miles

Project Status: 2014 Completion

Project Name: MAPP

Location: Chesapeake Bay

Voltage: ± 320 kV HVDC

Capacity: 2000 MW

Technology: ABB HVDC Light (VSC)

Sea Route: 39 miles

Land Route: 44 miles

Project Status: 2015 Completion

Project Name: Atlantic Wind

Connection

Location: Mid-Atlantic Coast

Voltage: ± 320 kV HVDC

Capacity: 7000 MW (total)

2000 MW (max

per project phase)

Technology: VSC

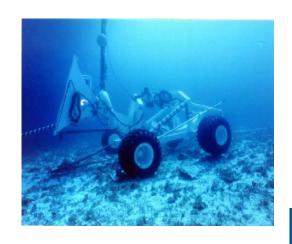
Sea Route: ~600 miles

Land Route: ~50 miles

Project Status: 2016-2020

Staged Completion

Technology: Submarine Cable Installation


Cable Laying

Cable Burial Plowing

COST ESTIMATES & SCHEDULE

Order of Magnitude Cost Estimates

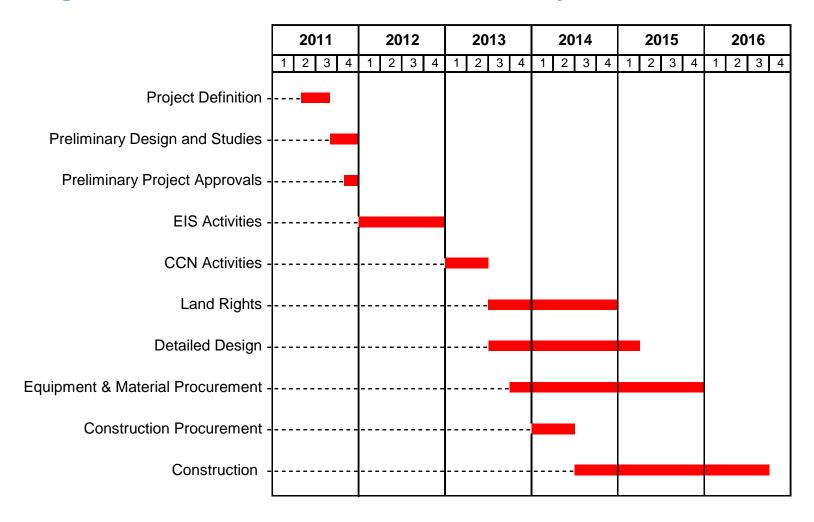
- Cost estimates include:
 - > HVDC converter stations
 - > AC substations adjacent to each converter station
 - ➤ Synchronous condensers at southern terminal for HVDC Classic
 - Lattice tower structures and 2 conductors per pole on overhead option
 - ➤ 1 cable per pole on underground/submarine option
 - **→** Metallic neutral cable

- Cost estimates do not include:
 - Upgrades to existing system not included in the report
 - Cost of remote interconnection
 - Cost of right-of-way/site
 - > Owner's costs
 - Development/permitting costs
 - CCN Process
 - Financing costs
 - Construction management

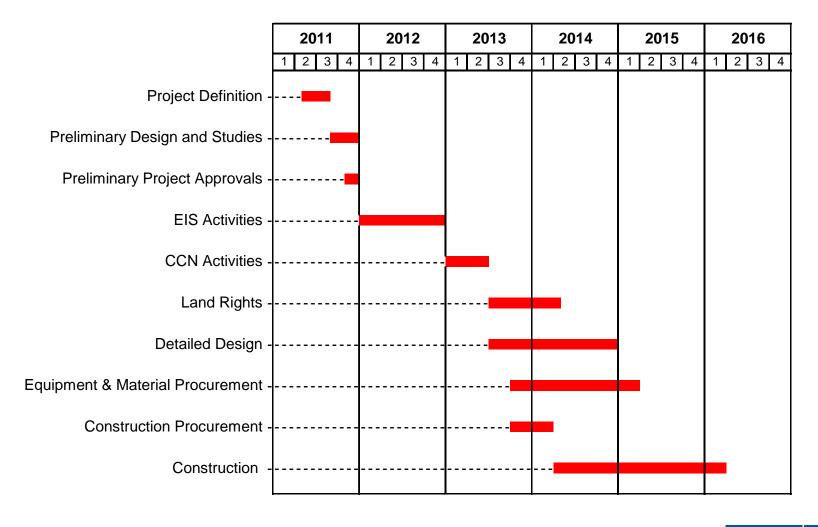
Estimated Project Cost – Overhead Option

	VSC Technology	HVDC Classic
General		
Peak Delivered Power (MW)	1000	1000
Line Voltage	+/- 320 kV HVDC	+/- 400 kV HVDC
Miles of Bipole HVDC Overhead Lines	220	220
Line Rating		
Line Losses at Peak Line Loading	3.2%	2.0%
Terminal Losses at Peak Load (2 Terminals)	2.0%	1.5%
Total Peak Losses	5.2%	3.5%
Conductor Rating (MW)	1,052	1,035
Conductor Size Per Pole	(2) 1943 TWD	(2) 1943 TWD
Total Project Capital Costs		
Bipole HVDC Overhead Lines (\$M)	\$264	\$266
Two HVDC Converter Stations (\$M)	\$300	\$260
AC Substations (\$M)	\$40	\$40
Reactive Compensation [Synch. Cond.] (\$M)	\$0	\$60
System Impacts (\$M)	TBD	TBD
Total Capital Cost (\$M)	\$604	\$626
Capital Cost per MW of Delivered Capacity (\$/MW)	\$604,000	\$626,000

• Further cost optimization of converters would reduce project cost


Estimated Project Cost – Submarine Option

General	
Peak Delivered Power (MW)	1000
Line Voltage	+/- 320 kV HVDC
Miles of Alignment	160
Miles of Bipole HVDC Submarine Lines	150
Miles of Bipole HVDC Underground Lines	10
Line Rating	
Line Losses at Peak Line Loading	5%
Terminal Losses at Peak Load (2 Terminals)	2%
Total Peak Losses	7%
Cable Rating (MW)	1,070
Submarine Cable Size Per Pole	(1) 2400 mm ² CU
Underground Cable Size Per Pole	(1) 2500 mm ² CU
Total Project Capital Costs	
Bipole HVDC Submarine Lines (\$M)	\$525
Bipole HVDC Underground Lines (\$M)	\$45
Two HVDC Converter Stations (\$M)	\$300
AC Substations (\$M)	\$41
System Impacts (\$M)	TBD
Total Capital Cost (\$M)	\$911
Capital Cost per MW of Delivered Capacity (\$/MW)	\$911,000


- Further cost optimization of converters would reduce project cost
- Cable costs based on longest distance to Northern Terminal

High Level Schedule – Overhead Option

High Level Schedule – Submarine Option

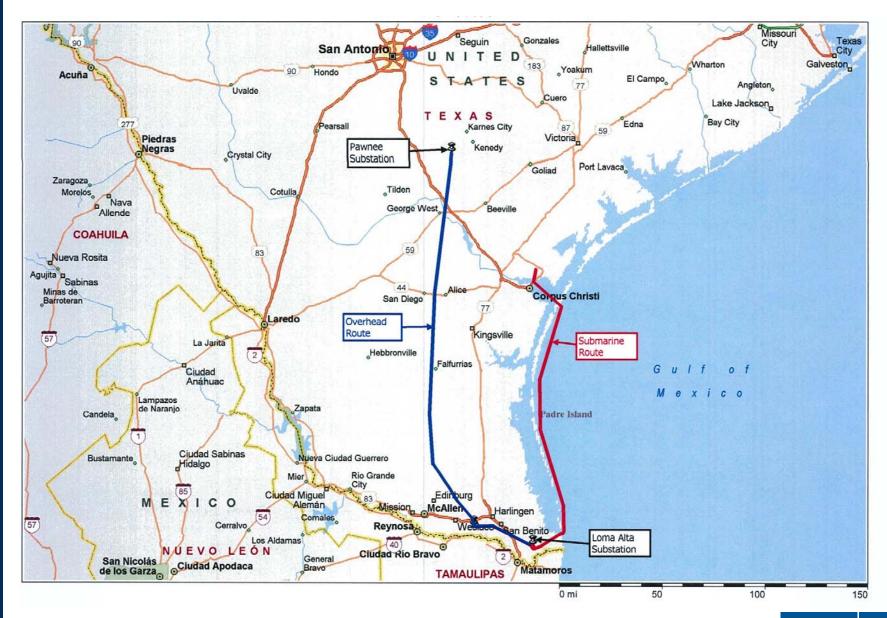
CONCLUSIONS & NEXT STEPS

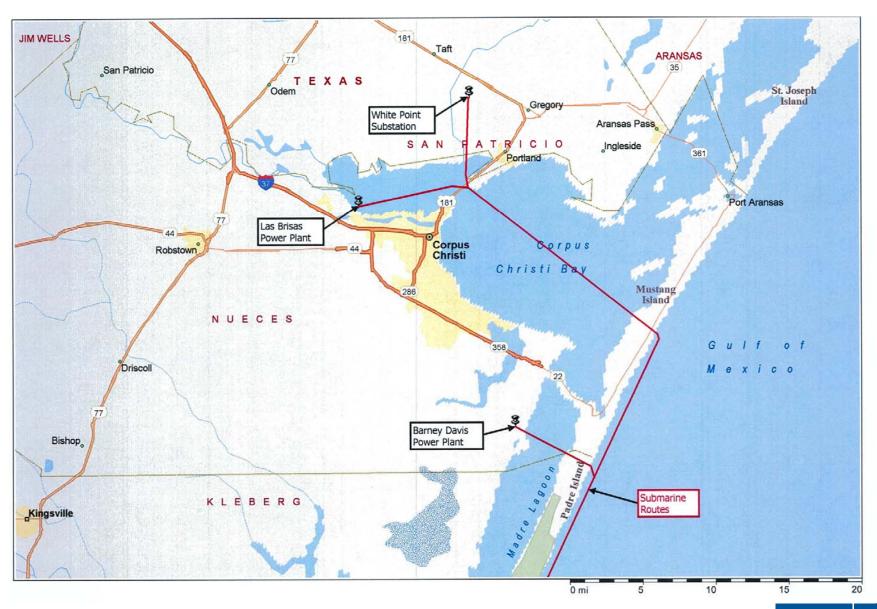
Conclusions

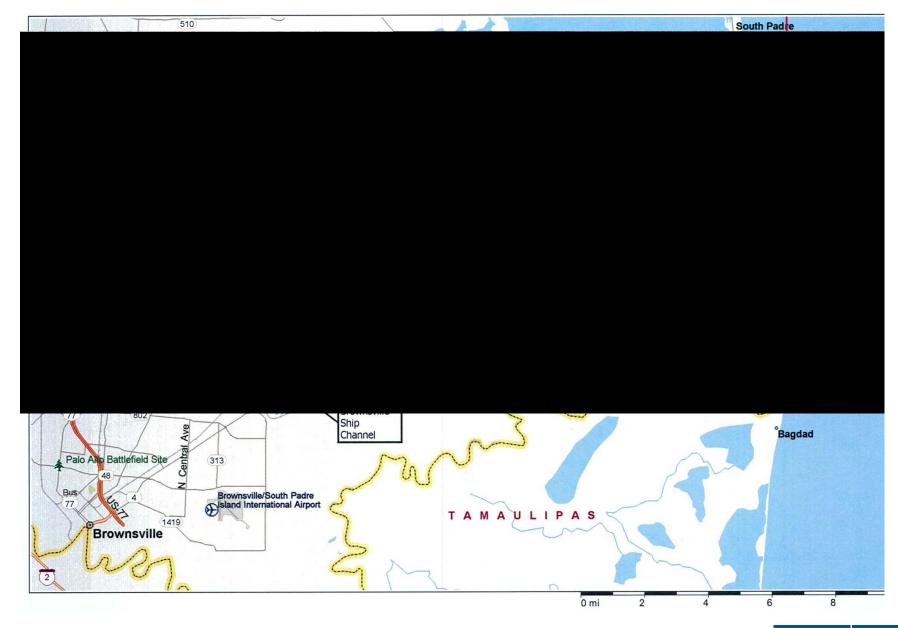
- Both Submarine and Overhead Options:
 - Provide fully controllable 1,000 MW capability, and ability to manage congested AC circuits
 - Protects against cascading outages
 - Can carry more power with reduced losses for a given size of conductor
 - Lower cost per MW of delivered capacity (\$/MW) for large systems
- Submarine Option:
 - ➤ Most reliable alternative to ERCOT for coastal region
 - > HVDC/VSC is the preferred choice for submarine transfer of 1000 MW
- Grid connected HVDC options at Loma Alta, Pawnee, and Corpus Christi area (White Point, Las Brisas or Barney Davis) appear to be viable

Next Steps

- Recommend ERCOT to perform UPLAN-based economic assessment
 - Identify production cost savings following incorporation HVDC line vs. AC solutions
- Review Power System Studies to determine optimal capacity and performance requirements
 - AC power flow analysis
 - Reactive power requirements of existing system
 - Assess most viable technology (HVDC or HVDC light) for Pawnee project
 - Dynamic and SSTI Analysis
- Perform field/route constraints review and update preliminary route and permitting requirements
- Update cost estimates


Building a world of difference.


Together



Appendix Maps

